Based on the principles of massive support and lateral support, a novel double-layered split die(DLSD) for high-pressure apparatus was designed to achieve a higher pressure-bearing capacity and larger sample cavity. T...Based on the principles of massive support and lateral support, a novel double-layered split die(DLSD) for high-pressure apparatus was designed to achieve a higher pressure-bearing capacity and larger sample cavity. The stress distributions of the DLSDs with different numbers of divided blocks were investigated by the finite element method and compared with the stress distributions of the conventional belt-type die(BTD). The results show that the cylinders and first-layer supporting rings of the DLSDs have dramatically smaller stresses than those of the BTD. In addition, increasing the number of divided blocks from 4 to 10 gradually increases the stress of the cylinder but has minimal influence on the stress of the supporting rings. The pressure-bearing capacities of the DLSDs with different numbers of divided blocks, especially with fewer blocks, are all remarkably higher than the pressure-bearing capacity of the BTD. The contrast experiments were also carried out to verify the simulated results. It is concluded that the pressure-bearing capacities of the DLSDs with 4 and 8 divided blocks are 1.58 and 1.45 times greater than that of the BTD. This work is rewarding for the commercial synthesis of high-quality, large-sized superhard materials using a double-layered split high-pressure die.展开更多
High-density Cu2ZnSnS4 (CZTS) materials are prepared via the mechanical alloying and high pressure sintering method using Cu2S, ZnS and SnS2 as the raw materials. The morphological, structural, compositional and ele...High-density Cu2ZnSnS4 (CZTS) materials are prepared via the mechanical alloying and high pressure sintering method using Cu2S, ZnS and SnS2 as the raw materials. The morphological, structural, compositional and electrical properties of the materials are investigated by using x-ray diffraction, scanning electron microscopy, and energy dispersive x-ray spectroscopy, as well as by the Raman scattering and the Hall EFfect measurements. The CZTS synthesized under 5 GPa and 800℃ shows a p-type conductivity, with a resistivity of 9.69 × 10^-2 Ω.cm and a carrier concentration of 1.45 × 10^20 cm-3. It is contributed to by the large grains in the materials reducing the grain boundaries, thus effectively reducing the recombination of the charge carriers.展开更多
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability...Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.展开更多
Assessing the adsorption properties of nanoporous materials and determining their structural characterization is critical for progressing the use of such materials for many applications, including gas storage. Gas ads...Assessing the adsorption properties of nanoporous materials and determining their structural characterization is critical for progressing the use of such materials for many applications, including gas storage. Gas adsorption can he used for this characterization because it assesses a broad range of pore sizes, from micropore to mesopore. In the past 20 years, key developments have been achieved both in the knowledge of the adsorption and phase behavior of fluids in ordered nanoporous materials and in the creation and advancement of state-of-the-art approaches based on statistical mechanics, such as molecular sim- ulation and density functional theory. Together with high-resolution experimental procedures for the adsorption of suhcritical and supercritical fluids, this has led to significant advances in physical adsorp- tion textural characterization. In this short, selective review paper, we discuss a few important and central features of the underlying adsorption mechanisms of fluids in a variety of nanoporous materials with well-defined pore structure. The significance of these features for advancing physical adsorption charac- terization and gas storage applications is also discussed.展开更多
This paper describes severe plastic deformation(SPD)procedures,which are utilized to form an ultrafine-grained structure in metallic biomaterials.During the SPD process,a solid material sample is subjected to very hig...This paper describes severe plastic deformation(SPD)procedures,which are utilized to form an ultrafine-grained structure in metallic biomaterials.During the SPD process,a solid material sample is subjected to very high loads without a significant change in sample dimensions.In the present work,the high-pressure torsion(HPT)process,as one of the SPD techniques,which achieves a high degree of deformation and ensures refinement of the microstructure,will be discussed in more detail.Considering that grain size control is accepted as a method to obtain materials with desired characteristics,an overview of the properties of ultrafine-grained titanium-based biomaterials to be used in medicine is given.Moreover,particular attention is dedicated to the influences of HPT process parameters,primarily hydrostatic pressure,and number of revolutions during torsion,on the grain size and physical and mechanical characteristics(modulus of elasticity,microhardness,and tensile properties),corrosion resistance,and biocompatibility of the titanium-based biomaterials.A review of the literature indicates that titanium-based materials obtained by the SPD process show improved mechanical and physical properties without losing biocompatibility and corrosion resistance,which suggests that these methods of obtaining implants are something that should be further developed in the future.展开更多
The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous...The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated.展开更多
基金Changchun Ruiguang Science & Technology Co., Ltd. for technical assistance and financial support
文摘Based on the principles of massive support and lateral support, a novel double-layered split die(DLSD) for high-pressure apparatus was designed to achieve a higher pressure-bearing capacity and larger sample cavity. The stress distributions of the DLSDs with different numbers of divided blocks were investigated by the finite element method and compared with the stress distributions of the conventional belt-type die(BTD). The results show that the cylinders and first-layer supporting rings of the DLSDs have dramatically smaller stresses than those of the BTD. In addition, increasing the number of divided blocks from 4 to 10 gradually increases the stress of the cylinder but has minimal influence on the stress of the supporting rings. The pressure-bearing capacities of the DLSDs with different numbers of divided blocks, especially with fewer blocks, are all remarkably higher than the pressure-bearing capacity of the BTD. The contrast experiments were also carried out to verify the simulated results. It is concluded that the pressure-bearing capacities of the DLSDs with 4 and 8 divided blocks are 1.58 and 1.45 times greater than that of the BTD. This work is rewarding for the commercial synthesis of high-quality, large-sized superhard materials using a double-layered split high-pressure die.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10874178,11074093,61205038 and 11274135the National Found for Fostering Talents of Basic Science under Grant No J1103202+2 种基金the Ph.D.Programs Foundation of Ministry of Education of China under Grant No 20120061120011the Open Project of State Key Laboratory of Superhard Materials of Jilin Universitythe State Key Laboratory of Inorganic Synthesis and Preparative Chemistry of Jilin University
文摘High-density Cu2ZnSnS4 (CZTS) materials are prepared via the mechanical alloying and high pressure sintering method using Cu2S, ZnS and SnS2 as the raw materials. The morphological, structural, compositional and electrical properties of the materials are investigated by using x-ray diffraction, scanning electron microscopy, and energy dispersive x-ray spectroscopy, as well as by the Raman scattering and the Hall EFfect measurements. The CZTS synthesized under 5 GPa and 800℃ shows a p-type conductivity, with a resistivity of 9.69 × 10^-2 Ω.cm and a carrier concentration of 1.45 × 10^20 cm-3. It is contributed to by the large grains in the materials reducing the grain boundaries, thus effectively reducing the recombination of the charge carriers.
基金supported by the Sichuan Science and Technology Program (Grant Nos.2023NSFSC0004,2023NSFSC0790)the National Natural Science Foundation of China (Grant Nos.51827901,52304033)the Sichuan University Postdoctoral Fund (Grant No.2024SCU12093)。
文摘Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.
文摘Assessing the adsorption properties of nanoporous materials and determining their structural characterization is critical for progressing the use of such materials for many applications, including gas storage. Gas adsorption can he used for this characterization because it assesses a broad range of pore sizes, from micropore to mesopore. In the past 20 years, key developments have been achieved both in the knowledge of the adsorption and phase behavior of fluids in ordered nanoporous materials and in the creation and advancement of state-of-the-art approaches based on statistical mechanics, such as molecular sim- ulation and density functional theory. Together with high-resolution experimental procedures for the adsorption of suhcritical and supercritical fluids, this has led to significant advances in physical adsorp- tion textural characterization. In this short, selective review paper, we discuss a few important and central features of the underlying adsorption mechanisms of fluids in a variety of nanoporous materials with well-defined pore structure. The significance of these features for advancing physical adsorption charac- terization and gas storage applications is also discussed.
基金Funded by the Ministry of Science,Technological Development and Innovation of the Republic of Serbia(Nos.451-03-47/2023-01/200135,451-03-47/2023-01/200017 and 451-03-47/2023-01/200287)。
文摘This paper describes severe plastic deformation(SPD)procedures,which are utilized to form an ultrafine-grained structure in metallic biomaterials.During the SPD process,a solid material sample is subjected to very high loads without a significant change in sample dimensions.In the present work,the high-pressure torsion(HPT)process,as one of the SPD techniques,which achieves a high degree of deformation and ensures refinement of the microstructure,will be discussed in more detail.Considering that grain size control is accepted as a method to obtain materials with desired characteristics,an overview of the properties of ultrafine-grained titanium-based biomaterials to be used in medicine is given.Moreover,particular attention is dedicated to the influences of HPT process parameters,primarily hydrostatic pressure,and number of revolutions during torsion,on the grain size and physical and mechanical characteristics(modulus of elasticity,microhardness,and tensile properties),corrosion resistance,and biocompatibility of the titanium-based biomaterials.A review of the literature indicates that titanium-based materials obtained by the SPD process show improved mechanical and physical properties without losing biocompatibility and corrosion resistance,which suggests that these methods of obtaining implants are something that should be further developed in the future.
基金the National Natural Science Foundation of China(Nos.52304141 and 52074154)。
文摘The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated.