With the progress of science and technology,China has gradually attached importance to research and exploration in chemistry,and the achievements in exploring mechanochemistry are also quite significant.Therefore,it i...With the progress of science and technology,China has gradually attached importance to research and exploration in chemistry,and the achievements in exploring mechanochemistry are also quite significant.Therefore,it is necessary to study and explore mechanochemistry.This article mainly discusses the application of mechanochemistry in powder and some silicate materials,as well as in special ceramics,and provides a brief introduction to provide reference for relevant researchers.展开更多
ZnO varistor ceramics doped with Bi2O3, Sb2O3, CO2O3, Cr2O3, and MnO2 were prepared separately by two high-energy ball milling processes: oxide-doped and varistor ceramic powder. A comparison in the electrical and mi...ZnO varistor ceramics doped with Bi2O3, Sb2O3, CO2O3, Cr2O3, and MnO2 were prepared separately by two high-energy ball milling processes: oxide-doped and varistor ceramic powder. A comparison in the electrical and microstructural properties of the samples obtained by both methods was made. The best results on these characteristics were achieved through the high-energy ball milling varistor ceramic powder route, obtaining a nonlinear coefficient of 57 and a breakdown field of 617 V/mm at a sintering temperature of 1000 ℃ for 3 h. The samples synthesized by this technique show not only high density value, 95% of the theoretical density, but also a homogeneous microstructure, which compete with those obtained by the high-energy ball milling oxide-doped powder route. With the advantage that the high-energy ball milling varistor ceramic powder route can refine grain, increase the driving force of sintering, accelerate the sintering process, and reduce the sintering temperature.展开更多
TiB2/Al-30Si composites were fabricated via in-situ melt reaction under high-energy ultrasonic field. The microstructure and wear properties of the composite were investigated by XRD, SEM and dry sliding testing. The ...TiB2/Al-30Si composites were fabricated via in-situ melt reaction under high-energy ultrasonic field. The microstructure and wear properties of the composite were investigated by XRD, SEM and dry sliding testing. The results indicate that TiB2 reinforcement particles are uniformly distributed in the aluminum matrix under high-energy ultrasonic field. The morphology of the TiB2 particles is in circle-shape or quadrangle-shape, and the size of the particles is 0.1-1.5μm. The primary silicon particles are in quadrangle-shape and the average size of them is about 10μm. Hardness values of the Al-30Si matrix alloy and the TiB2/Al-30Si composites considerably increase as the high energy ultrasonic power increases. In particular, the maximum hardness value of the in-situ composites is about 1.3 times as high as that of the matrix alloy when the ultrasonic power is 1.2 kW, reaching 412 MPa. Meanwhile, the wear resistance of the in-situ TiB2/Al-30Si composites prepared under high-energy ultrasonic field is obviously improved and is insensitive to the applied loads of the dry sliding testing.展开更多
随着科研工作爆发式增长,文献计量学成为揭示科研趋势和热点的重要工具。机械力化学方法,因其机械力诱发和驱动的独特过程及绿色特征,近年获得广泛关注;而球磨是实现机械力化学的主要途径。基于Web of Science收录数据,对二十年来球磨...随着科研工作爆发式增长,文献计量学成为揭示科研趋势和热点的重要工具。机械力化学方法,因其机械力诱发和驱动的独特过程及绿色特征,近年获得广泛关注;而球磨是实现机械力化学的主要途径。基于Web of Science收录数据,对二十年来球磨方法在环境领域的研究应用进行了文献计量调查和分析。通过综合考察历年发文量、学科分布及文献来源,结合国家、机构、资助基金和作者的分析,以及对关键词聚类和突现的研究,揭示了球磨-机械力化学方法在环境领域研究应用的活跃程度、变化趋势、学术热度及影响力分布,展现了球磨方法在环境领域研究应用的不断深入、挖掘和拓展。分析结果为探索球磨方法在环境领域中的发展及应用提供了文献支撑和内容参考。展开更多
Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders bal...Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders ball-milled for different time were studied. Experimental results indicated that when the ball-milling time increased, the microstructure of sintered Ti was firstly changed from coarse-grained to bimodal-grained structure, subsequently transformed to a homogeneous fine-grained structure. Compared with coarse-grained Ti and fine-grained Ti, bimodal-grained Ti exhibited balanced strength and ductility. The sample sintered from Ti powders ball-milled for 10 h consisting of 65.3% (volume fraction) fine-grained region (average grain size 1 μm) and 34.7% coarse-grained region (grain size > 5 μm) exhibited a compress strength of 1028 MPa as well as a plastic strain to failure of 22%.展开更多
High-energy–density lithium-ion batteries(LIBs)that can be safely fast-charged are desirable for electric vehicles.However,sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety is...High-energy–density lithium-ion batteries(LIBs)that can be safely fast-charged are desirable for electric vehicles.However,sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety issues and low energy density.Here we hypothesize that a cobalt vanadate oxide,Co_(2)VO_(4),can be attractive anode material for fast-charging LIBs due to its high capacity(~1000 mAh g^(−1))and safe lithiation potential(~0.65 V vs.Li^(+)/Li).The Li+diffusion coefficient of Co2VO4 is evaluated by theoretical calculation to be as high as 3.15×10^(-10) cm^(2) s^(−1),proving Co_(2)VO_(4) a promising anode in fast-charging LIBs.A hexagonal porous Co2VO4 nanodisk(PCVO ND)structure is designed accordingly,featuring a high specific surface area of 74.57 m^(2) g^(−1) and numerous pores with a pore size of 14 nm.This unique structure succeeds in enhancing Li^(+) and electron transfer,leading to superior fast-charging performance than current commercial anodes.As a result,the PCVO ND shows a high initial reversible capacity of 911.0 mAh g^(−1) at 0.4 C,excellent fast-charging capacity(344.3 mAh g^(−1) at 10 C for 1000 cycles),outstanding long-term cycling stability(only 0.024% capacity loss per cycle at 10 C for 1000 cycles),confirming the commercial feasibility of PCVO ND in fast-charging LIBs.展开更多
Aqueous Zn-ion hybrid supercapacitors(ZHSs)are increasingly being studied as a novel electrochemical energy storage system with prominent electrochemical performance,high safety and low cost.Herein,high-energy and ant...Aqueous Zn-ion hybrid supercapacitors(ZHSs)are increasingly being studied as a novel electrochemical energy storage system with prominent electrochemical performance,high safety and low cost.Herein,high-energy and anti-self-discharge ZHSs are realized based on the fibrous carbon cathodes with hierarchically porous surface and O/N heteroatom functional groups.Hierarchically porous surface of the fabricated free-standing fibrous carbon cathodes not only provides abundant active sites for divalent ion storage,but also optimizes ion transport kinetics.Consequently,the cathodes show a high gravimetric capacity of 156 mAh g^(−1),superior rate capability(79 mAh g^(−1)with a very short charge/discharge time of 14 s)and exceptional cycling stability.Meanwhile,hierarchical pore structure and suitable surface functional groups of the cathodes endow ZHSs with a high energy density of 127 Wh kg−1,a high power density of 15.3 kW kg^(−1)and good anti-self-discharge performance.Mechanism investigation reveals that ZHS electrochemistry involves cation adsorption/desorption and Zn_(4)SO_(4)(OH)_(6)·5H_(2)O formation/dissolution at low voltage and anion adsorption/desorption at high voltage on carbon cathodes.The roles of these reactions in energy storage of ZHSs are elucidated.This work not only paves a way for high-performance cathode materials of ZHSs,but also provides a deeper understanding of ZHS electrochemistry.展开更多
It is of great significance to develop clean and new energy sources with high-efficient energy storage technologies,due to the excessive use of fossil energy that has caused severe environmental damage.There is great ...It is of great significance to develop clean and new energy sources with high-efficient energy storage technologies,due to the excessive use of fossil energy that has caused severe environmental damage.There is great interest in exploring advanced rechargeable lithium batteries with desirable energy and power capabilities for applications in portable electronics,smart grids,and electric vehicles.In practice,high-capacity and low-cost electrode materials play an important role in sustaining the progresses in lithium-ion batteries.This review aims at giving an account of recent advances on the emerging high-capacity electrode materials and summarizing key barriers and corresponding strategies for the practical viability of these electrode materials.Effective approaches to enhance energy density of lithium-ion batteries are to increase the capacity of electrode materials and the output operation voltage.On account of major bottlenecks of the power lithium-ion battery,authors come up with the concept of integrated battery systems,which will be a promising future for high-energy lithium-ion batteries to improve energy density and alleviate anxiety of electric vehicles.展开更多
Surface segregation is studied via the evolution of reflection high-energy electron diffraction (RHEED) patterns under different values of As4 BEP for InGaAs films. When the As4 BEP is set to be zero, the RHEED patt...Surface segregation is studied via the evolution of reflection high-energy electron diffraction (RHEED) patterns under different values of As4 BEP for InGaAs films. When the As4 BEP is set to be zero, the RHEED pattern keeps a 4x3/(nx3) structure with increasing temperature, and surface segregation takes place until 470 ℃ The RHEED pattern develops into a metal-rich (4x2) structure as temperature increases to 495℃. The reason for this is that surface segregation makes the In inside the InGaAs film climb to its surface. With the temperature increasing up to 515℃, the RHEED pattern turns into a GaAs(2x4) structure due to In desorption. While the As4 BEP comes up to a specific value (1.33 x 10-4 Pa-1.33 x 10-3 Pa), the surface temperature can delay the segregation and desorption. We find that As4 BEP has a big influence on surface desorption, while surface segregation is more strongly dependent on temperature than surface desorption.展开更多
The 304 stainless steel with nanostructured surface layer was successfully obtained by using the high-energy shot peening (HESP) method. The internal friction and Young's modulus of this kind of surface nanocrysta...The 304 stainless steel with nanostructured surface layer was successfully obtained by using the high-energy shot peening (HESP) method. The internal friction and Young's modulus of this kind of surface nanocrystallized material were dynamically measured by means of the vibrating reed apparatus. The results implied that different treatment time could induce different microstructure and distribution characteristic of defects in this kind of materials. It is also demonstrated that there is a transition layer between the nano-layer on surface and the coarse grain region inside. The transition layer obviously has certain influence on the overall mechanical properties.展开更多
Manipulating the structure self-reconstruction of transition metal sulfide-based(pre)catalysts during the oxygen evolution reaction(OER) process is of great interest for developing cost-effective OER catalysts,which r...Manipulating the structure self-reconstruction of transition metal sulfide-based(pre)catalysts during the oxygen evolution reaction(OER) process is of great interest for developing cost-effective OER catalysts,which remains a central challenge. Here we realize a deep structure self-reconstruction of natural chalcopyrite to unlock its OER performance via mechanochemical activation. Compared with the manually milled counterpart(CuFeS_(2)-HM), the mechanically milled catalyst(CuFeS_(2)-BM) with a reduced crystallinity exhibits a 7.11 times higher OER activity at 1.53 V vs. RHE. In addition, the CuFeS_(2)-BM requires a low overpotential of 243 mV for generating 10 mA cm^(-2) and exhibits good stability over 24 h. Further investigations suggest that the excellent OER performance of CuFeS_(2)-BM mainly originates from the decreased crystallinity induced the in situ deep structure self-reconstruction of the originally sulfides into the electroactive and stable metal(oxy)hydroxide phase(e.g., a-Fe OOH) via S etching under OER conditions. This study demonstrates that regulating the crystallinity of catalysts is a promising design strategy for developing highly efficient OER catalysts via managing the structure self-reconstruction process, which can be further extended to the design of efficient catalysts for other advanced energy conversion devices. In addition, this study unveils the great potentials of engineering abundant natural minerals as cost-effective catalysts for diverse applications.展开更多
Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, le...Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics.展开更多
The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing ...The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing Er2O3 content, the ZnO grain size decreases due to the Er-rich phases inhibiting grain growth ; and nonlinear coefficient ( α ) decreases because of the decrease of barrier height (φB) The breakdown voltage (Eb) and density increase, whereas leakage current (IL) decreases with increasing Er2O3 content. The barrier height (φB), donor concentration (Nd), density of interface states (Ns) decrease and barrier width (ω) increases with increasing Er2O3 content due to acceptor effect of Er2O3 in varistor ceramics.展开更多
To improve the gas extraction efficiency of single seam with high gas and low air permeability,we developed the"fracturing-sealing"integration technology,and carried out the engineering experiment in the3305...To improve the gas extraction efficiency of single seam with high gas and low air permeability,we developed the"fracturing-sealing"integration technology,and carried out the engineering experiment in the3305 Tunliu mine.In the experiment,coal seams can achieve the aim of antireflection effect through the following process:First,project main cracks with the high energy pulse jet.Second,break the coal body by delaying the propellant blasting.Next,destroy the dense structure of the hard coal body,and form loose slit rings around the holes.Finally,seal the boreholes with the"strong-weak-strong"pressurized sealing technology.The results are as follows:The average concentration of gas extraction increases from8.3%to 39.5%.The average discharge of gas extraction increases from 0.02 to 0.10 m^3/min.The tunneling speeds up from 49.5 to 130 m/month.And the permeability of coal seams improves nearly tenfold.Under the same conditions,the technology is much more efficient in depressurization and antireflection than common methods.In other words,it will provide a more effective way for the gas extraction of single seam with high gas and low air permeability.展开更多
The vigorous development of two-dimensional(2D)materials brings about numerous opportunities for lithiumion batteries(LIBs)due to their unique 2D layered structure,large specific surface area,outstanding mechanical an...The vigorous development of two-dimensional(2D)materials brings about numerous opportunities for lithiumion batteries(LIBs)due to their unique 2D layered structure,large specific surface area,outstanding mechanical and flexibility properties,etc.Modern technologies for production of 2D materials include but are not limited to mechanochemical(solid-state/liquid-phase)exfoliation,the solvothermal method and chemical vapor deposition.In this review,strategies leading to the production of 2D materials via solid-state mechanochemistry featuring traditional high energy ball-milling and Sichuan University patented pan-milling are highlighted.The mechanism involving exfoliation,edge selective carbon radical generation of the 2D materials is delineated and this is followed by detailed discussion on representative mechanochemical techniques for tailored and improved lithium-ion storage performance.In the light of the advantages of the solid-state mechanochemical method,there is great promise for the commercialization of 2D materials for the next-generation high performance LIBs.展开更多
In situ (Mg2Si+MgO)/Mg composites fabricated from AZ91-A12(SiO3)3 under high-energy ultrasonic field were investigated by XRD, DSC and SEM. The results indicate that the size, morphology and distribution of the i...In situ (Mg2Si+MgO)/Mg composites fabricated from AZ91-A12(SiO3)3 under high-energy ultrasonic field were investigated by XRD, DSC and SEM. The results indicate that the size, morphology and distribution of the in situ Mg2Si particles are greatly optimized with the assistance of the high-energy ultrasonic field. The amounts of the in situ Mg2Si particles are increased, the sizes are refined, the distributions become uniform, and the morphologies are changed to smooth olive-shape or spherical shape. The amounts of brittle fl-Mgl7All2 phases are decreased and the morphologies are granulated. The values of the tensile strength ab and HB hardness are increased. These are due to the cavitation effects and acoustic streaming effects induced by the high-energy ultrasonic field.展开更多
The mathematical models are developed to evaluate the ultimate tensile strength( UTS) and hardness of CNTs / Al2024 composites fabricated by high-energy ball milling. The effects of the preparation variables which are...The mathematical models are developed to evaluate the ultimate tensile strength( UTS) and hardness of CNTs / Al2024 composites fabricated by high-energy ball milling. The effects of the preparation variables which are milling time,rotational speed,mass fraction of CNTs and ball to powder ratio on UST and hardness of CNTs / Al2024 composites are investigated. Based on the central composite design( CCD),a quadratic model is developed to correlate the fabrication variables to the UST and hardness. From the analysis of variance( ANOVA),the most influential factor on each experimental design response is identified. The optimum conditions for preparing CNTs / Al2024 composites are found as follows: 1. 53 h milling time,900 r / min rotational speed,mass fraction of CNTs 2. 87% and Ball to powder ratio 25 ∶ 1. The predicted maximum UST and hardness are 273.30 MPa and 261.36 HV,respectively. And the experimental values are 283.25 MPa and256.8 HV,respectively. It is indicated that the predicted UST and hardness after process optimization are found to agree satisfactory with the experimental values.展开更多
The azimuthal distributions of final-state particles and fragments produced in high-energy nucleus-nucleus collisions are described by a modified multisource ideal gas model which contains the expansions and movements...The azimuthal distributions of final-state particles and fragments produced in high-energy nucleus-nucleus collisions are described by a modified multisource ideal gas model which contains the expansions and movements of the emission sources. The transverse structures of the sources are given in the transverse plane by momentum components Px and Py, and described by parameters in the model. The results of the azimuthal distributions, calculated by the Monte Carlo method, are in good agreement with the experimental data in nucleus-nucleus collisions at high energies.展开更多
Al_(2)O_(3) nanoparticles and MCrAlY/nano-Al_(2)O_(3) nanocomposite powder(M=Ni,Co,or NiCo)were produced using high-energy ball milling.The MCrAlY/nano-Al_(2)O_(3) coating was deposited by selecting an optimum nanocom...Al_(2)O_(3) nanoparticles and MCrAlY/nano-Al_(2)O_(3) nanocomposite powder(M=Ni,Co,or NiCo)were produced using high-energy ball milling.The MCrAlY/nano-Al_(2)O_(3) coating was deposited by selecting an optimum nanocomposite powder as feedstock for high-velocity oxy-gen fuel thermal spraying.The morphological and microstructural examinations of the Al_(2)O_(3) nanoparticles and the commercial MCrAlY and MCrAlY/nano-Al_(2)O_(3) nanocomposite powders were investigated using X-ray diffraction analysis,field-emission scanning electron microscopy coupled with electron dispersed spectroscopy,and transmission electron microscopy.The structural investigations and Williamson-Hall res-ults demonstrated that the ball-milled Al_(2)O_(3) powder after 48 h has the smallest crystallite size and the highest amount of lattice strain among the as-received and ball-milled Al_(2)O_(3) owing to its optimal nanocrystalline structure.In the case of developing MCrAlY/nano-Al_(2)O_(3) nanocompos-ite powder,the particle size of the nanocomposite powders decreased with increasing mechanical-milling duration of the powder mixture.展开更多
文摘With the progress of science and technology,China has gradually attached importance to research and exploration in chemistry,and the achievements in exploring mechanochemistry are also quite significant.Therefore,it is necessary to study and explore mechanochemistry.This article mainly discusses the application of mechanochemistry in powder and some silicate materials,as well as in special ceramics,and provides a brief introduction to provide reference for relevant researchers.
基金Project (BK2011243) supported by the Natural Science Foundation of Jiangsu Province,ChinaProject (EIPE11204) supported by the State Key Laboratory of Electrical Insulation and Power Equipment,China+4 种基金Project (KF201104) supported by the State Key Laboratory of New Ceramic and Fine Processing,ChinaProject (KFJJ201105) supported by the Opening Project of State Key Laboratory of Electronic Thin Films and Integrated Devices,ChinaProject (2011-22) supported by State Key Laboratory of Inorganic Synthesis and Preparative Chemistry,ChinaProject (10KJD430002) supported by the Universities Natural Science Research Project of Jiangsu Province,ChinaProject (11JDG084) supported by the Research Foundation of Jiangsu University,China
文摘ZnO varistor ceramics doped with Bi2O3, Sb2O3, CO2O3, Cr2O3, and MnO2 were prepared separately by two high-energy ball milling processes: oxide-doped and varistor ceramic powder. A comparison in the electrical and microstructural properties of the samples obtained by both methods was made. The best results on these characteristics were achieved through the high-energy ball milling varistor ceramic powder route, obtaining a nonlinear coefficient of 57 and a breakdown field of 617 V/mm at a sintering temperature of 1000 ℃ for 3 h. The samples synthesized by this technique show not only high density value, 95% of the theoretical density, but also a homogeneous microstructure, which compete with those obtained by the high-energy ball milling oxide-doped powder route. With the advantage that the high-energy ball milling varistor ceramic powder route can refine grain, increase the driving force of sintering, accelerate the sintering process, and reduce the sintering temperature.
基金Project(51174098)supported by the National Natural Science Foundation of ChinaProject(kjsmcx0903)supported by the Foundation of the Jiangsu Province Key Laboratory of Materials Tribology,China+2 种基金Project(1202015B)supported by the Postdoctoral Science Foundation of Jiangsu Province,ChinaProject(03)supported by the Undergraduate Practice-Innovation Training Foundation of Jiangsu University,ChinaProjects(GY2012020,GY2013032)supported by the Science and Technology Support Plan Project Foundation of Zhenjiang City,China
文摘TiB2/Al-30Si composites were fabricated via in-situ melt reaction under high-energy ultrasonic field. The microstructure and wear properties of the composite were investigated by XRD, SEM and dry sliding testing. The results indicate that TiB2 reinforcement particles are uniformly distributed in the aluminum matrix under high-energy ultrasonic field. The morphology of the TiB2 particles is in circle-shape or quadrangle-shape, and the size of the particles is 0.1-1.5μm. The primary silicon particles are in quadrangle-shape and the average size of them is about 10μm. Hardness values of the Al-30Si matrix alloy and the TiB2/Al-30Si composites considerably increase as the high energy ultrasonic power increases. In particular, the maximum hardness value of the in-situ composites is about 1.3 times as high as that of the matrix alloy when the ultrasonic power is 1.2 kW, reaching 412 MPa. Meanwhile, the wear resistance of the in-situ TiB2/Al-30Si composites prepared under high-energy ultrasonic field is obviously improved and is insensitive to the applied loads of the dry sliding testing.
文摘随着科研工作爆发式增长,文献计量学成为揭示科研趋势和热点的重要工具。机械力化学方法,因其机械力诱发和驱动的独特过程及绿色特征,近年获得广泛关注;而球磨是实现机械力化学的主要途径。基于Web of Science收录数据,对二十年来球磨方法在环境领域的研究应用进行了文献计量调查和分析。通过综合考察历年发文量、学科分布及文献来源,结合国家、机构、资助基金和作者的分析,以及对关键词聚类和突现的研究,揭示了球磨-机械力化学方法在环境领域研究应用的活跃程度、变化趋势、学术热度及影响力分布,展现了球磨方法在环境领域研究应用的不断深入、挖掘和拓展。分析结果为探索球磨方法在环境领域中的发展及应用提供了文献支撑和内容参考。
基金Project(51104066)supported by the National Natural Science Foundation of ChinaProjects(2015A010105011,2015A020214008)supported by Science and Technology Program of Guangdong Province,ChinaProject(201505040925029)supported by Science and Technology Research Program of Guangzhou,China
文摘Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders ball-milled for different time were studied. Experimental results indicated that when the ball-milling time increased, the microstructure of sintered Ti was firstly changed from coarse-grained to bimodal-grained structure, subsequently transformed to a homogeneous fine-grained structure. Compared with coarse-grained Ti and fine-grained Ti, bimodal-grained Ti exhibited balanced strength and ductility. The sample sintered from Ti powders ball-milled for 10 h consisting of 65.3% (volume fraction) fine-grained region (average grain size 1 μm) and 34.7% coarse-grained region (grain size > 5 μm) exhibited a compress strength of 1028 MPa as well as a plastic strain to failure of 22%.
基金supported by the National Key Research and Development Project(2018YFE0124800)the National Nature Science Foundation of China(51702157,51873086,51673096).
文摘High-energy–density lithium-ion batteries(LIBs)that can be safely fast-charged are desirable for electric vehicles.However,sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety issues and low energy density.Here we hypothesize that a cobalt vanadate oxide,Co_(2)VO_(4),can be attractive anode material for fast-charging LIBs due to its high capacity(~1000 mAh g^(−1))and safe lithiation potential(~0.65 V vs.Li^(+)/Li).The Li+diffusion coefficient of Co2VO4 is evaluated by theoretical calculation to be as high as 3.15×10^(-10) cm^(2) s^(−1),proving Co_(2)VO_(4) a promising anode in fast-charging LIBs.A hexagonal porous Co2VO4 nanodisk(PCVO ND)structure is designed accordingly,featuring a high specific surface area of 74.57 m^(2) g^(−1) and numerous pores with a pore size of 14 nm.This unique structure succeeds in enhancing Li^(+) and electron transfer,leading to superior fast-charging performance than current commercial anodes.As a result,the PCVO ND shows a high initial reversible capacity of 911.0 mAh g^(−1) at 0.4 C,excellent fast-charging capacity(344.3 mAh g^(−1) at 10 C for 1000 cycles),outstanding long-term cycling stability(only 0.024% capacity loss per cycle at 10 C for 1000 cycles),confirming the commercial feasibility of PCVO ND in fast-charging LIBs.
基金National Natural Science Foundation of China(No.52002149)Shenzhen Technical Plan Projects(Nos.JC201105201100A and JCYJ20160301154114273)for financial support.
文摘Aqueous Zn-ion hybrid supercapacitors(ZHSs)are increasingly being studied as a novel electrochemical energy storage system with prominent electrochemical performance,high safety and low cost.Herein,high-energy and anti-self-discharge ZHSs are realized based on the fibrous carbon cathodes with hierarchically porous surface and O/N heteroatom functional groups.Hierarchically porous surface of the fabricated free-standing fibrous carbon cathodes not only provides abundant active sites for divalent ion storage,but also optimizes ion transport kinetics.Consequently,the cathodes show a high gravimetric capacity of 156 mAh g^(−1),superior rate capability(79 mAh g^(−1)with a very short charge/discharge time of 14 s)and exceptional cycling stability.Meanwhile,hierarchical pore structure and suitable surface functional groups of the cathodes endow ZHSs with a high energy density of 127 Wh kg−1,a high power density of 15.3 kW kg^(−1)and good anti-self-discharge performance.Mechanism investigation reveals that ZHS electrochemistry involves cation adsorption/desorption and Zn_(4)SO_(4)(OH)_(6)·5H_(2)O formation/dissolution at low voltage and anion adsorption/desorption at high voltage on carbon cathodes.The roles of these reactions in energy storage of ZHSs are elucidated.This work not only paves a way for high-performance cathode materials of ZHSs,but also provides a deeper understanding of ZHS electrochemistry.
基金supported by National Natural Science Foundation of China(No.51902340)Chongqing Natural Science Foundation,and Chongqing Postdoctoral Science Foundation(No.2021000051).
文摘It is of great significance to develop clean and new energy sources with high-efficient energy storage technologies,due to the excessive use of fossil energy that has caused severe environmental damage.There is great interest in exploring advanced rechargeable lithium batteries with desirable energy and power capabilities for applications in portable electronics,smart grids,and electric vehicles.In practice,high-capacity and low-cost electrode materials play an important role in sustaining the progresses in lithium-ion batteries.This review aims at giving an account of recent advances on the emerging high-capacity electrode materials and summarizing key barriers and corresponding strategies for the practical viability of these electrode materials.Effective approaches to enhance energy density of lithium-ion batteries are to increase the capacity of electrode materials and the output operation voltage.On account of major bottlenecks of the power lithium-ion battery,authors come up with the concept of integrated battery systems,which will be a promising future for high-energy lithium-ion batteries to improve energy density and alleviate anxiety of electric vehicles.
基金supported by the National Natural Science Foundation of China (Grant No. 60866001)the Special Assistant to High-Level Personnel Research Projects of Guizhou Provincial Party Committee Organization Department of China (Grant No. TZJF- 2008-31)+3 种基金the Support Plan of New Century Excellent Talents of Ministry of Education, China (Grant No. NCET-08-0651)the Doctorate Foundation of the State Education Ministry of China (Grant No. 20105201110003)the Special Governor Fund of Outstanding Professionals in Science and Technology and Education of Guizhou Province, China (Grant No. 2009114)the Doctoral Foundation Projects of Guizhou College of Finance and Economics in 2010
文摘Surface segregation is studied via the evolution of reflection high-energy electron diffraction (RHEED) patterns under different values of As4 BEP for InGaAs films. When the As4 BEP is set to be zero, the RHEED pattern keeps a 4x3/(nx3) structure with increasing temperature, and surface segregation takes place until 470 ℃ The RHEED pattern develops into a metal-rich (4x2) structure as temperature increases to 495℃. The reason for this is that surface segregation makes the In inside the InGaAs film climb to its surface. With the temperature increasing up to 515℃, the RHEED pattern turns into a GaAs(2x4) structure due to In desorption. While the As4 BEP comes up to a specific value (1.33 x 10-4 Pa-1.33 x 10-3 Pa), the surface temperature can delay the segregation and desorption. We find that As4 BEP has a big influence on surface desorption, while surface segregation is more strongly dependent on temperature than surface desorption.
文摘The 304 stainless steel with nanostructured surface layer was successfully obtained by using the high-energy shot peening (HESP) method. The internal friction and Young's modulus of this kind of surface nanocrystallized material were dynamically measured by means of the vibrating reed apparatus. The results implied that different treatment time could induce different microstructure and distribution characteristic of defects in this kind of materials. It is also demonstrated that there is a transition layer between the nano-layer on surface and the coarse grain region inside. The transition layer obviously has certain influence on the overall mechanical properties.
基金financially supported by the National Natural Science Foundation of China (21777045, 61875119)the Australian Research Council (ARC) Future Fellowship (FT160100195)+3 种基金the Foundation of Shenzhen ScienceTechnology and Innovation Commission (SSTIC)(2020231312, JCYJ20190809144409460)the Natural Science Funds for Distinguished Young Scholar of Guangdong Province,China (2020B151502094)the China Scholarship Council (CSC) for the scholarship support。
文摘Manipulating the structure self-reconstruction of transition metal sulfide-based(pre)catalysts during the oxygen evolution reaction(OER) process is of great interest for developing cost-effective OER catalysts,which remains a central challenge. Here we realize a deep structure self-reconstruction of natural chalcopyrite to unlock its OER performance via mechanochemical activation. Compared with the manually milled counterpart(CuFeS_(2)-HM), the mechanically milled catalyst(CuFeS_(2)-BM) with a reduced crystallinity exhibits a 7.11 times higher OER activity at 1.53 V vs. RHE. In addition, the CuFeS_(2)-BM requires a low overpotential of 243 mV for generating 10 mA cm^(-2) and exhibits good stability over 24 h. Further investigations suggest that the excellent OER performance of CuFeS_(2)-BM mainly originates from the decreased crystallinity induced the in situ deep structure self-reconstruction of the originally sulfides into the electroactive and stable metal(oxy)hydroxide phase(e.g., a-Fe OOH) via S etching under OER conditions. This study demonstrates that regulating the crystallinity of catalysts is a promising design strategy for developing highly efficient OER catalysts via managing the structure self-reconstruction process, which can be further extended to the design of efficient catalysts for other advanced energy conversion devices. In addition, this study unveils the great potentials of engineering abundant natural minerals as cost-effective catalysts for diverse applications.
文摘Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics.
基金Project supported by National Natural Science Foundation of China (50471045) Shanghai Nano-Technology PromotionCenter (0452nm026)
文摘The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing Er2O3 content, the ZnO grain size decreases due to the Er-rich phases inhibiting grain growth ; and nonlinear coefficient ( α ) decreases because of the decrease of barrier height (φB) The breakdown voltage (Eb) and density increase, whereas leakage current (IL) decreases with increasing Er2O3 content. The barrier height (φB), donor concentration (Nd), density of interface states (Ns) decrease and barrier width (ω) increases with increasing Er2O3 content due to acceptor effect of Er2O3 in varistor ceramics.
基金financial support provided by the State Key Basic Research Program of China(No.2011CB201205)the National Natural Science Foundation of China(No.51074161)the National Science and Technology Support Program(No.2012BAK04B07)
文摘To improve the gas extraction efficiency of single seam with high gas and low air permeability,we developed the"fracturing-sealing"integration technology,and carried out the engineering experiment in the3305 Tunliu mine.In the experiment,coal seams can achieve the aim of antireflection effect through the following process:First,project main cracks with the high energy pulse jet.Second,break the coal body by delaying the propellant blasting.Next,destroy the dense structure of the hard coal body,and form loose slit rings around the holes.Finally,seal the boreholes with the"strong-weak-strong"pressurized sealing technology.The results are as follows:The average concentration of gas extraction increases from8.3%to 39.5%.The average discharge of gas extraction increases from 0.02 to 0.10 m^3/min.The tunneling speeds up from 49.5 to 130 m/month.And the permeability of coal seams improves nearly tenfold.Under the same conditions,the technology is much more efficient in depressurization and antireflection than common methods.In other words,it will provide a more effective way for the gas extraction of single seam with high gas and low air permeability.
基金financially supported by the National Natural Science Foundation of China(No.51933007,51673123)the National Key R&D Program of China(No.2017YFE0111500)the Program for Featured Directions of Engineering Multidisciplines of Sichuan University(No.2020SCUNG203)。
文摘The vigorous development of two-dimensional(2D)materials brings about numerous opportunities for lithiumion batteries(LIBs)due to their unique 2D layered structure,large specific surface area,outstanding mechanical and flexibility properties,etc.Modern technologies for production of 2D materials include but are not limited to mechanochemical(solid-state/liquid-phase)exfoliation,the solvothermal method and chemical vapor deposition.In this review,strategies leading to the production of 2D materials via solid-state mechanochemistry featuring traditional high energy ball-milling and Sichuan University patented pan-milling are highlighted.The mechanism involving exfoliation,edge selective carbon radical generation of the 2D materials is delineated and this is followed by detailed discussion on representative mechanochemical techniques for tailored and improved lithium-ion storage performance.In the light of the advantages of the solid-state mechanochemical method,there is great promise for the commercialization of 2D materials for the next-generation high performance LIBs.
基金Project(20070299004) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(BG2007030) supported by High-tech Research Program of Jiangsu Province,China Projects(07KJA43008, 10KJD430003) supported by Natural Science Foundation of Jiangsu Province,China
文摘In situ (Mg2Si+MgO)/Mg composites fabricated from AZ91-A12(SiO3)3 under high-energy ultrasonic field were investigated by XRD, DSC and SEM. The results indicate that the size, morphology and distribution of the in situ Mg2Si particles are greatly optimized with the assistance of the high-energy ultrasonic field. The amounts of the in situ Mg2Si particles are increased, the sizes are refined, the distributions become uniform, and the morphologies are changed to smooth olive-shape or spherical shape. The amounts of brittle fl-Mgl7All2 phases are decreased and the morphologies are granulated. The values of the tensile strength ab and HB hardness are increased. These are due to the cavitation effects and acoustic streaming effects induced by the high-energy ultrasonic field.
基金Sponsored by the Program for Innovative Research Team in University of Yunnan Province and Major Projects of Yunnan Province(Grant No.2014FC001)
文摘The mathematical models are developed to evaluate the ultimate tensile strength( UTS) and hardness of CNTs / Al2024 composites fabricated by high-energy ball milling. The effects of the preparation variables which are milling time,rotational speed,mass fraction of CNTs and ball to powder ratio on UST and hardness of CNTs / Al2024 composites are investigated. Based on the central composite design( CCD),a quadratic model is developed to correlate the fabrication variables to the UST and hardness. From the analysis of variance( ANOVA),the most influential factor on each experimental design response is identified. The optimum conditions for preparing CNTs / Al2024 composites are found as follows: 1. 53 h milling time,900 r / min rotational speed,mass fraction of CNTs 2. 87% and Ball to powder ratio 25 ∶ 1. The predicted maximum UST and hardness are 273.30 MPa and 261.36 HV,respectively. And the experimental values are 283.25 MPa and256.8 HV,respectively. It is indicated that the predicted UST and hardness after process optimization are found to agree satisfactory with the experimental values.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10275042 and 10475054), the Shanxi Provincial Natural Science Foundation (Grant No 20021006), and the Shanxi Provincial 1Foundation for Returned 0verseas Scholars.
文摘The azimuthal distributions of final-state particles and fragments produced in high-energy nucleus-nucleus collisions are described by a modified multisource ideal gas model which contains the expansions and movements of the emission sources. The transverse structures of the sources are given in the transverse plane by momentum components Px and Py, and described by parameters in the model. The results of the azimuthal distributions, calculated by the Monte Carlo method, are in good agreement with the experimental data in nucleus-nucleus collisions at high energies.
文摘Al_(2)O_(3) nanoparticles and MCrAlY/nano-Al_(2)O_(3) nanocomposite powder(M=Ni,Co,or NiCo)were produced using high-energy ball milling.The MCrAlY/nano-Al_(2)O_(3) coating was deposited by selecting an optimum nanocomposite powder as feedstock for high-velocity oxy-gen fuel thermal spraying.The morphological and microstructural examinations of the Al_(2)O_(3) nanoparticles and the commercial MCrAlY and MCrAlY/nano-Al_(2)O_(3) nanocomposite powders were investigated using X-ray diffraction analysis,field-emission scanning electron microscopy coupled with electron dispersed spectroscopy,and transmission electron microscopy.The structural investigations and Williamson-Hall res-ults demonstrated that the ball-milled Al_(2)O_(3) powder after 48 h has the smallest crystallite size and the highest amount of lattice strain among the as-received and ball-milled Al_(2)O_(3) owing to its optimal nanocrystalline structure.In the case of developing MCrAlY/nano-Al_(2)O_(3) nanocompos-ite powder,the particle size of the nanocomposite powders decreased with increasing mechanical-milling duration of the powder mixture.