Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network mode...Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network model (SNNM) is ad- vanced. By using state affine transformation, the BAM neural networks were converted to SNNMs. Some sufficient conditions for the global asymptotic stability of continuous BAM neural networks were derived from studies on the SNNMs’ stability. These conditions were formulated as easily verifiable linear matrix inequalities (LMIs), whose conservativeness is relatively low. The approach proposed extends the known stability results, and can also be applied to other forms of recurrent neural networks (RNNs).展开更多
To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which inte...To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which interconnect linear dynamic systems and bounded static nonlinear operators. By combining a number of different Lyapunov functionals with S-procedure, some useful criteria of global asymptotic stability and global exponential stability of the equilibrium points of SNNMs were derived. These stability conditions were formulated as linear matrix inequalities (LMIs). So global stability of the discrete-time BAM neural networks could be analyzed by using the stability results of the SNNMs. Compared to the existing stability analysis methods, the proposed approach is easy to implement, less conservative, and is applicable to other recurrent neural networks.展开更多
Without assuming the smoothness,monotonicity and boundedness of the activation functions, some novel criteria on the existence and global exponential stability of equilibrium point for delayed bidirectional associativ...Without assuming the smoothness,monotonicity and boundedness of the activation functions, some novel criteria on the existence and global exponential stability of equilibrium point for delayed bidirectional associative memory (BAM) neural networks are established by applying the Liapunov functional methods and matrix_algebraic techniques. It is shown that the new conditions presented in terms of a nonsingular M matrix described by the networks parameters,the connection matrix and the Lipschitz constant of the activation functions,are not only simple and practical,but also easier to check and less conservative than those imposed by similar results in recent literature.展开更多
In this paper, a class of fuzzy BAM neural networks with time varying delays is discussed. By using the properties of M-matrix, Linear Matrix Inequality(LMI) approach and general Lyapunov-Krasovskii functional, some...In this paper, a class of fuzzy BAM neural networks with time varying delays is discussed. By using the properties of M-matrix, Linear Matrix Inequality(LMI) approach and general Lyapunov-Krasovskii functional, some new sufficient conditions are derived to ensure the existence of periodic solutions and the global exponential stability of the fuzzy BAM neural networks with time varying delays. These results have important significance in the design of global exponential stable BAM networks with delays. Moreover, an example is given to illustrate that the conditions of the results in the paper are feasible.展开更多
Several novel stability conditions for BAM neural networks with time-varying delays are studied.Based on Lyapunov-Krasovskii functional combined with linear matrix inequality approach,the delay-dependent linear matrix...Several novel stability conditions for BAM neural networks with time-varying delays are studied.Based on Lyapunov-Krasovskii functional combined with linear matrix inequality approach,the delay-dependent linear matrix inequality(LMI) conditions are established to guarantee robust asymptotic stability for given delayed BAM neural networks.These criteria can be easily verified by utilizing the recently developed algorithms for solving LMIs.A numerical example is provided to demonstrate the effectiveness and less conservatism of the main results.展开更多
Sufficient conditions to guarantee the existence and global exponential stability of periodic solutions of a Cohen-Grossberg-type BAM neural network are established by suitable mathematical transformation.
In this paper, based on the theory of fractional-order calculus, we obtain some sufficient conditions for the uniform stability of fractional-order fuzzy BAM neural networks with delays in the leakage terms. Moreover,...In this paper, based on the theory of fractional-order calculus, we obtain some sufficient conditions for the uniform stability of fractional-order fuzzy BAM neural networks with delays in the leakage terms. Moreover, the existence, uniqueness and stability of its equilibrium point are also proved. A numerical example is presented to demonstrate the validity and feasibility of the proposed results.展开更多
Based on the theory of fractional calculus, the contraction mapping principle, Krasnoselskii fixed point theorem and the inequality technique, a class of Caputo fractional-order BAM neural networks with delays in the ...Based on the theory of fractional calculus, the contraction mapping principle, Krasnoselskii fixed point theorem and the inequality technique, a class of Caputo fractional-order BAM neural networks with delays in the leakage terms is investigated in this paper. Some new sufficient conditions are established to guarantee the existence and uniqueness of the nontrivial solution. Moreover, uniform stability of such networks is proposed in fixed time intervals. Finally, an illustrative example is also given to demonstrate the effectiveness of the obtained results.展开更多
By employing the Lyapunov stability theory and linear matrix inequality(LMI)technique,delay-dependent stability criterion is derived to ensure the exponential stability of bi-directional associative memory(BAM)neu...By employing the Lyapunov stability theory and linear matrix inequality(LMI)technique,delay-dependent stability criterion is derived to ensure the exponential stability of bi-directional associative memory(BAM)neural networks with time-varying delays.The proposed condition can be checked easily by LMI control toolbox in Matlab.A numerical example is given to demonstrate the effectiveness of our results.展开更多
In order to improve the bidirectional associative memory(BAM) performance, a modified BAM model(MBAM) is used to enhance neural network(NN)’s memory capacity and error correction capability, theoretical analysis and ...In order to improve the bidirectional associative memory(BAM) performance, a modified BAM model(MBAM) is used to enhance neural network(NN)’s memory capacity and error correction capability, theoretical analysis and experiment results illuminate that MBAM performs much better than the original BAM. The MBAM is used in computer numeric control(CNC) machine fault diagnosis, it not only can complete fault diagnosis correctly but also have fairly high error correction capability for disturbed Input Information sequence.Moreover MBAM model is a more convenient and effective method of solving the problem of CNC electric system fault diagnosis.展开更多
This article explores the O(t^(-β))synchronization and asymptotic synchronization for fractional order BAM neural networks(FBAMNNs)with discrete delays,distributed delays and non-identical perturbations.By designing ...This article explores the O(t^(-β))synchronization and asymptotic synchronization for fractional order BAM neural networks(FBAMNNs)with discrete delays,distributed delays and non-identical perturbations.By designing a state feedback control law and a new kind of fractional order Lyapunov functional,a new set of algebraic sufficient conditions are derived to guarantee the O(t^(-β))Synchronization and asymptotic synchronization of the considered FBAMNNs model;this can easily be evaluated without using a MATLAB LMI control toolbox.Finally,two numerical examples,along with the simulation results,illustrate the correctness and viability of the exhibited synchronization results.展开更多
Previous studies presented the phase diagram induced by the disorder existing separately either in the higher-order topological states or in the topological trivial states, respectively. However, the influence of diso...Previous studies presented the phase diagram induced by the disorder existing separately either in the higher-order topological states or in the topological trivial states, respectively. However, the influence of disorder on the system with the coexistence of the higher-order topological states and other traditional topological states has not been investigated. In this paper, we investigate the disorder induced phase transition in the magnetic higher-order topological insulator. By using the convolutional neural network and non-commutative geometry methods, two independent phase diagrams are calculated.With the comparison between these two diagrams, a topological transition from the normal insulator to the Chern insulator is confirmed. Furthermore, the network based on eigenstate wavefunction studies also presents a transition between the higher-order topological insulator and the Chern insulator.展开更多
Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be ma...Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be made because of the mismatch between algorithm model and actual environment model.In addition,the neural network has the ability of generalization and mapping,it can consider the noise,transmission channel inconsistency and other factors of the objective environment.Therefore,this paper utilizes Back Propagation(BP)neural network as the basic framework of underwater DOA estimation.Furthermore,in order to improve the performance of DOA estimation of BP neural network,the following three improvements are proposed.(1)Aiming at the problem that the weight and threshold of traditional BP neural network converge slowly and easily fall into the local optimal value in the iterative process,PSO-BP-NN based on optimized particle swarm optimization(PSO)algorithm is proposed.(2)The Higher-order cumulant of the received signal is utilized to establish the training model.(3)A BP neural network training method for arbitrary number of sources is proposed.Finally,the effectiveness of the proposed algorithm is proved by comparing with the state-of-the-art algorithms and MUSIC algorithm.展开更多
基金Project (No. 60074008) supported by the National Natural Science Foundation of China
文摘Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network model (SNNM) is ad- vanced. By using state affine transformation, the BAM neural networks were converted to SNNMs. Some sufficient conditions for the global asymptotic stability of continuous BAM neural networks were derived from studies on the SNNMs’ stability. These conditions were formulated as easily verifiable linear matrix inequalities (LMIs), whose conservativeness is relatively low. The approach proposed extends the known stability results, and can also be applied to other forms of recurrent neural networks (RNNs).
基金Project (No. 60074008) supported by the National Natural Science Foundation of China
文摘To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which interconnect linear dynamic systems and bounded static nonlinear operators. By combining a number of different Lyapunov functionals with S-procedure, some useful criteria of global asymptotic stability and global exponential stability of the equilibrium points of SNNMs were derived. These stability conditions were formulated as linear matrix inequalities (LMIs). So global stability of the discrete-time BAM neural networks could be analyzed by using the stability results of the SNNMs. Compared to the existing stability analysis methods, the proposed approach is easy to implement, less conservative, and is applicable to other recurrent neural networks.
文摘Without assuming the smoothness,monotonicity and boundedness of the activation functions, some novel criteria on the existence and global exponential stability of equilibrium point for delayed bidirectional associative memory (BAM) neural networks are established by applying the Liapunov functional methods and matrix_algebraic techniques. It is shown that the new conditions presented in terms of a nonsingular M matrix described by the networks parameters,the connection matrix and the Lipschitz constant of the activation functions,are not only simple and practical,but also easier to check and less conservative than those imposed by similar results in recent literature.
基金Supported by the National Natural Science Foundation of China (60574043)the Science Foundation of the Education Committee of Hunan Province (06C792+1 种基金07C700)the Construction Program of Key Disciplines in Hunan Province,Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan province
文摘In this paper, a class of fuzzy BAM neural networks with time varying delays is discussed. By using the properties of M-matrix, Linear Matrix Inequality(LMI) approach and general Lyapunov-Krasovskii functional, some new sufficient conditions are derived to ensure the existence of periodic solutions and the global exponential stability of the fuzzy BAM neural networks with time varying delays. These results have important significance in the design of global exponential stable BAM networks with delays. Moreover, an example is given to illustrate that the conditions of the results in the paper are feasible.
基金Supported by the National Natural Science Foundation of China (6067402760875039)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (20050446001)Scientific Research Foundation of Qufu Normal University
文摘Several novel stability conditions for BAM neural networks with time-varying delays are studied.Based on Lyapunov-Krasovskii functional combined with linear matrix inequality approach,the delay-dependent linear matrix inequality(LMI) conditions are established to guarantee robust asymptotic stability for given delayed BAM neural networks.These criteria can be easily verified by utilizing the recently developed algorithms for solving LMIs.A numerical example is provided to demonstrate the effectiveness and less conservatism of the main results.
文摘Sufficient conditions to guarantee the existence and global exponential stability of periodic solutions of a Cohen-Grossberg-type BAM neural network are established by suitable mathematical transformation.
文摘In this paper, based on the theory of fractional-order calculus, we obtain some sufficient conditions for the uniform stability of fractional-order fuzzy BAM neural networks with delays in the leakage terms. Moreover, the existence, uniqueness and stability of its equilibrium point are also proved. A numerical example is presented to demonstrate the validity and feasibility of the proposed results.
文摘Based on the theory of fractional calculus, the contraction mapping principle, Krasnoselskii fixed point theorem and the inequality technique, a class of Caputo fractional-order BAM neural networks with delays in the leakage terms is investigated in this paper. Some new sufficient conditions are established to guarantee the existence and uniqueness of the nontrivial solution. Moreover, uniform stability of such networks is proposed in fixed time intervals. Finally, an illustrative example is also given to demonstrate the effectiveness of the obtained results.
基金supported by Natural Science Foundation of Hebei Province under Grant No.E2007000381
文摘By employing the Lyapunov stability theory and linear matrix inequality(LMI)technique,delay-dependent stability criterion is derived to ensure the exponential stability of bi-directional associative memory(BAM)neural networks with time-varying delays.The proposed condition can be checked easily by LMI control toolbox in Matlab.A numerical example is given to demonstrate the effectiveness of our results.
文摘In order to improve the bidirectional associative memory(BAM) performance, a modified BAM model(MBAM) is used to enhance neural network(NN)’s memory capacity and error correction capability, theoretical analysis and experiment results illuminate that MBAM performs much better than the original BAM. The MBAM is used in computer numeric control(CNC) machine fault diagnosis, it not only can complete fault diagnosis correctly but also have fairly high error correction capability for disturbed Input Information sequence.Moreover MBAM model is a more convenient and effective method of solving the problem of CNC electric system fault diagnosis.
基金joint financial support of Thailand Research Fund RSA 6280004,RUSA-Phase 2.0 Grant No.F 24-51/2014-UPolicy(TN Multi-Gen),Dept.of Edn.Govt.of India,UGC-SAP(DRS-I)Grant No.F.510/8/DRS-I/2016(SAP-I)+1 种基金DST(FIST-level I)657876570 Grant No.SR/FIST/MS-I/2018/17Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics(NAMAM)group number RG-DES-2017-01-17。
文摘This article explores the O(t^(-β))synchronization and asymptotic synchronization for fractional order BAM neural networks(FBAMNNs)with discrete delays,distributed delays and non-identical perturbations.By designing a state feedback control law and a new kind of fractional order Lyapunov functional,a new set of algebraic sufficient conditions are derived to guarantee the O(t^(-β))Synchronization and asymptotic synchronization of the considered FBAMNNs model;this can easily be evaluated without using a MATLAB LMI control toolbox.Finally,two numerical examples,along with the simulation results,illustrate the correctness and viability of the exhibited synchronization results.
基金Project supported by the National Natural Science Foundation of China(Grant No.11822407)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Previous studies presented the phase diagram induced by the disorder existing separately either in the higher-order topological states or in the topological trivial states, respectively. However, the influence of disorder on the system with the coexistence of the higher-order topological states and other traditional topological states has not been investigated. In this paper, we investigate the disorder induced phase transition in the magnetic higher-order topological insulator. By using the convolutional neural network and non-commutative geometry methods, two independent phase diagrams are calculated.With the comparison between these two diagrams, a topological transition from the normal insulator to the Chern insulator is confirmed. Furthermore, the network based on eigenstate wavefunction studies also presents a transition between the higher-order topological insulator and the Chern insulator.
基金Strategic Priority Research Program of Chinese Academy of Sciences,Grant No.XDA28040000,XDA28120000Natural Science Foundation of Shandong Province,Grant No.ZR2021MF094+2 种基金Key R&D Plan of Shandong Province,Grant No.2020CXGC010804Central Leading Local Science and Technology Development Special Fund Project,Grant No.YDZX2021122Science&Technology Specific Projects in Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta,Grant No.2022SZX11。
文摘Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be made because of the mismatch between algorithm model and actual environment model.In addition,the neural network has the ability of generalization and mapping,it can consider the noise,transmission channel inconsistency and other factors of the objective environment.Therefore,this paper utilizes Back Propagation(BP)neural network as the basic framework of underwater DOA estimation.Furthermore,in order to improve the performance of DOA estimation of BP neural network,the following three improvements are proposed.(1)Aiming at the problem that the weight and threshold of traditional BP neural network converge slowly and easily fall into the local optimal value in the iterative process,PSO-BP-NN based on optimized particle swarm optimization(PSO)algorithm is proposed.(2)The Higher-order cumulant of the received signal is utilized to establish the training model.(3)A BP neural network training method for arbitrary number of sources is proposed.Finally,the effectiveness of the proposed algorithm is proved by comparing with the state-of-the-art algorithms and MUSIC algorithm.