期刊文献+
共找到6,223篇文章
< 1 2 250 >
每页显示 20 50 100
Coordinated Control Strategy of New Energy Power Generation System with Hybrid Energy Storage Unit
1
作者 Yun Zhang Zifen Han +2 位作者 Biao Tian Ning Chen Yi Fan 《Energy Engineering》 EI 2025年第1期167-184,共18页
The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,... The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units. 展开更多
关键词 Photovoltaic power suppression hybrid energy storage unit variationalmodal decomposition fuzzy control power distribution control
在线阅读 下载PDF
Grid-Connected/Islanded Switching Control Strategy for Photovoltaic Storage Hybrid Inverters Based on Modified Chimpanzee Optimization Algorithm
2
作者 Chao Zhou Narisu Wang +1 位作者 Fuyin Ni Wenchao Zhang 《Energy Engineering》 EI 2025年第1期265-284,共20页
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th... Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability. 展开更多
关键词 Photovoltaic storage hybrid inverters modified chimpanzee optimization algorithm droop control seamless switching
在线阅读 下载PDF
Output Voltage Stabilization of Non-Ideal DC-DC Zeta Converter with Output Voltage Error Elimination via Hybrid Control
3
作者 Hafez Sarkawi Noridah Mohd Ridzuan +1 位作者 Muhammad Idzdihar Idris Mohd Syafiq Mispan 《Journal of Power and Energy Engineering》 2025年第1期18-31,共14页
In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law t... In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law that brings the output voltage to the desired level. Due to infinite switching occurring at the desired level, we enhanced the switching control law by allowing a sizeable output voltage ripple. We derived mathematical models that allow one to choose the desired switching frequency. In practice, the existence of the non-ideal properties of the Zeta converter results in steady-state output voltage error. By analyzing the power loss in the zeta converter, we proposed an improved switching control law that eliminates the steady-state output voltage error. The effectiveness of the proposed method is illustrated with simulation results. 展开更多
关键词 Continuous Conduction Mode DC-DC Zeta Converter hybrid control Output Voltage Error Switching control Law Switching Frequency
在线阅读 下载PDF
Hybrid Dynamic Variables-Dependent Event-Triggered Fuzzy Model Predictive Control 被引量:2
4
作者 Xiongbo Wan Chaoling Zhang +2 位作者 Fan Wei Chuan-Ke Zhang Min Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期723-733,共11页
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ... This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance. 展开更多
关键词 Dynamic event-triggered mechanism(DETM) hybrid dynamic variables model predictive control(MPC) robust positive invariant(RPI)set T-S fuzzy systems
在线阅读 下载PDF
Optimization Control of Multi-Mode Coupling All-Wheel Drive System for Hybrid Vehicle
5
作者 Lipeng Zhang Zijian Wang +1 位作者 Liandong Wang Changan Ren 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期340-355,共16页
The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy... The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously. 展开更多
关键词 hybrid vehicle All-wheel drive Multi-mode coupling Energy management Model predictive control
在线阅读 下载PDF
A NOTE ON THE GENERAL STABILIZATION OF DISCRETE FEEDBACK CONTROL FOR NON-AUTONOMOUS HYBRID NEUTRAL STOCHASTIC SYSTEMS WITH A DELAY
6
作者 冯立超 张春艳 +1 位作者 曹进德 武志辉 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期1145-1164,共20页
Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existi... Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form. 展开更多
关键词 hybrid neutral stochastic differential delay system discrete feedback control general stabilization polynomial stabilization
在线阅读 下载PDF
Hybrid Multi-Infeed Interaction Factor Calculation Method Considering Voltage Regulation Control Characteristics of Voltage Source Converter
7
作者 Shan Liu Chengbin Chi +3 位作者 Fengze Han Yanan Wu Lin Zhu Tuo Wang 《Energy Engineering》 EI 2024年第8期2257-2273,共17页
Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluat... Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluate its influence on the voltage interaction between VSC-HVDC and line commutated converter based high voltage direct current(LCC-HVDC),this paper proposes a hybrid multi-infeed interaction factor(HMIIF)calculation method considering the voltage regulation control characteristics of VSC-HVDC.Firstly,for a hybrid multi-infeed high voltage direct current system,an additional equivalent operating admittance matrix is constructed to characterize HVDC equipment characteristics under small disturbance.Secondly,based on the characteristic curve between the reactive power and the voltage of a certain VSC-HVDC project,the additional equivalent operating admittance of VSC-HVDC is derived.The additional equivalent operating admittance matrix calculation method is proposed.Thirdly,the equivalent bus impedance matrix is obtained by modifying the alternating current(AC)system admittance matrix with the additional equivalent operating admittance matrix.On this basis,the HMIIF calculation method based on the equivalent bus impedance ratio is proposed.Finally,the effectiveness of the proposed method is verified in a hybrid dual-infeed high voltage direct current system constructed in Power Systems Computer Aided Design(PSCAD),and the influence of voltage regulation control on HMIIF is analyzed. 展开更多
关键词 hybrid multi-infeed high voltage direct current system hybrid multi-infeed interaction factor control modes equivalent node impedance ratio voltage interaction characteristics
在线阅读 下载PDF
Implementation of Fuzzy Logic Control into an Equivalent Minimization Strategy for Adaptive Energy Management of A Parallel Hybrid Electric Vehicle
8
作者 Jared A. Diethorn Andrew C. Nix +1 位作者 Mario G. Perhinschi W. Scott Wayne 《Journal of Transportation Technologies》 2024年第1期88-118,共31页
As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybr... As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC. 展开更多
关键词 hybrid Electric Vehicle Fuzzy Logic Adaptive control Charge Sustainability
在线阅读 下载PDF
A data-driven control method for ground locomotion on sloped terrain of a hybrid aerial-ground robot
9
作者 Xinhang Xu Yizhuo Yang +3 位作者 Muqing Cao Thien-Minh Nguyen Kun Cao Lihua Xie 《Journal of Automation and Intelligence》 2024年第4期219-229,共11页
In this work,we present a data-driven solution for the attitude control of DoubleBee on slopes.DoubleBee is a novel hybrid aerial-ground robot with two rotors and two active wheels.Inspired by the physics modeling of ... In this work,we present a data-driven solution for the attitude control of DoubleBee on slopes.DoubleBee is a novel hybrid aerial-ground robot with two rotors and two active wheels.Inspired by the physics modeling of the system,we add a channel-separated attention head to a deep ReLU neural network to predict disturbances from ground effects,motor torques and rotation axis shift.The proposed neural network is Lipschitz continuous,has fewer parameters and performs better for disturbance estimation than the baseline deep ReLU neural network.Then,we design a sliding mode controller using these predictions and establish its input-to-state stability and error bounds.Experiments show improvements of the proposed neural network in training speed and robustness over a baseline ReLU network,and a 40%reduction in tracking error compared to a baseline PID controller. 展开更多
关键词 Data-driven control hybrid aerial-ground robot Adaptive control Machine learning Robotics Nonlinear control systems
在线阅读 下载PDF
Passivity-based control of synchronous motors in mine hoist systems
10
作者 XUE Hua JIANG Jian-guo +1 位作者 YUAN Ming-han JIANG Hua 《Journal of Coal Science & Engineering(China)》 2009年第3期332-336,共5页
An adaptive PBC strategy for SM with a time-varying load torque to track fluxand speed trajectories was proposed.The key point of this method was the identificationof terms,known as workless forces,which appeared in t... An adaptive PBC strategy for SM with a time-varying load torque to track fluxand speed trajectories was proposed.The key point of this method was the identificationof terms,known as workless forces,which appeared in the dynamic equations of SM buthad no effect on the energy balance equation of the closed loop.PBC,combined withadaptive control schemes,not only preserved the advantages of PBC such as nonexistenceof singularity,but also rejected the flux and speed tracking error caused by statorand rotor resistance variation.The rotor currents of SM were estimated via a state observer.This algorithm simplified the control structure and enhanced the robustness of thecontrol system.The feasibility and effectiveness were confirmed by experimental resultsbased on dSPACE. 展开更多
关键词 passivity-based control(PBC) adaptive scheme synchronous motors(SM) dSPACE
在线阅读 下载PDF
APPLICATION OF HYBRID AERO-ENGINE MODEL FOR INTEGRATED FLIGHT/PROPULSION OPTIMAL CONTROL 被引量:4
11
作者 王健康 张海波 +1 位作者 孙健国 李永进 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期16-24,共9页
The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gr... The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gramming (SQP). Firstly, a steady-state hybrid aero-engine model is designed in the whole flight envelope with a dramatic enhancement of real-time capability. Secondly, the aero-engine performance seeking control including the maximum thrust mode and the minimum fuel-consumption mode is performed by SQP. Finally, digital simu- lations for cruise and accelerating flight are carried out. Results show that the proposed method improves real- time capability considerably with satisfactory effectiveness of optimization. 展开更多
关键词 integrated flight/propulsion optimal control AERO-ENGINE hybrid model performance seeking con- trol sequential quadratic programming
在线阅读 下载PDF
ON HYBRID POSITION/FORCE COORDINATED LEARNING CONTROL OF MULTIPLE MANIPULATORS
12
作者 王从庆 尹朝万 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1999年第2期114-119,共6页
In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on obje... In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme. 展开更多
关键词 multiple manipulators learning control hybrid control coordinated control
在线阅读 下载PDF
Fuzzy Hybrid Control of Vibration Attitude of Full Car via Magneto-rheological Suspensions 被引量:12
13
作者 LI Rui CHEN Weimin +1 位作者 LIAO Changrong DONG Xiaomin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第1期72-79,共8页
A magneto-rheological(MR) semi-active suspension system with the controllable damping forces has received more attention in reducing the vibration of a vehicle. However, many control strategies only discussed one or... A magneto-rheological(MR) semi-active suspension system with the controllable damping forces has received more attention in reducing the vibration of a vehicle. However, many control strategies only discussed one or two vibration states of the vehicle based on a quarter-car model or a half vehicle model via MR suspensions. They cannot provide a satisfying whole-vehicle performance on a road test. Hence, a full car vibration model via an MR suspension system is proposed. To reduce the heave, pitch and roll motion of the vehicle body and the vertical vibration of four wheels, a fuzzy hybrid controller for vibration attitude of full car via MR suspensions is proposed. First, a skyhook-fuzzy control scheme is designed to reduce the heave, roll and pitch motion of the vehicle body. Second, a revised ground hook control strategy is adopted to decrease the vertical vibration of the wheels. Finally, a hybrid control scheme based on a fuzzy reasoning method is proposed to tune the hybrid damping parameter, which is suitable for coordination the attitude of the vehicle body and the wheels. A test and control system for the vibration attitude of full car is set up. It is implemented on a car equipped with four MR suspensions. The results on random highway and rough road indicate that the fuzzy hybrid controller can decrease the vibration accelerations of the vehicle body and the wheels to 65%-80% and 80%-90%, respectively. It reduces the automotive vibrations of heave, roll and pitch more effectively than a passive suspension and an MR suspension with a traditional hybrid control scheme so that it achieves better ride comfort and road holding concurrently. This paper proposes a new fuzzy hybrid control(FHC) method for reducing vibration attitude of full car via MR suspensions and develops a road test to evaluate the FHC. 展开更多
关键词 CAR magneto-rheological suspension vibration attitude fuzzy control hybrid damping control road test
在线阅读 下载PDF
Improved Hybrid Robust Control Method for the Electromechanical Actuator in Aircrafts 被引量:9
14
作者 LU Hao LI Yunhu +1 位作者 TIAN Shengli NIE Zhenjin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第4期443-450,共8页
In the flight process of aircrafts, their electromechanical actuators(EMA) must have the ability of enduring uncertainties caused by factors such as load disturbance, the variation of work temperature and the EMA's... In the flight process of aircrafts, their electromechanical actuators(EMA) must have the ability of enduring uncertainties caused by factors such as load disturbance, the variation of work temperature and the EMA's nonlinearity. At present, in order to increase the EMA's robustness on the uncertainties, the H, control method has been applied in aircrafts. The major problems with standard H∞ control lie in the large overshoot of step response and the high orders of the controller. For the purpose of addressing the two problems, this paper investigates several kinds of robust control strategies of the EMA. A mathematical model of the EMA is first built, and then with MATLAB software a H∞ controller and an improved hybrid robust controller composed of a reduced order H∞controller and a lead compensator are designed. In order to make a scientific comparison of the control effects of H∞ controller, hybrid controller and classic proportion-integral-differential(PID) controller, a simulation research is made in respect of the open loop frequency response and the closed loop step response of the three controllers. For comparing the robustness of the three controllers, the load torque is entered as a disturbance and the disturbance response of error and control input are thus obtained. The experiments with the three controllers are also conducted. Through giving the EMA a command and a disturbance torque successively, the transient response and disturbing process of EMA are recorded. The simulation and experiment results show that with the help of the hybrid controller, the EMA not only guarantees good dynamic characteristics, but also has strong robustness of disturbance rejection. Therefore, the excogitated H∞ hybrid control method effectively solves the problem of large overshoot in dynamic response, and moderately meets the requirement of overcoming the uncertainties in the EMA of aircrafts. 展开更多
关键词 aircrafts electromechanical actuator H∞ control hybrid robust control disturbance rejection
在线阅读 下载PDF
Series-parallel Hybrid Vehicle Control Strategy Design and Optimization Using Real-valued Genetic Algorithm 被引量:14
15
作者 XIONG Weiwei YIN Chengliang ZHANG Yong ZHANG Jianlong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第6期862-868,共7页
Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been... Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles. 展开更多
关键词 series-parallel hybrid electric vehicle control strategy DESIGN OPTIMIZATION real-valued genetic algorithm
在线阅读 下载PDF
Modeling and Control of Hybrid Machine Systems—a Five-bar Mechanism Case 被引量:13
16
作者 Hongnian Yu 《International Journal of Automation and computing》 EI 2006年第3期235-243,共9页
A hybrid machine (HM) as a typical mechatronic device, is a useful tool to generate smooth motion, and combines the motions of a large constant speed motor with a small servo motor by means of a mechnical linkage me... A hybrid machine (HM) as a typical mechatronic device, is a useful tool to generate smooth motion, and combines the motions of a large constant speed motor with a small servo motor by means of a mechnical linkage mechanism, in order to provide a powerful programmable drive system. To achieve design objectives, a control system is required. To design a better control system and analyze the performance of an HM, a dynamic model is necessary. This paper first develops a dynamic model of an HM with a five-bar mechanism using a Lagrangian formulation. Then, several important properties which are very useful in system analysis, and control system design, are presented. Based on the developed dynamic model, two control approaches, computed torque, and combined computed torque and slide mode control, are adopted to control the HM system. Simulation results demonstrate the control performance and limitations of each control approach. 展开更多
关键词 hybrid machine (HM) Lagrangian systems DYNAMICS computed torque control sliding mode control.
在线阅读 下载PDF
Dynamic simulation and optimal control strategy for a parallel hybrid hydraulic excavator 被引量:23
17
作者 Xiao LIN Shuang-xia PAN Dong-yun WAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第5期624-632,共9页
The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then th... The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then the dynamic system model including batteries, motor and engine is built as the simulation environment to obtain control results. A so-called multi-work-point dynamic control strategy, which has both closed-loop speed PI (proportion integral) control and direct torque control, is proposed and studied in the simulation model. Simulation results indicate that the hybrid system with this strategy can meet the power demand and achieve better system stability and higher fuel efficiency. 展开更多
关键词 hybrid system Hydraulic excavator Multi-work-point dynamic control Direct torque control
在线阅读 下载PDF
A Hybrid Approach to Modeling and Control of Vehicle Height for Electronically Controlled Air Suspension 被引量:8
18
作者 SUN Xiaoqiang CAI Yingfeng +2 位作者 WANG Shaohua LIU Yanling CHEN Long 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期152-162,共11页
The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on t... The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties. 展开更多
关键词 electronically controlled air suspension vehicle height control hybrid system mixed logical dynamical model predictive control
在线阅读 下载PDF
Mathematical Model and Its Hybrid Dynamic Mechanism in Intelligent Control of Ironmaking 被引量:5
19
作者 LIU Xiang-guan ZENG Jiu-sun ZHAO Min 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第1期7-11,共5页
A hybrid dynamic model was proposed, which considered both the hydrokinetic and the chaotic properties of the blast furnace ironmaking process; and great emphasis was put on its mechanism. The new model took the high ... A hybrid dynamic model was proposed, which considered both the hydrokinetic and the chaotic properties of the blast furnace ironmaking process; and great emphasis was put on its mechanism. The new model took the high complexity of the blast furnace as well as the effects of main parameters of the model into account, and the predicted results were in very good agreement with actual data. 展开更多
关键词 blast furnace ironmaking hybrid dynamics intelligent control mathematical model chaotic control
在线阅读 下载PDF
MIMO Hybrid Control of Structural Responses for Helicopter 被引量:4
20
作者 雷凌云 顾仲权 鲁民月 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2003年第3期151-156,共6页
A MIMO hybrid model of structural response control, which combines adaptivefeedfor-ward control and feedback control, was developed and then applied in a helicopter model toeliminate the dual-frequency harmonious vibr... A MIMO hybrid model of structural response control, which combines adaptivefeedfor-ward control and feedback control, was developed and then applied in a helicopter model toeliminate the dual-frequency harmonious vibration at cabin seats. In implementation, an AOEF(Acceleration Output Extended Feedback) controller for the MIMO case was designed to add enoughdamping to the control path so that the convergence rate of the FXLMS algorithm could be obviouslyimproved. The corresponding FXLMS algorithm for the control path of closed loop was developed also.The numerical results on the finite element model of a helicopter indicated that with hybridcontrol, responses at four rows of seats could be controlled with two actuators and the adaptivecontrollers got a quicker convergence rate. 展开更多
关键词 hybrid control adaptive feedforward FEEDBACK MIMO FXLMS
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部