Deficiency or restriction of Zn absorption in soils is one of the most common micronutrients deficient in cereal plants. To investigate critical micronutrient interaction in zinc deficiency and zinc sufficient in soil...Deficiency or restriction of Zn absorption in soils is one of the most common micronutrients deficient in cereal plants. To investigate critical micronutrient interaction in zinc deficiency and zinc sufficient in soil, a factorial experiment based on completely randomized design (CRD) with three replications was conducted in 2023. Six wheat cultivars with different Zn efficiency were used. The cultivars were grown under Zn deficiency and adequate conditions. Results showed that in Zn deficiency conditions, with increasing Zn concentration in the roots, Fe concentrations were increased too, while the Cu and Mn concentrations decreased. In the same condition and with increasing Zn concentration in shoots, the concentrations of Fe and Mn decreased, while Cu were increased. However, by increasing Zn concentration, Fe, Cu, and Mn concentrations were increased in Zn deficiency condition in grains, as well as Zn sufficient conditions. RST (root to shoot micronutrient translocation) comparison of cultivars showed that in lack of Zn, the ability of translocation of Zn, Fe, and Mn in Zn-inefficient cultivar from root to shoot was higher than inefficient cultivar. In the same conditions, the capability of Zn-inefficient cultivar in Cu translocation from root to shoot was lower than other cultivars. In general, it seems that in Zn deficiency conditions, there are antagonistic effects among Zn, Cu and Mn and synergistic effects between Zn and Fe in the root. Also, in Zn sufficient conditions, there were synergistic effects among all studies micronutrients which include Zn, Fe, Cu, and Mn.展开更多
The paper mainly presents the design of beam-wave interaction of a C-band high-peakpower high-efficiency broadband klystron.The beam-wave interaction section is designed based on considerations of efficiency and bandw...The paper mainly presents the design of beam-wave interaction of a C-band high-peakpower high-efficiency broadband klystron.The beam-wave interaction section is designed based on considerations of efficiency and bandwidth synthetically.As a part of beam-wave interaction section,buncher section is simulated by Particle-In-Cell(PIC) code to observe the bunching process of electron beam to achieve high conversion efficiency of electron beam and RF field.When it comes to the other part,output circuit is designed as a three-section filter by an output cavity loaded with Chebyshev filter,and the cold test results are given.The beam-wave interaction is simulated by EGUN code and Arsenal-MSU code respectively.The simulated results indicated that,the existence of power dips in the operating bandwidth is verified by Arsenal-MSU code,comparing proper results by EGUN code.Then,the method that design parameters are not adjusted except parameters of buncher cavities to remove potential power dips is described.What is more,the simulated results of electron optics system are given by EGUN code and Arsenal-MSU code respectively.The further hot test results of klystron prove that the whole design of beam-wave interaction is effective.展开更多
Soybean (Glycine max (L.) Merrill) is one of the most important oil and protein sources in the world. Interactive effect of elevated carbon dioxide (CO2) and soil water availability potentially impact future food secu...Soybean (Glycine max (L.) Merrill) is one of the most important oil and protein sources in the world. Interactive effect of elevated carbon dioxide (CO2) and soil water availability potentially impact future food security of the world under climate change. A rhizotron growth chamber experiment was conducted to study soil moisture interactions with elevated CO2 on gaseous exchange parameters of soybean under two CO2 concentrations (380 and 800 μmol·mol-1) with three soil moisture levels. Elevated CO2 decreased photosynthetic rate (11.1% and 10.8%), stomatal conductance (40.5% and 36.0%), intercellular CO2 concentration (16.68% and 12.28%), relative intercellular CO2 concentration (17.4% and 11.2%), and transpiration rate (43.6% and 39%) at 42 and 47 DAP. This down-regulation of photosynthesis was probably caused by low leaf nitrogen content and decrease in uptake of nutrients due to decrease in stomatal conductance and transpiration rate. Water use efficiency (WUE) increased under elevated CO2 because increase in total dry weight of plant was greater than that of water use under high CO2 conditions. Plants under normal and high soil moisture levels had significantly higher photosynthetic rate (7% to 16%) favored by optimum soil moisture content and high specific water content of soybean plants. Total dry matter production was significantly high when plants grown under elevated CO2 with normal (74.3% to 137.3%) soil moisture level. Photosynthetic rate was significantly and positively correlated with leaf conductance and intercellular CO2 concentration but WUE was significantly negatively correlated with leaf conductance, intercellular CO2 concentration and transpiration rate. However, the effect of high CO2 on plants depends on availability of nutrients and soil moisture for positive feedback from CO2 enrichment.展开更多
We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in...We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.展开更多
This study delves into the intricate relationship between iron(Fe)content in kaolinite and its impact on the adsorption behavior of sodium oleate.The effects of different iron concentrations on adsorption energy,hydro...This study delves into the intricate relationship between iron(Fe)content in kaolinite and its impact on the adsorption behavior of sodium oleate.The effects of different iron concentrations on adsorption energy,hydrogen bond kinetics and adsorption efficiency were studied through simulation and experimental verification.The results show that the presence of iron in the kaolinite structure significantly improves the adsorption capacity of sodium oleate.Kaolinite samples with high iron content have better adsorption properties,lower adsorption energy levels and shorter and stronger hydrogen bonds than pure kaolinite.The optimal concentration of oleic acid ions for achieving maximum adsorption efficiency was identified as 1.2 mmol/L across different kaolinite samples.At this concentration,the adsorption rates and capacities reach their peak,with Fe-enriched kaolinite samples exhibiting notably higher flotation recovery rates.This optimal concentration represents a balance between sufficient oleic acid ion availability for surface interactions and the prevention of self-aggregation phenomena that could hinder adsorption.This study offers promising avenues for optimizing the flotation process in mineral processing applications.展开更多
The interaction between multiple fractures is important in the analysis of rock fracture propagation,fracture network evolution and stability and integrity of rocks under hydro-mechanical(HM)coupling conditions.At pre...The interaction between multiple fractures is important in the analysis of rock fracture propagation,fracture network evolution and stability and integrity of rocks under hydro-mechanical(HM)coupling conditions.At present,modeling the mechanical behavior of multiple fractures is still challenging.Under the condition of multiple fractures,the opening,closing,sliding,propagation and penetration of fractures become more complicated.In order to simulate the HM coupling behavior of multi-fracture system,the paper presents a novel numerical scheme,including mesh reconstruction and topology generation algorithm,to efficiently and accurately represent fractures and their propagation process,and a potential function-based algorithm to address contact problem.The fracture contact algorithm does not need to set contact pairs and thus is suitable for complex contact situations from small to large deformations induced by HM loading.The topology of fracture interfaces is constructed by the dynamic adding algorithm,which makes the mesh reconstruction more rapid in the modeling of fracturing process,especially in the case of multiple fractures intersections.The numerical scheme is implemented in CASRock,a self-developed numerical code,to simulate the propagation process of rock fractures and the interaction of multiple fractures under the condition of HM coupling.To verify the suitability of the code,a series of tests were performed.The code was then applied to simulate hydraulic fracture propagation and fracture interactions caused by fluid injection.The ability of this method to study fracture propagation,multi-fracture interaction and fracture network evolution under hydro-mechanical coupling conditions is demonstrated.展开更多
The direct finite element method is a type commonly used for nonlinear seismic soil-structure interaction(SSI)analysis.This method introduces a truncated boundary referred to as an artificial boundary meant to divide ...The direct finite element method is a type commonly used for nonlinear seismic soil-structure interaction(SSI)analysis.This method introduces a truncated boundary referred to as an artificial boundary meant to divide the soil-structure system into finite and infinite domains.An artificial boundary condition is used on a truncated boundary to achieve seismic input and simulate the wave radiation effect of infinite domain.When the soil layer is particularly thick,especially for a three-dimensional problem,the computational efficiency of seismic SSI analysis is very low due to the large size of the finite element model,which contains an whole thick soil layer.In this paper,an accurate and efficient scheme is developed to solve the nonlinear seismic SSI problem regarding thick soil layers.The process consists of nonlinear site response and SSI analysis.The nonlinear site response analysis is still performed for the whole thick soil layer.The artificial boundary at the bottom of the SSI analysis model is subsequently relocated upward from the bottom of the soil layer(bedrock surface)to the location nearest to the structure as possible.Finally,three types of typical sites and underground structures are adopted with seismic SSI analysis to evaluate the accuracy and efficiency of the proposed efficient analysis scheme.展开更多
Amidst the rapid development of renewable energy,the intermittency and instability of energy supply pose severe challenges and impose higher requirements on energy storage systems.Among the various energy storage tech...Amidst the rapid development of renewable energy,the intermittency and instability of energy supply pose severe challenges and impose higher requirements on energy storage systems.Among the various energy storage technologies,the coupled approach of power-to-hydrogen(H2)and underground H2storage(UHS)offers advantages such as extended storage duration and large-scale capacity,making it highly promising for future development.However,during UHS,particularly in porous media,microbial metabolic processes such as methanogenesis,acetogenesis,and sulfate reduction may lead to H2consumption and the production of byproducts.These microbial activities can impact the efficiency and safety of UHS both positively and negatively.Therefore,this paper provides a comprehensive review of experimental,numerical,and field studies on microbial interactions in UHS within porous media,aiming to capture research progress and elucidate microbial effects.It begins by outlining the primary types of UHS and the key microbial metabolic processes involved.Subsequently,the paper introduces the experimental approaches for investigating gas-water-rock-microbe interactions and interfacial properties,the models and simulators used in numerical studies,and the procedures implemented in field trials.Furthermore,it analyzes and discusses microbial interactions and their positive and negative impacts on UHS in porous media,focusing on aspects such as H2consumption,H2flow,and storage safety.Based on these insights,recommendations for site selection,engineering operations,and on-site monitoring of UHS,as well as potential future research directions,are provided.展开更多
Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to app...Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to appraise the practicability of weakening shock waves and, hence, reducing the wave drag in transonic flight regime using a two-dimensional jagged wall and thereby to gain an appropriate jagged wall shape for future empirical study. Different shapes of the jagged wall, including rectangular, circular, and triangular shapes, were employed. The numerical method was validated by experimental and numerical studies involving transonic flow over the NACA0012 airfoil, and the results presented here closely match previous experimental and numerical results. The impact of parameters, including shape and the length-to-spacing ratio of a jagged wall, was studied on aerodynamic forces and flow field. The results revealed that applying a jagged wall method on the upper surface of an airfoil changes the shock structure significantly and disintegrates it, which in turn leads to a decrease in wave drag. It was also found that the maximum drag coefficient decrease of around 17 % occurs with a triangular shape, while the maximum increase in aerodynamic efficiency(lift-to-drag ratio)of around 10 % happens with a rectangular shape at an angle of attack of 2.26?.展开更多
Adopting a soft site model built on soft interlayer soil foundation,a shaking table test for soft interlayer soil-isolated structure interaction is conducted to investigate the seismic response of isolated structure o...Adopting a soft site model built on soft interlayer soil foundation,a shaking table test for soft interlayer soil-isolated structure interaction is conducted to investigate the seismic response of isolated structure on soft site,and analyze its isolation effect.Test results show that the test can reflect the earthquake response characteristics of isolated structure on soft site.It is on soft site that the dynamic characteristics of isolated structure,acceleration magnification factor(AMF)of isolated structure and isolation efficiency of the isolation layer differ from those on rigid foundation with an soil-structure interaction(SSI)effect,represented by the reduction in fundamental vibration frequency of isolated structure and the increase of damping ratio with changes of the SSI effect.SSI can either increase or decrease AMF of isolated structure on soft site,depending on the characteristics of earthquake motion input.Furthermore,the isolation efficiency of isolation layer on soft site is decreased with the SSI effect,which is related to the peak ground acceleration(PGA)and the characteristics of earthquake motion input.展开更多
Photocatalytic H2 evolution reactions on pristine graphitic carbon nitrides(g-C3N4),as a promising approach for converting solar energy to fuel,are attractive for tackling global energy concerns but still suffer from ...Photocatalytic H2 evolution reactions on pristine graphitic carbon nitrides(g-C3N4),as a promising approach for converting solar energy to fuel,are attractive for tackling global energy concerns but still suffer from low efficiencies.In this article,we report a tractable approach to modifying g-C3N4 with vanadyl phthalocyanine(VOPc/CN)for efficient visible-light-driven hydrogen production.A non-covalent VOPc/CN hybrid photocatalyst formed viaπ-πstacking interactions between the two components,as confirmed by analysis of UV-vis absorption spectra.The VOPc/CN hybrid photocatalyst shows excellent visible-light-driven photocatalytic performance and good stability.Under optimal conditions,the corresponding H2 evolution rate is nearly 6 times higher than that of pure g-C3N4.The role of VOPc in promoting hydrogen evolution activity was to extend the visible light absorption range and prevent the recombination of photoexcited electron-hole pairs effectively.It is expected that this facile modification method could be a new inspiration for the rational design and exploration of g-C3N4-based hybrid systems with strong light absorption and high-efficiency carrier separation.展开更多
Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio ...Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio is also uneven in different seasons. Carbon gain and the response of water use efficiency(WUE) to annual and seasonal increases in temperature with or without CO_2 fertilization were simulated in Abies fabri using the atmospheric-vegetation interaction model(AVIM2). Four future climate scenarios(RCP2.6,RCP4.5,RCP6.0 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5(CMIP5) were selectively investigated. The results showed that warmer temperatures have negative effects on gross primary production(GPP) and net primary production(NPP) in growing seasons and positive effects in dormant seasons due to the variation in the leaf area index. Warmer temperatures tend to generate lower canopy WUE and higher ecosystem WUE in Abies fabri. However,warmer temperature together with rising CO_2 concentrations significantlyincrease the GPP and NPP in both growing and dormant seasons and enhance WUE in annual and dormant seasons because of the higher leaf area index(LAI) and soil temperature. The comparison of the simulated results with and without CO_2 fertilization shows that CO_2 has the potential to partially alleviate the adverse effects of climate warming on carbon gain and WUE in subalpine coniferous forests.展开更多
Due to their environmentally friendly nature and high energy density,direct ethanol fuel cells have attracted extensive research attention in recent decades.However,the actual Faraday efficiency of the ethanol oxidati...Due to their environmentally friendly nature and high energy density,direct ethanol fuel cells have attracted extensive research attention in recent decades.However,the actual Faraday efficiency of the ethanol oxidation reaction(EOR)is much lower than its theoretical value and the reaction kinetics of the EOR is sluggish due to insufficient active sites on the electrocatalyst surface.Pt/C is recognized as one of the most promising electrocatalysts for the EOR.Thus,the microscopic interfacial reaction mechanisms of the EOR on Pt/C were systematically studied in this work.In metal hydroxide solutions,hydrated alkali cations were found to bind with OH_(ad)through noncovalent interactions to form clusters and occupy the active sites on the Pt/C electrocatalyst surface,thus resulting in low Faraday efficiency and sluggish kinetics of the EOR.To reduce the negative effect of the noncovalent interactions on the EOR,a shield was made on the electrocatalyst surface using 4-trifluoromethylphenyl,resulting in twice the EOR catalytic reactivity of Pt/C.展开更多
Based on the manufacture of efficient non-oriented silicon steel grade,the effects of tin and sulphur on magnetism and its interaction was discussed.The results showed that for present work,minor tin could improve mag...Based on the manufacture of efficient non-oriented silicon steel grade,the effects of tin and sulphur on magnetism and its interaction was discussed.The results showed that for present work,minor tin could improve magnetic induction sharply and had little effect on core loss when the sulphur content below 10×10^(-4)%.The precipitation of AlN could be prohibitted by tin,remarkably.As the nucleus,tin could removal any inclusions which size was 0.5μm or above,and had little effect on inclusions which size was below 0.5μm as a key factor for core loss.For final sample,the magnetic induction was improved through the change of steel texture by tin.The relationship between magnetic induction and tin,sulphur content could be regressed:B = 1.69 - 4.37S + 0.30Sn.From the regression formulation,magnetic induction could be improved for 0.03 T when 0.01%tin was added under the condition of relatively low sulphur content.展开更多
[Objectives]This study was conducted to clarify the appropriate nitrogen fertilizer amount and transplanting density that should be selected for different transplanting dates.[Methods]The effects of nitrogen fertilize...[Objectives]This study was conducted to clarify the appropriate nitrogen fertilizer amount and transplanting density that should be selected for different transplanting dates.[Methods]The effects of nitrogen fertilizer rate and transplanting density on the traits and yield of late japonica rice in the Jianghuai rice-wheat cropping area under different transplanting dates(transplanting at an appropriate time and delayed transplanting)were studied.[Results]The transplanting date significantly affected the heading,maturity and whole growth period of rice,and when the transplanting date of early-maturing late japonica rice was delayed by 15 d,the growth period was shortened by about 10 d.Nitrogen and density interaction obviously affected the dry matter accumulation and effective tillers of rice,and the dry matter production and effective tiller number of rice treated with B_(1)N_(2) were greater than other treatments.Under the timely transplanting date,the best nitrogen and density combination was 225-300 kg/hm^(2) and 250500 holes/hm^(2),and the nitrogen use efficiency was ideal.It suggests that under the condition of transplanting rice in a timely manner,applying nitrogen fertilizer at an appropriate rate while ensuring a reasonable population density is conducive to the coordination of the number of stems and tillers,the number of grains per panicle,etc.,thereby ensuring the best formation of yield factors in the middle and late stages of rice growth.[Conclusions]This study provides technical support and theoretical reference for reasonable nitrogen and density interaction of rice.展开更多
The Yangtze River Basin’s water resource utilization efficiency(WUE)and scientific and technological innovation level(STI)are closely connected,and the comprehension of these relationships will help to improve WUE an...The Yangtze River Basin’s water resource utilization efficiency(WUE)and scientific and technological innovation level(STI)are closely connected,and the comprehension of these relationships will help to improve WUE and promote local economic growth and conservation of water.This study uses 19 provinces and regions along the Yangtze River’s mainstream from 2009 to 2019 as its research objects and uses a Vector Auto Regression(VAR)model to quantitatively evaluate the spatiotemporal evolution of the coupling coordination degree(CCD)between the two subsystems of WUE and STI.The findings show that:(1)Both the WUE and STI in the Yangtze River Basin showed an upward trend during the study period,but the STI effectively lagged behind the WUE;(2)The CCD of the two subsystems generally showed an upward trend,and the CCD of each province was improved to varying degrees,but the majority of regions did not develop a high-quality coordination stage;(3)The CCD of the two systems displayed apparent positive spatial autocorrelation in the spatial correlation pattern,and there were only two types:high-high(H-H)urbanization areas and low-low(L-L)urbanization areas;(4)The STI showed no obvious response to the impact of the WUE,while the WUE responded greatly to the STI,and both of them were highly dependent on themselves.Optimizing their interaction mechanisms should be the primary focus of high-quality development in the basin of the Yangtze River in the future.These results give the government an empirical basis to enhance the WUE and promote regional sustainable development.展开更多
The efficient development of the urban economy is a major concern of scholars in the fields of geography and urban science.In the context of globalization,informatization,industrialization,and urbanization,the externa...The efficient development of the urban economy is a major concern of scholars in the fields of geography and urban science.In the context of globalization,informatization,industrialization,and urbanization,the external relationships of China's cities are experiencing the joint action of urban scale hierarchies and connection networks(“hierarchy-network”).However,under the interactive effect of the two,the mechanism of urban economic efficiency(UEE)is unclear.Therefore,based on about:blank migration data,the regionalization with dynamically constrained agglomerative clustering and partitioning(REDCAP)method,and a spatial simultaneous equation model,this paper analyzes the UEE spatial pattern and mechanism in China.The results indicate that:(1)the urban economy has a superlinear relationship with the population size.However,the benefit of this superlinear growth is in marginal decline.(2)The UEE shows a pattern of differentiation between China's eastern,then central,and then western region.Also,local differences are found within the three major sub-regions.(3)The increase of urban network centrality can promote UEE,while the impact of urban scale is negative.(4)There is regional heterogeneity of the interactive effect of“hierarchy-network”on UEE.This study reveals the influencing mechanism of UEE and also provides policy implications for the development of UEE.展开更多
文摘Deficiency or restriction of Zn absorption in soils is one of the most common micronutrients deficient in cereal plants. To investigate critical micronutrient interaction in zinc deficiency and zinc sufficient in soil, a factorial experiment based on completely randomized design (CRD) with three replications was conducted in 2023. Six wheat cultivars with different Zn efficiency were used. The cultivars were grown under Zn deficiency and adequate conditions. Results showed that in Zn deficiency conditions, with increasing Zn concentration in the roots, Fe concentrations were increased too, while the Cu and Mn concentrations decreased. In the same condition and with increasing Zn concentration in shoots, the concentrations of Fe and Mn decreased, while Cu were increased. However, by increasing Zn concentration, Fe, Cu, and Mn concentrations were increased in Zn deficiency condition in grains, as well as Zn sufficient conditions. RST (root to shoot micronutrient translocation) comparison of cultivars showed that in lack of Zn, the ability of translocation of Zn, Fe, and Mn in Zn-inefficient cultivar from root to shoot was higher than inefficient cultivar. In the same conditions, the capability of Zn-inefficient cultivar in Cu translocation from root to shoot was lower than other cultivars. In general, it seems that in Zn deficiency conditions, there are antagonistic effects among Zn, Cu and Mn and synergistic effects between Zn and Fe in the root. Also, in Zn sufficient conditions, there were synergistic effects among all studies micronutrients which include Zn, Fe, Cu, and Mn.
文摘The paper mainly presents the design of beam-wave interaction of a C-band high-peakpower high-efficiency broadband klystron.The beam-wave interaction section is designed based on considerations of efficiency and bandwidth synthetically.As a part of beam-wave interaction section,buncher section is simulated by Particle-In-Cell(PIC) code to observe the bunching process of electron beam to achieve high conversion efficiency of electron beam and RF field.When it comes to the other part,output circuit is designed as a three-section filter by an output cavity loaded with Chebyshev filter,and the cold test results are given.The beam-wave interaction is simulated by EGUN code and Arsenal-MSU code respectively.The simulated results indicated that,the existence of power dips in the operating bandwidth is verified by Arsenal-MSU code,comparing proper results by EGUN code.Then,the method that design parameters are not adjusted except parameters of buncher cavities to remove potential power dips is described.What is more,the simulated results of electron optics system are given by EGUN code and Arsenal-MSU code respectively.The further hot test results of klystron prove that the whole design of beam-wave interaction is effective.
文摘Soybean (Glycine max (L.) Merrill) is one of the most important oil and protein sources in the world. Interactive effect of elevated carbon dioxide (CO2) and soil water availability potentially impact future food security of the world under climate change. A rhizotron growth chamber experiment was conducted to study soil moisture interactions with elevated CO2 on gaseous exchange parameters of soybean under two CO2 concentrations (380 and 800 μmol·mol-1) with three soil moisture levels. Elevated CO2 decreased photosynthetic rate (11.1% and 10.8%), stomatal conductance (40.5% and 36.0%), intercellular CO2 concentration (16.68% and 12.28%), relative intercellular CO2 concentration (17.4% and 11.2%), and transpiration rate (43.6% and 39%) at 42 and 47 DAP. This down-regulation of photosynthesis was probably caused by low leaf nitrogen content and decrease in uptake of nutrients due to decrease in stomatal conductance and transpiration rate. Water use efficiency (WUE) increased under elevated CO2 because increase in total dry weight of plant was greater than that of water use under high CO2 conditions. Plants under normal and high soil moisture levels had significantly higher photosynthetic rate (7% to 16%) favored by optimum soil moisture content and high specific water content of soybean plants. Total dry matter production was significantly high when plants grown under elevated CO2 with normal (74.3% to 137.3%) soil moisture level. Photosynthetic rate was significantly and positively correlated with leaf conductance and intercellular CO2 concentration but WUE was significantly negatively correlated with leaf conductance, intercellular CO2 concentration and transpiration rate. However, the effect of high CO2 on plants depends on availability of nutrients and soil moisture for positive feedback from CO2 enrichment.
基金the Natural Science Foundation of China(11922415,12274471)Guangdong Basic and Applied Basic Research Foundation(2022A1515011168,2019A1515011718,2019A1515011337)the Key Research and Development Program of Guangdong Province,China(2019B110209003).
文摘We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.
基金supported by the Natural Science Foundation of China(No.52174232)the Project was supported by Open Research Grant of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining(Nos.EC2022003 and EC2023005)+1 种基金Anhui University of Science and Technology 2023 Graduate Student Innovation Fund(No.2023cx2106)Open Research Grant of Anhui Engineering Research Center for Coal Clean Processing and Carbon Emission Reduction(No.CCCE-2023003).
文摘This study delves into the intricate relationship between iron(Fe)content in kaolinite and its impact on the adsorption behavior of sodium oleate.The effects of different iron concentrations on adsorption energy,hydrogen bond kinetics and adsorption efficiency were studied through simulation and experimental verification.The results show that the presence of iron in the kaolinite structure significantly improves the adsorption capacity of sodium oleate.Kaolinite samples with high iron content have better adsorption properties,lower adsorption energy levels and shorter and stronger hydrogen bonds than pure kaolinite.The optimal concentration of oleic acid ions for achieving maximum adsorption efficiency was identified as 1.2 mmol/L across different kaolinite samples.At this concentration,the adsorption rates and capacities reach their peak,with Fe-enriched kaolinite samples exhibiting notably higher flotation recovery rates.This optimal concentration represents a balance between sufficient oleic acid ion availability for surface interactions and the prevention of self-aggregation phenomena that could hinder adsorption.This study offers promising avenues for optimizing the flotation process in mineral processing applications.
基金supported by the National Natural Science Foundation of China (Grant Nos.52125903).
文摘The interaction between multiple fractures is important in the analysis of rock fracture propagation,fracture network evolution and stability and integrity of rocks under hydro-mechanical(HM)coupling conditions.At present,modeling the mechanical behavior of multiple fractures is still challenging.Under the condition of multiple fractures,the opening,closing,sliding,propagation and penetration of fractures become more complicated.In order to simulate the HM coupling behavior of multi-fracture system,the paper presents a novel numerical scheme,including mesh reconstruction and topology generation algorithm,to efficiently and accurately represent fractures and their propagation process,and a potential function-based algorithm to address contact problem.The fracture contact algorithm does not need to set contact pairs and thus is suitable for complex contact situations from small to large deformations induced by HM loading.The topology of fracture interfaces is constructed by the dynamic adding algorithm,which makes the mesh reconstruction more rapid in the modeling of fracturing process,especially in the case of multiple fractures intersections.The numerical scheme is implemented in CASRock,a self-developed numerical code,to simulate the propagation process of rock fractures and the interaction of multiple fractures under the condition of HM coupling.To verify the suitability of the code,a series of tests were performed.The code was then applied to simulate hydraulic fracture propagation and fracture interactions caused by fluid injection.The ability of this method to study fracture propagation,multi-fracture interaction and fracture network evolution under hydro-mechanical coupling conditions is demonstrated.
基金National Basic Research Program of China under Grant No.2015CB057902Ministry of Education Innovation Team of China under Grant No.IRT_17R03National Natural Science Foundation of China under Grant Nos.51421005 and 51678015。
文摘The direct finite element method is a type commonly used for nonlinear seismic soil-structure interaction(SSI)analysis.This method introduces a truncated boundary referred to as an artificial boundary meant to divide the soil-structure system into finite and infinite domains.An artificial boundary condition is used on a truncated boundary to achieve seismic input and simulate the wave radiation effect of infinite domain.When the soil layer is particularly thick,especially for a three-dimensional problem,the computational efficiency of seismic SSI analysis is very low due to the large size of the finite element model,which contains an whole thick soil layer.In this paper,an accurate and efficient scheme is developed to solve the nonlinear seismic SSI problem regarding thick soil layers.The process consists of nonlinear site response and SSI analysis.The nonlinear site response analysis is still performed for the whole thick soil layer.The artificial boundary at the bottom of the SSI analysis model is subsequently relocated upward from the bottom of the soil layer(bedrock surface)to the location nearest to the structure as possible.Finally,three types of typical sites and underground structures are adopted with seismic SSI analysis to evaluate the accuracy and efficiency of the proposed efficient analysis scheme.
基金supported by the European Union's“Horizon Europe programme”—LOC3G(Grant No.101129729)the Henan Center for Outstanding Overseas Scientists(Grant No.GZS2024001)。
文摘Amidst the rapid development of renewable energy,the intermittency and instability of energy supply pose severe challenges and impose higher requirements on energy storage systems.Among the various energy storage technologies,the coupled approach of power-to-hydrogen(H2)and underground H2storage(UHS)offers advantages such as extended storage duration and large-scale capacity,making it highly promising for future development.However,during UHS,particularly in porous media,microbial metabolic processes such as methanogenesis,acetogenesis,and sulfate reduction may lead to H2consumption and the production of byproducts.These microbial activities can impact the efficiency and safety of UHS both positively and negatively.Therefore,this paper provides a comprehensive review of experimental,numerical,and field studies on microbial interactions in UHS within porous media,aiming to capture research progress and elucidate microbial effects.It begins by outlining the primary types of UHS and the key microbial metabolic processes involved.Subsequently,the paper introduces the experimental approaches for investigating gas-water-rock-microbe interactions and interfacial properties,the models and simulators used in numerical studies,and the procedures implemented in field trials.Furthermore,it analyzes and discusses microbial interactions and their positive and negative impacts on UHS in porous media,focusing on aspects such as H2consumption,H2flow,and storage safety.Based on these insights,recommendations for site selection,engineering operations,and on-site monitoring of UHS,as well as potential future research directions,are provided.
文摘Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to appraise the practicability of weakening shock waves and, hence, reducing the wave drag in transonic flight regime using a two-dimensional jagged wall and thereby to gain an appropriate jagged wall shape for future empirical study. Different shapes of the jagged wall, including rectangular, circular, and triangular shapes, were employed. The numerical method was validated by experimental and numerical studies involving transonic flow over the NACA0012 airfoil, and the results presented here closely match previous experimental and numerical results. The impact of parameters, including shape and the length-to-spacing ratio of a jagged wall, was studied on aerodynamic forces and flow field. The results revealed that applying a jagged wall method on the upper surface of an airfoil changes the shock structure significantly and disintegrates it, which in turn leads to a decrease in wave drag. It was also found that the maximum drag coefficient decrease of around 17 % occurs with a triangular shape, while the maximum increase in aerodynamic efficiency(lift-to-drag ratio)of around 10 % happens with a rectangular shape at an angle of attack of 2.26?.
基金supported by the Jiangsu Natural Science Foundation of China(Grant No.BK2012477)the Science Research Foundation of Nanjing Institute of Technology(CKJA201505,JCYJ201618)
文摘Adopting a soft site model built on soft interlayer soil foundation,a shaking table test for soft interlayer soil-isolated structure interaction is conducted to investigate the seismic response of isolated structure on soft site,and analyze its isolation effect.Test results show that the test can reflect the earthquake response characteristics of isolated structure on soft site.It is on soft site that the dynamic characteristics of isolated structure,acceleration magnification factor(AMF)of isolated structure and isolation efficiency of the isolation layer differ from those on rigid foundation with an soil-structure interaction(SSI)effect,represented by the reduction in fundamental vibration frequency of isolated structure and the increase of damping ratio with changes of the SSI effect.SSI can either increase or decrease AMF of isolated structure on soft site,depending on the characteristics of earthquake motion input.Furthermore,the isolation efficiency of isolation layer on soft site is decreased with the SSI effect,which is related to the peak ground acceleration(PGA)and the characteristics of earthquake motion input.
基金supported by the National Natural Science Foundation of China(51572253,21771171)Scientific Research Grant of Hefei National Synchrotron Radiation Laboratory(UN2017LHJJ)+1 种基金the Fundamental Research Funds for the Central Universitiescooperation between NSFC and Netherlands Organization for Scientific Research(51561135011)~~
文摘Photocatalytic H2 evolution reactions on pristine graphitic carbon nitrides(g-C3N4),as a promising approach for converting solar energy to fuel,are attractive for tackling global energy concerns but still suffer from low efficiencies.In this article,we report a tractable approach to modifying g-C3N4 with vanadyl phthalocyanine(VOPc/CN)for efficient visible-light-driven hydrogen production.A non-covalent VOPc/CN hybrid photocatalyst formed viaπ-πstacking interactions between the two components,as confirmed by analysis of UV-vis absorption spectra.The VOPc/CN hybrid photocatalyst shows excellent visible-light-driven photocatalytic performance and good stability.Under optimal conditions,the corresponding H2 evolution rate is nearly 6 times higher than that of pure g-C3N4.The role of VOPc in promoting hydrogen evolution activity was to extend the visible light absorption range and prevent the recombination of photoexcited electron-hole pairs effectively.It is expected that this facile modification method could be a new inspiration for the rational design and exploration of g-C3N4-based hybrid systems with strong light absorption and high-efficiency carrier separation.
基金supported by the Natural Science Foundation of China (No.41401044 and No.41310013)the key research projects of frontier sciences CAS (QYZDJ-SSW-DQC006)+1 种基金the Chinese Academy of Science (‘West Star’ project)the CAS/SAFEA international partnership program for creative research teams (KZZD-EW-TZ-06)
文摘Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio is also uneven in different seasons. Carbon gain and the response of water use efficiency(WUE) to annual and seasonal increases in temperature with or without CO_2 fertilization were simulated in Abies fabri using the atmospheric-vegetation interaction model(AVIM2). Four future climate scenarios(RCP2.6,RCP4.5,RCP6.0 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5(CMIP5) were selectively investigated. The results showed that warmer temperatures have negative effects on gross primary production(GPP) and net primary production(NPP) in growing seasons and positive effects in dormant seasons due to the variation in the leaf area index. Warmer temperatures tend to generate lower canopy WUE and higher ecosystem WUE in Abies fabri. However,warmer temperature together with rising CO_2 concentrations significantlyincrease the GPP and NPP in both growing and dormant seasons and enhance WUE in annual and dormant seasons because of the higher leaf area index(LAI) and soil temperature. The comparison of the simulated results with and without CO_2 fertilization shows that CO_2 has the potential to partially alleviate the adverse effects of climate warming on carbon gain and WUE in subalpine coniferous forests.
基金National Key R&D Program of China under Grant,Grant/Award Number:2021YFC1910601National Natural Science Foundation of China,Grant/Award Number:52104402HBIS Group Co.,Ltd Key R&D Program under Grant,Grant/Award Numbers:20210032,HG2022111。
文摘Due to their environmentally friendly nature and high energy density,direct ethanol fuel cells have attracted extensive research attention in recent decades.However,the actual Faraday efficiency of the ethanol oxidation reaction(EOR)is much lower than its theoretical value and the reaction kinetics of the EOR is sluggish due to insufficient active sites on the electrocatalyst surface.Pt/C is recognized as one of the most promising electrocatalysts for the EOR.Thus,the microscopic interfacial reaction mechanisms of the EOR on Pt/C were systematically studied in this work.In metal hydroxide solutions,hydrated alkali cations were found to bind with OH_(ad)through noncovalent interactions to form clusters and occupy the active sites on the Pt/C electrocatalyst surface,thus resulting in low Faraday efficiency and sluggish kinetics of the EOR.To reduce the negative effect of the noncovalent interactions on the EOR,a shield was made on the electrocatalyst surface using 4-trifluoromethylphenyl,resulting in twice the EOR catalytic reactivity of Pt/C.
文摘Based on the manufacture of efficient non-oriented silicon steel grade,the effects of tin and sulphur on magnetism and its interaction was discussed.The results showed that for present work,minor tin could improve magnetic induction sharply and had little effect on core loss when the sulphur content below 10×10^(-4)%.The precipitation of AlN could be prohibitted by tin,remarkably.As the nucleus,tin could removal any inclusions which size was 0.5μm or above,and had little effect on inclusions which size was below 0.5μm as a key factor for core loss.For final sample,the magnetic induction was improved through the change of steel texture by tin.The relationship between magnetic induction and tin,sulphur content could be regressed:B = 1.69 - 4.37S + 0.30Sn.From the regression formulation,magnetic induction could be improved for 0.03 T when 0.01%tin was added under the condition of relatively low sulphur content.
基金Supported by Major National Research and Development Program(2016YFD0300206-2)。
文摘[Objectives]This study was conducted to clarify the appropriate nitrogen fertilizer amount and transplanting density that should be selected for different transplanting dates.[Methods]The effects of nitrogen fertilizer rate and transplanting density on the traits and yield of late japonica rice in the Jianghuai rice-wheat cropping area under different transplanting dates(transplanting at an appropriate time and delayed transplanting)were studied.[Results]The transplanting date significantly affected the heading,maturity and whole growth period of rice,and when the transplanting date of early-maturing late japonica rice was delayed by 15 d,the growth period was shortened by about 10 d.Nitrogen and density interaction obviously affected the dry matter accumulation and effective tillers of rice,and the dry matter production and effective tiller number of rice treated with B_(1)N_(2) were greater than other treatments.Under the timely transplanting date,the best nitrogen and density combination was 225-300 kg/hm^(2) and 250500 holes/hm^(2),and the nitrogen use efficiency was ideal.It suggests that under the condition of transplanting rice in a timely manner,applying nitrogen fertilizer at an appropriate rate while ensuring a reasonable population density is conducive to the coordination of the number of stems and tillers,the number of grains per panicle,etc.,thereby ensuring the best formation of yield factors in the middle and late stages of rice growth.[Conclusions]This study provides technical support and theoretical reference for reasonable nitrogen and density interaction of rice.
基金funded by the Humanities and Social Science Research Project of Chongqing Education Commission(23SKJD111)Science and Technology Research Project of Chongqing Education Commission(KJQN202101122 and KJQN201904002)+6 种基金Project of Chongqing Higher Education Association(CQGJ21B057)Chongqing Graduate Education Teaching Reform Research Project(yjg223121)Chongqing Higher Education Teaching Reform Research Project(233337)Higher Education Research Project,Chongqing University of Technology(2022ZD01)Annual project of the“14th Five-Year Plan”for National Business Education in 2022(SKKT-22015)Party Building and Ideological and Political Project,Chongqing University of Technology(2022DJ307)Chongqing University of Technology Undergraduate Education and Teaching Reform Research Project(2021YB21).
文摘The Yangtze River Basin’s water resource utilization efficiency(WUE)and scientific and technological innovation level(STI)are closely connected,and the comprehension of these relationships will help to improve WUE and promote local economic growth and conservation of water.This study uses 19 provinces and regions along the Yangtze River’s mainstream from 2009 to 2019 as its research objects and uses a Vector Auto Regression(VAR)model to quantitatively evaluate the spatiotemporal evolution of the coupling coordination degree(CCD)between the two subsystems of WUE and STI.The findings show that:(1)Both the WUE and STI in the Yangtze River Basin showed an upward trend during the study period,but the STI effectively lagged behind the WUE;(2)The CCD of the two subsystems generally showed an upward trend,and the CCD of each province was improved to varying degrees,but the majority of regions did not develop a high-quality coordination stage;(3)The CCD of the two systems displayed apparent positive spatial autocorrelation in the spatial correlation pattern,and there were only two types:high-high(H-H)urbanization areas and low-low(L-L)urbanization areas;(4)The STI showed no obvious response to the impact of the WUE,while the WUE responded greatly to the STI,and both of them were highly dependent on themselves.Optimizing their interaction mechanisms should be the primary focus of high-quality development in the basin of the Yangtze River in the future.These results give the government an empirical basis to enhance the WUE and promote regional sustainable development.
基金National Natural Science Foundation of China,No.42371222,No.41971167Fundamental Scientific Research Funds of Central China Normal University,No.CCNU24ZZ120,No.CCNU22JC026。
文摘The efficient development of the urban economy is a major concern of scholars in the fields of geography and urban science.In the context of globalization,informatization,industrialization,and urbanization,the external relationships of China's cities are experiencing the joint action of urban scale hierarchies and connection networks(“hierarchy-network”).However,under the interactive effect of the two,the mechanism of urban economic efficiency(UEE)is unclear.Therefore,based on about:blank migration data,the regionalization with dynamically constrained agglomerative clustering and partitioning(REDCAP)method,and a spatial simultaneous equation model,this paper analyzes the UEE spatial pattern and mechanism in China.The results indicate that:(1)the urban economy has a superlinear relationship with the population size.However,the benefit of this superlinear growth is in marginal decline.(2)The UEE shows a pattern of differentiation between China's eastern,then central,and then western region.Also,local differences are found within the three major sub-regions.(3)The increase of urban network centrality can promote UEE,while the impact of urban scale is negative.(4)There is regional heterogeneity of the interactive effect of“hierarchy-network”on UEE.This study reveals the influencing mechanism of UEE and also provides policy implications for the development of UEE.