Distribution feeders carry and supply power to industrial,commercial and residential loads from the point where sub-transmission(33 kV level)ends after stepping down to suitable voltages,such as 11 kV and further down...Distribution feeders carry and supply power to industrial,commercial and residential loads from the point where sub-transmission(33 kV level)ends after stepping down to suitable voltages,such as 11 kV and further down to 400/230 V.In recent times,high impedance(Hi-Z)faults on distribution systems are creating unique challenges to utilities both from operational and safety perspectives.Most of these Hi-Z faults occur at dis-tribution voltages of 15 kV or below,with the problem being worse at lower voltages.Hi-Z fault detection technologies emerged and were developed and incorporated on embedded platforms,such as relays,reclosers and sensors,which protect and monitor distribution systems.Although these technologies can detect Hi-Z fault on feeders,most of them cannot identify the exact location of the fault.Specifically,there is no solution available in literature for detecting Hi-Z fault location on low voltage(LV)circuits like 3-phase 4-wire 400 V distribution network.In this paper,we introduce a novel and a unique algorithm to identify the location of Hi-Z faults using proposed smart metres IoT data-based distribution system load flow and digital twin model representation of the network.Furthermore,a case study on the standard 33 bus LV system clearly depicts the func-tionality of the proposed algorithm.展开更多
The intermittent connection(IC)of the field-bus in networked manufacturing systems is a common but hard troubleshooting network problem,which may result in system level failures or safety issues.However,there is no ...The intermittent connection(IC)of the field-bus in networked manufacturing systems is a common but hard troubleshooting network problem,which may result in system level failures or safety issues.However,there is no online IC location identification method available to detect and locate the position of the problem.To tackle this problem,a novel model based online fault location identification method for localized IC problem is proposed.First,the error event patterns are identified and classified according to different node sources in each error frame.Then generalized zero inflated Poisson process(GZIP)model for each node is established by using time stamped error event sequence.Finally,the location of the IC fault is determined by testing whether the parameters of the fitted stochastic model is statistically significant or not using the confident intervals of the estimated parameters.To illustrate the proposed method,case studies are conducted on a 3-node controller area network(CAN)test-bed,in which IC induced faults are imposed on a network drop cable using computer controlled on-off switches.The experimental results show the parameters of the GZIP model for the problematic node are statistically significant(larger than 0),and the patterns of the confident intervals of the estimated parameters are directly linked to the problematic node,which agrees with the experimental setup.The proposed online IC location identification method can successfully identify the location of the drop cable on which IC faults occurs on the CAN network.展开更多
This paper presents a novel algorithm of fault location for transmission line.Solving the network spectrum equations for different frequencies the fault can be located accurately by this algorithm with one terminal da...This paper presents a novel algorithm of fault location for transmission line.Solving the network spectrum equations for different frequencies the fault can be located accurately by this algorithm with one terminal data of voltage and current,and the identified parameters,such as fault distance, fault resistance,and opposite terminal system resistance and inductance.The algorithm eliminates the influence of the opposite system impedance on the fault location accuracy,which causes the main error in traditional fault location methods using one terminal data.A method of calculating spectrum from sampled data is also proposed.EMTP simulations show the validity and higher accuracy of the fault location algorithm compared to the existing ones based on one terminal data.展开更多
A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in this paper.A special d...A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in this paper.A special diagnostic signal current is injected into the fault distribution system,and then it is detected at the outlet terminals to identify the fault line and at the sectionalizing or branching point along the fault line to locate the fault section.The method has been put into application in actual distribution network and field experience shows that it can identify the fault line and locate the fault section correctly and effectively.展开更多
The porosity of carbon fiber reinforced polymer(CFRP) workpiece is tested by ultrasonic in pulse-echo mode.When the ultrasonic frequency is close to the resonant frequency of the workpiece,the resonance will occur a...The porosity of carbon fiber reinforced polymer(CFRP) workpiece is tested by ultrasonic in pulse-echo mode.When the ultrasonic frequency is close to the resonant frequency of the workpiece,the resonance will occur along the thickness direction.If the CFRP workpiece contains voids,the resonant frequency will decrease.The result of ultrasonic testing experiment clearly draws the conclusion that the center frequency of the backscattered signal spectrum declines with increasing porosity.Based on the above theory and conclusion,the three-dimensional(3D) voids identification and location method is established.Firstly,the ultrasonic signals are collected and the center frequencies of the backscattered signal spectra are calculated.Then the C-scan of center frequency is generated to identify the voids.At last the B-scan of center frequency for the region containing voids is generated to determine the depth of the voids.The experimental results show that,by using this method,the voids in the CFRP workpiece can be identified and pinpointed.展开更多
Acoustic emission(AE)localization plays an important role in the prediction and control of potential hazardous sources in complex structures.However,existing location methods have less discussion on the presence of un...Acoustic emission(AE)localization plays an important role in the prediction and control of potential hazardous sources in complex structures.However,existing location methods have less discussion on the presence of unknown empty areas.This paper proposes an AE source location method for structures containing unknown empty areas(SUEA).Firstly,this method identifies the shape,size,and location of empty areas in the unknown region by exciting the active AE sources and using the collected AE arrivals.Then,the unknown AE source can be located considering the identified empty areas.The lead break experiments were performed to verify the effectiveness and accuracy of the proposed method.Five specimens were selected containing empty areas with different positions,shapes,and sizes.Results show the average location accuracy of the SUEA increased by 78%compared to the results of the existing method.It can provide a more accurate solution for locating AE sources in complex structures containing unknown empty areas such as tunnels,bridges,railroads,and caves in practical engineering.展开更多
The existing LCC-HVDC transmission project adopts the fixed-time delay restarting method.This method has disadvantages such as non-selectivity,long restart process,and high probability of restart failure.These issues ...The existing LCC-HVDC transmission project adopts the fixed-time delay restarting method.This method has disadvantages such as non-selectivity,long restart process,and high probability of restart failure.These issues cause a secondary impact on equipment and system power fluctuation.To solve this problem,an adaptive restarting method based on the principle of fault location by current injection is proposed.First,an additional control strategy is proposed to inject a current detection signal.Second,the propagation law of the current signal in the line is analyzed based on the distributed parameter model of transmission line.Finally,a method for identifying fault properties based on the principle of fault location is proposed.The method fully considers the influence of the long-distance transmission line with earth capacitance and overcomes the influence of the increasing effect of the opposite terminal.Simulation results show that the proposed method can accurately identify the fault properties under various complex fault conditions and subsequently realize the adaptive restarting process.展开更多
The plant material used in the study was rice line 162d, a new small grain dwarf mutant. Polymorphic analysis of 221 SSR loci demonstrated that 162d derived from a semidwarf variety Shuhui 162 through mutation, and 16...The plant material used in the study was rice line 162d, a new small grain dwarf mutant. Polymorphic analysis of 221 SSR loci demonstrated that 162d derived from a semidwarf variety Shuhui 162 through mutation, and 162d and Shuhui 162 were just a pair of near isogenic lines. Genetic analysis of F_1 and F_2 populations suggested that dwarfism in 162d was controlled by a single recessive gene. Phenotypic characteristics of the mutant gene were that plant height was about a quarter of normal height, grain size about a quarter of normal size, leaf was short and broad, and seed setting rate was very low, compared with the near isogenic line Shuhui 162. The mutant gene was sensitive to gibberellin (GA_3) treatment and did not located on the region near the centromere of rice chromosome 5, where dl gene located. Therefore, it was concluded that the mutant gene of 162d was a new small grain dwarf gene in rice.展开更多
The low frequency oscillation is a serious threat to security and stability of a power grid.How to locate the disturbance source accurately is an important issue to low frequency oscillation disposal.Existing methods ...The low frequency oscillation is a serious threat to security and stability of a power grid.How to locate the disturbance source accurately is an important issue to low frequency oscillation disposal.Existing methods have poor adaptability to the low frequency oscillation with time-varying steady-state points because of the limitations in the location criterion derivation.A disturbance source location method on a low frequency oscillation with good generality is presented in the paper.Firstly,the reasons why the steady-state points are time-varying on a low frequency oscillation are analyzed.Then,based on the energy function construction form,the branch transmission energy is decomposed into state energy,reciprocating energy and dissipation energy by mathematical derivation.The flow direction of the dissipation energy shows the source and destination of the disturbance energy,and the specific location of a disturbance source can be identified according to its flow direction.Meanwhile,to meet the needs of energy calculation,a recognition method on the electrical quantities steady-state points is also presented by using the cubic spline interpolation.Simulation results show the correctness of the derivation and analysis on energy structure in the paper,and the disturbance source can be located accurately according to the dissipation energy.展开更多
线缆混合输电线路故障时将出现更加复杂的行波折反射现象,对于故障测距带来不小的难度。为解决此类问题,根据电缆与架空线各自的结构、特性的不同,在输电线路上安装分布式的行波检测装置将线路分成若干区间。应用皮尔逊相关系数的相关...线缆混合输电线路故障时将出现更加复杂的行波折反射现象,对于故障测距带来不小的难度。为解决此类问题,根据电缆与架空线各自的结构、特性的不同,在输电线路上安装分布式的行波检测装置将线路分成若干区间。应用皮尔逊相关系数的相关性原理,确定故障发生的区间。通过详细的公式推导,抵消掉波速对测距精度的影响,利用第二个SVD(singular value decomposition)分量标定出信号奇异点的脉冲模极大值,推导出分区间不含波速的混合线路故障定位算法。通过PSCAD仿真及MATLAB数据处理结果表明,与常规的单双端测距法应用于线缆组成的混合输电线路相比,可进一步提高测距精度。展开更多
Crack location identification, as one key destination of structural health monitoring, is still a challenge for operating rotor systems. The operating deflection shape (ODS), which represents a visual description of t...Crack location identification, as one key destination of structural health monitoring, is still a challenge for operating rotor systems. The operating deflection shape (ODS), which represents a visual description of the structural vibration patterns under operating conditions, has been gaining importance for structure damage detection in recent years. The ODS carries damage information of a structure, however, it is also difficult to detect weak cracks of rotor directly. The approximate waveform capacity dimension (AWCD) method was successfully applied to damage detection of plates and beam-like structures. In this paper,a strategic approach that combines ODS and weighted AWCD is proposed for crack location identification of the rotating rotor.To eliminate the false peaks of AWCD and obtain desirable results, a weight factor and ODS curvature data are introduced to the expression of the weighted AWCD. The effectiveness of the proposed method is validated by numerical simulation and experimental investigation in a cracked rotor system. The results indicate that the proposed approach not only provides good identifying performance for incipient rotor cracks, but also effectively eliminates the fault peaks introduced by the inflexion locations of ODSs. Moreover, the proposed approach proves promising in detecting crack locations of rotating rotor systems.展开更多
Chemical sucker control has been proven to be a more efficient method than manual and mechanical removals.The quick and effective identification and location of suckers are key technologies for targeted spray that can...Chemical sucker control has been proven to be a more efficient method than manual and mechanical removals.The quick and effective identification and location of suckers are key technologies for targeted spray that can reduce chemical applications and alleviate potential problems.The goal of this research was to improve the accuracy of identification and location algorithm of grapevine suckers for real-time mobile targeted spray based on information fusion of two dimensional(2D)laser scanner and camera machine vision.A triangle white calibration board was used to determine the invisible laser scanning line.The positions of the terminated points of the scanning line on the calibration board in the laser scanner’s coordinates were calculated.Suckers size and center location were obtained by ExGExR segmentation,then the relative position between the suckers and triangle calibration board was determined in the image coordinates.Eventually,the actual size and relative position between the identified suckers and the platform were calculated by integrating the laser line and image information.The results of the field trials showed that the consumed time of the developed algorithm was 0.787 s,the width recognition rate 91.8%,height recognition rate 88.2%,and the relative position accuracies 92.0%,87.3%,which could meet the requirement of grapevine sucker precision targeted spray.展开更多
Complex event processing (CEP) can extract meaningful events for real-time locating system (RTLS) applications. To identify complex event accurately in RTLS, we propose a new RFID complex event processing method GEEP,...Complex event processing (CEP) can extract meaningful events for real-time locating system (RTLS) applications. To identify complex event accurately in RTLS, we propose a new RFID complex event processing method GEEP, which is based on the timed automata (TA) theory. By devising RFID locating application into complex events, we model the timing diagram of RFID data streams based on the TA. We optimize the constraint of the event streams and propose a novel method to derive the constraint between objects, as well as the constraint between object and location. Experiments prove the proposed method reduces the cost of RFID complex event processing, and improves the efficiency of the RTLS.展开更多
The rapid development of social networks has resulted in a proliferation of user-generated content(UGC),which can benefit many applications.In this paper,we study the problem of identifying a user's locations from...The rapid development of social networks has resulted in a proliferation of user-generated content(UGC),which can benefit many applications.In this paper,we study the problem of identifying a user's locations from microblogs,to facilitate effective location-based advertisement and recommendation.Since the location information in a microblog is incomplete,we cannot get an accurate location from a local microblog.As such,we propose a global location identification method,Glitter.Glitter combines multiple microblogs of a user and utilizes them to identify the user's locations.Glitter not only improves the quality of identifying a user's location but also supplements the location of a microblog so as to obtain an accurate location of a microblog.To facilitate location identification,Glitter organizes points of interest(POIs)into a tree structure where leaf nodes are POIs and non-leaf nodes are segments of POIs,e.g.,countries,cities,and streets.Using the tree structure,Glitter first extracts candidate locations from each microblog of a user which correspond to some tree nodes.Then Glitter aggregates these candidate locations and identifies top-κlocations of the user.Using the identified top-κuser locations,Glitter refines the candidate locations and computes top-κlocations of each microblog.To achieve high recall,we enable fuzzy matching between locations and microblogs.We propose an incremental algorithm to support dynamic updates of microblogs.We also study how to identify users'trajectories based on the extracted locations.We propose an effective algorithm to extract high-quality trajectories.Experimental results on real-world datasets show that our method achieves high quality and good performance,and scales well.展开更多
The identification of the traction acting on a portion of the surface of an anisotropic solid is very important in structural health monitoring and optimal design of structures. The traction can be determined using in...The identification of the traction acting on a portion of the surface of an anisotropic solid is very important in structural health monitoring and optimal design of structures. The traction can be determined using inverse methods in which displacement or strain measurements are taken at several points on the body. This paper presents an inverse method based on the method of fundamental solutions for the traction identification problem in two-dimensional anisotropic elasticity. The method of fundamental solutions is an efficient boundary-type meshless method widely used for analyzing various problems. Since the problem is linear, the sensitivity analysis is simply performed by solving the corresponding direct problem several times with different loads. The effects of important parameters such as the number of measurement data, the position of the measurement points, the amount of measurement error, and the type of measurement, i.e., displacement or strain, on the results are also investigated. The results obtained show that the presented inverse method is suitable for the problem of traction identification. It can be concluded from the results that the use of strain measurements in the inverse analysis leads to more accurate results than the use of displacement measurements. It is also found that measurement points closer to the boundary with unknown traction provide more reliable solutions. Additionally, it is found that increasing the number of measurement points increases the accuracy of the inverse solution. However, in cases with a large number of measurement points, further increasing the number of measurement data has little effect on the results.展开更多
文摘Distribution feeders carry and supply power to industrial,commercial and residential loads from the point where sub-transmission(33 kV level)ends after stepping down to suitable voltages,such as 11 kV and further down to 400/230 V.In recent times,high impedance(Hi-Z)faults on distribution systems are creating unique challenges to utilities both from operational and safety perspectives.Most of these Hi-Z faults occur at dis-tribution voltages of 15 kV or below,with the problem being worse at lower voltages.Hi-Z fault detection technologies emerged and were developed and incorporated on embedded platforms,such as relays,reclosers and sensors,which protect and monitor distribution systems.Although these technologies can detect Hi-Z fault on feeders,most of them cannot identify the exact location of the fault.Specifically,there is no solution available in literature for detecting Hi-Z fault location on low voltage(LV)circuits like 3-phase 4-wire 400 V distribution network.In this paper,we introduce a novel and a unique algorithm to identify the location of Hi-Z faults using proposed smart metres IoT data-based distribution system load flow and digital twin model representation of the network.Furthermore,a case study on the standard 33 bus LV system clearly depicts the func-tionality of the proposed algorithm.
基金Supported by National Natural Science Foundation of China(Grant No51005205)Science Fund for Creative Research Groups of Nationa Natural Science Foundation of China(Grant No.51221004)+1 种基金Nationa Basic Research Program of China(973 Program,Grant No.2013CB035405)Open Foundation of State Key Laboratory of Automotive Safety and Energy,Tsinghua University,China(Grant No.KF13011)
文摘The intermittent connection(IC)of the field-bus in networked manufacturing systems is a common but hard troubleshooting network problem,which may result in system level failures or safety issues.However,there is no online IC location identification method available to detect and locate the position of the problem.To tackle this problem,a novel model based online fault location identification method for localized IC problem is proposed.First,the error event patterns are identified and classified according to different node sources in each error frame.Then generalized zero inflated Poisson process(GZIP)model for each node is established by using time stamped error event sequence.Finally,the location of the IC fault is determined by testing whether the parameters of the fitted stochastic model is statistically significant or not using the confident intervals of the estimated parameters.To illustrate the proposed method,case studies are conducted on a 3-node controller area network(CAN)test-bed,in which IC induced faults are imposed on a network drop cable using computer controlled on-off switches.The experimental results show the parameters of the GZIP model for the problematic node are statistically significant(larger than 0),and the patterns of the confident intervals of the estimated parameters are directly linked to the problematic node,which agrees with the experimental setup.The proposed online IC location identification method can successfully identify the location of the drop cable on which IC faults occurs on the CAN network.
基金This work was supported by Research Fund for the Doctoral Programof Higher Education(RFDP)(No.20010698015).
文摘This paper presents a novel algorithm of fault location for transmission line.Solving the network spectrum equations for different frequencies the fault can be located accurately by this algorithm with one terminal data of voltage and current,and the identified parameters,such as fault distance, fault resistance,and opposite terminal system resistance and inductance.The algorithm eliminates the influence of the opposite system impedance on the fault location accuracy,which causes the main error in traditional fault location methods using one terminal data.A method of calculating spectrum from sampled data is also proposed.EMTP simulations show the validity and higher accuracy of the fault location algorithm compared to the existing ones based on one terminal data.
基金Postdoctoral Foundation of China(No.20070410755)PAN Zhencun,born in 1962,male,postdoctor researcher.
文摘A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in this paper.A special diagnostic signal current is injected into the fault distribution system,and then it is detected at the outlet terminals to identify the fault line and at the sectionalizing or branching point along the fault line to locate the fault section.The method has been put into application in actual distribution network and field experience shows that it can identify the fault line and locate the fault section correctly and effectively.
基金Funded by the National Natural Science Foundation of China(No.51075358)Zhejiang Key Discipline of Instrument Science and Technology(No.JL130112)Zhejiang Natural Science Foundation(No.LQ12E05018)
文摘The porosity of carbon fiber reinforced polymer(CFRP) workpiece is tested by ultrasonic in pulse-echo mode.When the ultrasonic frequency is close to the resonant frequency of the workpiece,the resonance will occur along the thickness direction.If the CFRP workpiece contains voids,the resonant frequency will decrease.The result of ultrasonic testing experiment clearly draws the conclusion that the center frequency of the backscattered signal spectrum declines with increasing porosity.Based on the above theory and conclusion,the three-dimensional(3D) voids identification and location method is established.Firstly,the ultrasonic signals are collected and the center frequencies of the backscattered signal spectra are calculated.Then the C-scan of center frequency is generated to identify the voids.At last the B-scan of center frequency for the region containing voids is generated to determine the depth of the voids.The experimental results show that,by using this method,the voids in the CFRP workpiece can be identified and pinpointed.
基金We are grateful for the financial support from the National Science Foundation for Excellent Young Scholars of China(51822407)the Natural Science Foundation of China(51774327)+1 种基金the Special Fund for Basic Scientific Research Operations in Universities(2282020cxqd055)the Fundamental Research Funds for the Central Universities of Central South University(2021zzts0875).
文摘Acoustic emission(AE)localization plays an important role in the prediction and control of potential hazardous sources in complex structures.However,existing location methods have less discussion on the presence of unknown empty areas.This paper proposes an AE source location method for structures containing unknown empty areas(SUEA).Firstly,this method identifies the shape,size,and location of empty areas in the unknown region by exciting the active AE sources and using the collected AE arrivals.Then,the unknown AE source can be located considering the identified empty areas.The lead break experiments were performed to verify the effectiveness and accuracy of the proposed method.Five specimens were selected containing empty areas with different positions,shapes,and sizes.Results show the average location accuracy of the SUEA increased by 78%compared to the results of the existing method.It can provide a more accurate solution for locating AE sources in complex structures containing unknown empty areas such as tunnels,bridges,railroads,and caves in practical engineering.
基金supported by Science and Technology Project of State Grid Corporation of China(52094020006U)National Natural Science Foundation of China(NSFC)(52061635105)China Postdoctoral Science Foundation(2021M692525).
文摘The existing LCC-HVDC transmission project adopts the fixed-time delay restarting method.This method has disadvantages such as non-selectivity,long restart process,and high probability of restart failure.These issues cause a secondary impact on equipment and system power fluctuation.To solve this problem,an adaptive restarting method based on the principle of fault location by current injection is proposed.First,an additional control strategy is proposed to inject a current detection signal.Second,the propagation law of the current signal in the line is analyzed based on the distributed parameter model of transmission line.Finally,a method for identifying fault properties based on the principle of fault location is proposed.The method fully considers the influence of the long-distance transmission line with earth capacitance and overcomes the influence of the increasing effect of the opposite terminal.Simulation results show that the proposed method can accurately identify the fault properties under various complex fault conditions and subsequently realize the adaptive restarting process.
文摘The plant material used in the study was rice line 162d, a new small grain dwarf mutant. Polymorphic analysis of 221 SSR loci demonstrated that 162d derived from a semidwarf variety Shuhui 162 through mutation, and 162d and Shuhui 162 were just a pair of near isogenic lines. Genetic analysis of F_1 and F_2 populations suggested that dwarfism in 162d was controlled by a single recessive gene. Phenotypic characteristics of the mutant gene were that plant height was about a quarter of normal height, grain size about a quarter of normal size, leaf was short and broad, and seed setting rate was very low, compared with the near isogenic line Shuhui 162. The mutant gene was sensitive to gibberellin (GA_3) treatment and did not located on the region near the centromere of rice chromosome 5, where dl gene located. Therefore, it was concluded that the mutant gene of 162d was a new small grain dwarf gene in rice.
基金This work was supported in part by National Natural key R&D Program of China(2016YFB0900100).
文摘The low frequency oscillation is a serious threat to security and stability of a power grid.How to locate the disturbance source accurately is an important issue to low frequency oscillation disposal.Existing methods have poor adaptability to the low frequency oscillation with time-varying steady-state points because of the limitations in the location criterion derivation.A disturbance source location method on a low frequency oscillation with good generality is presented in the paper.Firstly,the reasons why the steady-state points are time-varying on a low frequency oscillation are analyzed.Then,based on the energy function construction form,the branch transmission energy is decomposed into state energy,reciprocating energy and dissipation energy by mathematical derivation.The flow direction of the dissipation energy shows the source and destination of the disturbance energy,and the specific location of a disturbance source can be identified according to its flow direction.Meanwhile,to meet the needs of energy calculation,a recognition method on the electrical quantities steady-state points is also presented by using the cubic spline interpolation.Simulation results show the correctness of the derivation and analysis on energy structure in the paper,and the disturbance source can be located accurately according to the dissipation energy.
文摘线缆混合输电线路故障时将出现更加复杂的行波折反射现象,对于故障测距带来不小的难度。为解决此类问题,根据电缆与架空线各自的结构、特性的不同,在输电线路上安装分布式的行波检测装置将线路分成若干区间。应用皮尔逊相关系数的相关性原理,确定故障发生的区间。通过详细的公式推导,抵消掉波速对测距精度的影响,利用第二个SVD(singular value decomposition)分量标定出信号奇异点的脉冲模极大值,推导出分区间不含波速的混合线路故障定位算法。通过PSCAD仿真及MATLAB数据处理结果表明,与常规的单双端测距法应用于线缆组成的混合输电线路相比,可进一步提高测距精度。
基金supported by the National Natural Science Foundation of China (Grant No. 51035007)the National Basic Research Program of China ("973" Program) (Grant No. 2011CB706805)Program for Changjiang Scholars and Innovative Research Team in University
文摘Crack location identification, as one key destination of structural health monitoring, is still a challenge for operating rotor systems. The operating deflection shape (ODS), which represents a visual description of the structural vibration patterns under operating conditions, has been gaining importance for structure damage detection in recent years. The ODS carries damage information of a structure, however, it is also difficult to detect weak cracks of rotor directly. The approximate waveform capacity dimension (AWCD) method was successfully applied to damage detection of plates and beam-like structures. In this paper,a strategic approach that combines ODS and weighted AWCD is proposed for crack location identification of the rotating rotor.To eliminate the false peaks of AWCD and obtain desirable results, a weight factor and ODS curvature data are introduced to the expression of the weighted AWCD. The effectiveness of the proposed method is validated by numerical simulation and experimental investigation in a cracked rotor system. The results indicate that the proposed approach not only provides good identifying performance for incipient rotor cracks, but also effectively eliminates the fault peaks introduced by the inflexion locations of ODSs. Moreover, the proposed approach proves promising in detecting crack locations of rotating rotor systems.
基金National Natural Science Foundation of China(No.31600588)the Fundamental Research Funds for the Central Universities(No.2015ZCQ-GX-01).
文摘Chemical sucker control has been proven to be a more efficient method than manual and mechanical removals.The quick and effective identification and location of suckers are key technologies for targeted spray that can reduce chemical applications and alleviate potential problems.The goal of this research was to improve the accuracy of identification and location algorithm of grapevine suckers for real-time mobile targeted spray based on information fusion of two dimensional(2D)laser scanner and camera machine vision.A triangle white calibration board was used to determine the invisible laser scanning line.The positions of the terminated points of the scanning line on the calibration board in the laser scanner’s coordinates were calculated.Suckers size and center location were obtained by ExGExR segmentation,then the relative position between the suckers and triangle calibration board was determined in the image coordinates.Eventually,the actual size and relative position between the identified suckers and the platform were calculated by integrating the laser line and image information.The results of the field trials showed that the consumed time of the developed algorithm was 0.787 s,the width recognition rate 91.8%,height recognition rate 88.2%,and the relative position accuracies 92.0%,87.3%,which could meet the requirement of grapevine sucker precision targeted spray.
文摘Complex event processing (CEP) can extract meaningful events for real-time locating system (RTLS) applications. To identify complex event accurately in RTLS, we propose a new RFID complex event processing method GEEP, which is based on the timed automata (TA) theory. By devising RFID locating application into complex events, we model the timing diagram of RFID data streams based on the TA. We optimize the constraint of the event streams and propose a novel method to derive the constraint between objects, as well as the constraint between object and location. Experiments prove the proposed method reduces the cost of RFID complex event processing, and improves the efficiency of the RTLS.
基金the National Natural Science Foundation of China under Grant Nos.61802414,61632016,61521002 and 61661166012the National Basic Research 973 Program of China under Grant No.2015CB358700+1 种基金the Social Science Foundation of Beijing under Grant No.18XCC011the Humanities and Social Sciences Base Foundation of Ministry of Education of China under Grant No.16JJD860008,Huawei,and TAL(Tomorrow Advancing Life)education.
文摘The rapid development of social networks has resulted in a proliferation of user-generated content(UGC),which can benefit many applications.In this paper,we study the problem of identifying a user's locations from microblogs,to facilitate effective location-based advertisement and recommendation.Since the location information in a microblog is incomplete,we cannot get an accurate location from a local microblog.As such,we propose a global location identification method,Glitter.Glitter combines multiple microblogs of a user and utilizes them to identify the user's locations.Glitter not only improves the quality of identifying a user's location but also supplements the location of a microblog so as to obtain an accurate location of a microblog.To facilitate location identification,Glitter organizes points of interest(POIs)into a tree structure where leaf nodes are POIs and non-leaf nodes are segments of POIs,e.g.,countries,cities,and streets.Using the tree structure,Glitter first extracts candidate locations from each microblog of a user which correspond to some tree nodes.Then Glitter aggregates these candidate locations and identifies top-κlocations of the user.Using the identified top-κuser locations,Glitter refines the candidate locations and computes top-κlocations of each microblog.To achieve high recall,we enable fuzzy matching between locations and microblogs.We propose an incremental algorithm to support dynamic updates of microblogs.We also study how to identify users'trajectories based on the extracted locations.We propose an effective algorithm to extract high-quality trajectories.Experimental results on real-world datasets show that our method achieves high quality and good performance,and scales well.
基金funded by Vice Chancellor of Research at Shiraz University(grant 3GFU2M1820).
文摘The identification of the traction acting on a portion of the surface of an anisotropic solid is very important in structural health monitoring and optimal design of structures. The traction can be determined using inverse methods in which displacement or strain measurements are taken at several points on the body. This paper presents an inverse method based on the method of fundamental solutions for the traction identification problem in two-dimensional anisotropic elasticity. The method of fundamental solutions is an efficient boundary-type meshless method widely used for analyzing various problems. Since the problem is linear, the sensitivity analysis is simply performed by solving the corresponding direct problem several times with different loads. The effects of important parameters such as the number of measurement data, the position of the measurement points, the amount of measurement error, and the type of measurement, i.e., displacement or strain, on the results are also investigated. The results obtained show that the presented inverse method is suitable for the problem of traction identification. It can be concluded from the results that the use of strain measurements in the inverse analysis leads to more accurate results than the use of displacement measurements. It is also found that measurement points closer to the boundary with unknown traction provide more reliable solutions. Additionally, it is found that increasing the number of measurement points increases the accuracy of the inverse solution. However, in cases with a large number of measurement points, further increasing the number of measurement data has little effect on the results.
基金The National Natural Science Foundation of China Youth Program(No.52108139)Hunan Provincial Natural Science Foundation Youth Program(No.2023JJ40290).