期刊文献+
共找到551篇文章
< 1 2 28 >
每页显示 20 50 100
Research Progress in Mechanochemistry of Inorganic Materials
1
作者 Tongjun Wang Xiuzhen Liu 《Expert Review of Chinese Chemical》 2024年第1期36-38,共3页
With the progress of science and technology,China has gradually attached importance to research and exploration in chemistry,and the achievements in exploring mechanochemistry are also quite significant.Therefore,it i... With the progress of science and technology,China has gradually attached importance to research and exploration in chemistry,and the achievements in exploring mechanochemistry are also quite significant.Therefore,it is necessary to study and explore mechanochemistry.This article mainly discusses the application of mechanochemistry in powder and some silicate materials,as well as in special ceramics,and provides a brief introduction to provide reference for relevant researchers. 展开更多
关键词 mechanochemistry inorganic materials mechanical activity ultra fine crushing
在线阅读 下载PDF
Effects of high-energy ball milling oxide-doped and varistor ceramic powder on ZnO varistor 被引量:5
2
作者 徐东 唐冬梅 +3 位作者 焦雷 袁宏明 赵国平 程晓农 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1423-1431,共9页
ZnO varistor ceramics doped with Bi2O3, Sb2O3, CO2O3, Cr2O3, and MnO2 were prepared separately by two high-energy ball milling processes: oxide-doped and varistor ceramic powder. A comparison in the electrical and mi... ZnO varistor ceramics doped with Bi2O3, Sb2O3, CO2O3, Cr2O3, and MnO2 were prepared separately by two high-energy ball milling processes: oxide-doped and varistor ceramic powder. A comparison in the electrical and microstructural properties of the samples obtained by both methods was made. The best results on these characteristics were achieved through the high-energy ball milling varistor ceramic powder route, obtaining a nonlinear coefficient of 57 and a breakdown field of 617 V/mm at a sintering temperature of 1000 ℃ for 3 h. The samples synthesized by this technique show not only high density value, 95% of the theoretical density, but also a homogeneous microstructure, which compete with those obtained by the high-energy ball milling oxide-doped powder route. With the advantage that the high-energy ball milling varistor ceramic powder route can refine grain, increase the driving force of sintering, accelerate the sintering process, and reduce the sintering temperature. 展开更多
关键词 VARISTOR ZNO high-energy ball milling electrical characteristic MICROSTRUCTURE
在线阅读 下载PDF
Preparation and wear properties of TiB_2/Al-30Si composites via in-situ melt reactions under high-energy ultrasonic field 被引量:3
3
作者 张松利 董宪伟 +5 位作者 赵玉涛 刘满平 陈刚 张振坤 张宇荧 高雪华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3894-3900,共7页
TiB2/Al-30Si composites were fabricated via in-situ melt reaction under high-energy ultrasonic field. The microstructure and wear properties of the composite were investigated by XRD, SEM and dry sliding testing. The ... TiB2/Al-30Si composites were fabricated via in-situ melt reaction under high-energy ultrasonic field. The microstructure and wear properties of the composite were investigated by XRD, SEM and dry sliding testing. The results indicate that TiB2 reinforcement particles are uniformly distributed in the aluminum matrix under high-energy ultrasonic field. The morphology of the TiB2 particles is in circle-shape or quadrangle-shape, and the size of the particles is 0.1-1.5μm. The primary silicon particles are in quadrangle-shape and the average size of them is about 10μm. Hardness values of the Al-30Si matrix alloy and the TiB2/Al-30Si composites considerably increase as the high energy ultrasonic power increases. In particular, the maximum hardness value of the in-situ composites is about 1.3 times as high as that of the matrix alloy when the ultrasonic power is 1.2 kW, reaching 412 MPa. Meanwhile, the wear resistance of the in-situ TiB2/Al-30Si composites prepared under high-energy ultrasonic field is obviously improved and is insensitive to the applied loads of the dry sliding testing. 展开更多
关键词 TiB2/Al-30Si composite in-situ melt reaction high-energy ultrasonic field wear properties
在线阅读 下载PDF
机械力化学在环境领域的研究及应用:基于球磨方法的文献计量分析
4
作者 文丹 李蕾 +3 位作者 史昱翔 张淑妍 王炉光 李少林 《应用化工》 北大核心 2025年第2期439-445,451,共8页
随着科研工作爆发式增长,文献计量学成为揭示科研趋势和热点的重要工具。机械力化学方法,因其机械力诱发和驱动的独特过程及绿色特征,近年获得广泛关注;而球磨是实现机械力化学的主要途径。基于Web of Science收录数据,对二十年来球磨... 随着科研工作爆发式增长,文献计量学成为揭示科研趋势和热点的重要工具。机械力化学方法,因其机械力诱发和驱动的独特过程及绿色特征,近年获得广泛关注;而球磨是实现机械力化学的主要途径。基于Web of Science收录数据,对二十年来球磨方法在环境领域的研究应用进行了文献计量调查和分析。通过综合考察历年发文量、学科分布及文献来源,结合国家、机构、资助基金和作者的分析,以及对关键词聚类和突现的研究,揭示了球磨-机械力化学方法在环境领域研究应用的活跃程度、变化趋势、学术热度及影响力分布,展现了球磨方法在环境领域研究应用的不断深入、挖掘和拓展。分析结果为探索球磨方法在环境领域中的发展及应用提供了文献支撑和内容参考。 展开更多
关键词 文献计量学 球磨 机械力化学 环境应用
在线阅读 下载PDF
Bimodal-grained Ti fabricated by high-energy ball milling and spark plasma sintering
5
作者 龙雁 郭文晶 李颖 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期1170-1175,共6页
Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders bal... Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders ball-milled for different time were studied. Experimental results indicated that when the ball-milling time increased, the microstructure of sintered Ti was firstly changed from coarse-grained to bimodal-grained structure, subsequently transformed to a homogeneous fine-grained structure. Compared with coarse-grained Ti and fine-grained Ti, bimodal-grained Ti exhibited balanced strength and ductility. The sample sintered from Ti powders ball-milled for 10 h consisting of 65.3% (volume fraction) fine-grained region (average grain size 1 μm) and 34.7% coarse-grained region (grain size > 5 μm) exhibited a compress strength of 1028 MPa as well as a plastic strain to failure of 22%. 展开更多
关键词 titanium alloy high-energy ball milling spark plasma sintering bimodal-grained structure
在线阅读 下载PDF
螺旋式气固两相流技术在制备多钼氧酸盐和苯基膦酸盐中的应用
6
作者 金致远 肖依依 +3 位作者 宋勇 蒋琪英 彭汝芳 金波 《西南科技大学学报》 2025年第1期28-35,共8页
采用螺旋喷气研磨机作为反应装置,开发了螺旋式气固两相流技术,并利用该技术合成了多种多(磷)钼氧酸铵盐和苯基膦酸镉盐,同时探究了研磨气压对反应进度的影响。结果表明:螺旋式气固两相流法可成功应用于3种多(磷)钼氧酸铵盐以及3种苯基... 采用螺旋喷气研磨机作为反应装置,开发了螺旋式气固两相流技术,并利用该技术合成了多种多(磷)钼氧酸铵盐和苯基膦酸镉盐,同时探究了研磨气压对反应进度的影响。结果表明:螺旋式气固两相流法可成功应用于3种多(磷)钼氧酸铵盐以及3种苯基膦酸镉的合成;对于多钼氧酸铵,其反应速率随研磨气压的增大而增大;在Cd(HO_(3)PPh)_(2)的反应过程中,较低研磨气压下Cd(HO_(3)PPh)_(2)会分解生成其他种类的苯基膦酸盐,必须将研磨气压维持在0.8 MPa以上。研究证明了螺旋式气固两相流技术的可行性和普适性,为机械化学合成方法的实际应用奠定了基础。 展开更多
关键词 机械化学 螺旋式气固两相流技术 多金属氧酸盐 苯基膦酸盐
在线阅读 下载PDF
Porous Co_(2)VO_(4) Nanodisk as a High-Energy and Fast-Charging Anode for Lithium-Ion Batteries 被引量:8
7
作者 Jinghui Ren Zhenyu Wang +12 位作者 Peng Xu Cong Wang Fei Gao Decheng Zhao Shupei Liu Han Yang Di Wang Chunming Niu Yusong Zhu Yutong Wu Xiang Liu Zhoulu Wang Yi Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第1期107-120,共14页
High-energy–density lithium-ion batteries(LIBs)that can be safely fast-charged are desirable for electric vehicles.However,sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety is... High-energy–density lithium-ion batteries(LIBs)that can be safely fast-charged are desirable for electric vehicles.However,sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety issues and low energy density.Here we hypothesize that a cobalt vanadate oxide,Co_(2)VO_(4),can be attractive anode material for fast-charging LIBs due to its high capacity(~1000 mAh g^(−1))and safe lithiation potential(~0.65 V vs.Li^(+)/Li).The Li+diffusion coefficient of Co2VO4 is evaluated by theoretical calculation to be as high as 3.15×10^(-10) cm^(2) s^(−1),proving Co_(2)VO_(4) a promising anode in fast-charging LIBs.A hexagonal porous Co2VO4 nanodisk(PCVO ND)structure is designed accordingly,featuring a high specific surface area of 74.57 m^(2) g^(−1) and numerous pores with a pore size of 14 nm.This unique structure succeeds in enhancing Li^(+) and electron transfer,leading to superior fast-charging performance than current commercial anodes.As a result,the PCVO ND shows a high initial reversible capacity of 911.0 mAh g^(−1) at 0.4 C,excellent fast-charging capacity(344.3 mAh g^(−1) at 10 C for 1000 cycles),outstanding long-term cycling stability(only 0.024% capacity loss per cycle at 10 C for 1000 cycles),confirming the commercial feasibility of PCVO ND in fast-charging LIBs. 展开更多
关键词 Lithium-ion batteries ANODE Fast-charging high-energy Cobalt vanadate oxide
在线阅读 下载PDF
Towards High-Energy and Anti-Self-Discharge Zn-Ion Hybrid Supercapacitors with New Understanding of the Electrochemistry 被引量:10
8
作者 Yang Li Wang Yang +6 位作者 Wu Yang Ziqi Wang Jianhua Rong Guoxiu Wang Chengjun Xu Feiyu Kang Liubing Dong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第6期268-283,共16页
Aqueous Zn-ion hybrid supercapacitors(ZHSs)are increasingly being studied as a novel electrochemical energy storage system with prominent electrochemical performance,high safety and low cost.Herein,high-energy and ant... Aqueous Zn-ion hybrid supercapacitors(ZHSs)are increasingly being studied as a novel electrochemical energy storage system with prominent electrochemical performance,high safety and low cost.Herein,high-energy and anti-self-discharge ZHSs are realized based on the fibrous carbon cathodes with hierarchically porous surface and O/N heteroatom functional groups.Hierarchically porous surface of the fabricated free-standing fibrous carbon cathodes not only provides abundant active sites for divalent ion storage,but also optimizes ion transport kinetics.Consequently,the cathodes show a high gravimetric capacity of 156 mAh g^(−1),superior rate capability(79 mAh g^(−1)with a very short charge/discharge time of 14 s)and exceptional cycling stability.Meanwhile,hierarchical pore structure and suitable surface functional groups of the cathodes endow ZHSs with a high energy density of 127 Wh kg−1,a high power density of 15.3 kW kg^(−1)and good anti-self-discharge performance.Mechanism investigation reveals that ZHS electrochemistry involves cation adsorption/desorption and Zn_(4)SO_(4)(OH)_(6)·5H_(2)O formation/dissolution at low voltage and anion adsorption/desorption at high voltage on carbon cathodes.The roles of these reactions in energy storage of ZHSs are elucidated.This work not only paves a way for high-performance cathode materials of ZHSs,but also provides a deeper understanding of ZHS electrochemistry. 展开更多
关键词 Zn-ion hybrid supercapacitor Carbon material Fibrous cathode Hierarchical pore structure high-energy
在线阅读 下载PDF
High-Energy Lithium-Ion Batteries:Recent Progress and a Promising Future in Applications 被引量:21
9
作者 Jingjing Xu Xingyun Cai +4 位作者 Songming Cai Yaxin Shao Chao Hu Shirong Lu Shujiang Ding 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期60-85,共26页
It is of great significance to develop clean and new energy sources with high-efficient energy storage technologies,due to the excessive use of fossil energy that has caused severe environmental damage.There is great ... It is of great significance to develop clean and new energy sources with high-efficient energy storage technologies,due to the excessive use of fossil energy that has caused severe environmental damage.There is great interest in exploring advanced rechargeable lithium batteries with desirable energy and power capabilities for applications in portable electronics,smart grids,and electric vehicles.In practice,high-capacity and low-cost electrode materials play an important role in sustaining the progresses in lithium-ion batteries.This review aims at giving an account of recent advances on the emerging high-capacity electrode materials and summarizing key barriers and corresponding strategies for the practical viability of these electrode materials.Effective approaches to enhance energy density of lithium-ion batteries are to increase the capacity of electrode materials and the output operation voltage.On account of major bottlenecks of the power lithium-ion battery,authors come up with the concept of integrated battery systems,which will be a promising future for high-energy lithium-ion batteries to improve energy density and alleviate anxiety of electric vehicles. 展开更多
关键词 high-capacity electrode materials high-energy lithium-ion batteries high-voltage cathodes integrated battery systems organic cathode materials
在线阅读 下载PDF
Surface segregation of InGaAs films by the evolution of reflection high-energy electron diffraction patterns 被引量:6
10
作者 周勋 罗子江 +5 位作者 郭祥 张毕禅 尚林涛 周清 邓朝勇 丁召 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第4期428-431,共4页
Surface segregation is studied via the evolution of reflection high-energy electron diffraction (RHEED) patterns under different values of As4 BEP for InGaAs films. When the As4 BEP is set to be zero, the RHEED patt... Surface segregation is studied via the evolution of reflection high-energy electron diffraction (RHEED) patterns under different values of As4 BEP for InGaAs films. When the As4 BEP is set to be zero, the RHEED pattern keeps a 4x3/(nx3) structure with increasing temperature, and surface segregation takes place until 470 ℃ The RHEED pattern develops into a metal-rich (4x2) structure as temperature increases to 495℃. The reason for this is that surface segregation makes the In inside the InGaAs film climb to its surface. With the temperature increasing up to 515℃, the RHEED pattern turns into a GaAs(2x4) structure due to In desorption. While the As4 BEP comes up to a specific value (1.33 x 10-4 Pa-1.33 x 10-3 Pa), the surface temperature can delay the segregation and desorption. We find that As4 BEP has a big influence on surface desorption, while surface segregation is more strongly dependent on temperature than surface desorption. 展开更多
关键词 reflection high-energy electron diffraction InGaAs films surface segregation surface desorption
在线阅读 下载PDF
Internal Friction and Elastic Study on Surface Nanocrystallized 304 Stainless Steel Induced by High-energy Shot Peening 被引量:4
11
作者 PingWU JingyangWANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第2期132-134,共3页
The 304 stainless steel with nanostructured surface layer was successfully obtained by using the high-energy shot peening (HESP) method. The internal friction and Young's modulus of this kind of surface nanocrysta... The 304 stainless steel with nanostructured surface layer was successfully obtained by using the high-energy shot peening (HESP) method. The internal friction and Young's modulus of this kind of surface nanocrystallized material were dynamically measured by means of the vibrating reed apparatus. The results implied that different treatment time could induce different microstructure and distribution characteristic of defects in this kind of materials. It is also demonstrated that there is a transition layer between the nano-layer on surface and the coarse grain region inside. The transition layer obviously has certain influence on the overall mechanical properties. 展开更多
关键词 Surface nanocrystallization Internal friction high-energy shot peening
在线阅读 下载PDF
Unlocking the electrocatalytic activity of natural chalcopyrite using mechanochemistry 被引量:3
12
作者 Zhijie Chen Renji Zheng +3 位作者 Wenfei Wei Wei Wei Bing-Jie Ni Hong Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期275-283,共9页
Manipulating the structure self-reconstruction of transition metal sulfide-based(pre)catalysts during the oxygen evolution reaction(OER) process is of great interest for developing cost-effective OER catalysts,which r... Manipulating the structure self-reconstruction of transition metal sulfide-based(pre)catalysts during the oxygen evolution reaction(OER) process is of great interest for developing cost-effective OER catalysts,which remains a central challenge. Here we realize a deep structure self-reconstruction of natural chalcopyrite to unlock its OER performance via mechanochemical activation. Compared with the manually milled counterpart(CuFeS_(2)-HM), the mechanically milled catalyst(CuFeS_(2)-BM) with a reduced crystallinity exhibits a 7.11 times higher OER activity at 1.53 V vs. RHE. In addition, the CuFeS_(2)-BM requires a low overpotential of 243 mV for generating 10 mA cm^(-2) and exhibits good stability over 24 h. Further investigations suggest that the excellent OER performance of CuFeS_(2)-BM mainly originates from the decreased crystallinity induced the in situ deep structure self-reconstruction of the originally sulfides into the electroactive and stable metal(oxy)hydroxide phase(e.g., a-Fe OOH) via S etching under OER conditions. This study demonstrates that regulating the crystallinity of catalysts is a promising design strategy for developing highly efficient OER catalysts via managing the structure self-reconstruction process, which can be further extended to the design of efficient catalysts for other advanced energy conversion devices. In addition, this study unveils the great potentials of engineering abundant natural minerals as cost-effective catalysts for diverse applications. 展开更多
关键词 mechanochemistry CRYSTALLINITY Oxygen evolution reaction SELF-RECONSTRUCTION Mineral electrocatalysts
在线阅读 下载PDF
Microstructure and electrical properties of Y_2O_3-doped ZnO-based varistor ceramics prepared by high-energy ball milling 被引量:14
13
作者 Hongyu Liu Xueming Ma +1 位作者 Dongmei Jiang Wangzhou Shi 《Journal of University of Science and Technology Beijing》 CSCD 2007年第3期266-270,共5页
Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, le... Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics. 展开更多
关键词 inorganic materials electrical properties high-energy ball milling VARISTOR MICROSTRUCTURE low-temperature sintering zinc oxide yttrium oxide
在线阅读 下载PDF
Microstructure and Electrical Properties of Er_2O_3-Doped ZnO-Based Varistor Ceramics Prepared by High-Energy Ball Milling 被引量:7
14
作者 刘宏玉 孔慧 +2 位作者 蒋冬梅 石旺舟 马学鸣 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第1期120-123,共4页
The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing ... The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing Er2O3 content, the ZnO grain size decreases due to the Er-rich phases inhibiting grain growth ; and nonlinear coefficient ( α ) decreases because of the decrease of barrier height (φB) The breakdown voltage (Eb) and density increase, whereas leakage current (IL) decreases with increasing Er2O3 content. The barrier height (φB), donor concentration (Nd), density of interface states (Ns) decrease and barrier width (ω) increases with increasing Er2O3 content due to acceptor effect of Er2O3 in varistor ceramics. 展开更多
关键词 VARISTOR Er2O3 MICROSTRUCTURE electrical property high-energy ball milling low-temperature sintering rare earths
在线阅读 下载PDF
Study on "fracturing-sealing" integration technology based on high-energy gas fracturing in single seam with high gas and low air permeability 被引量:10
15
作者 Zhang Chao Lin Baiquan +2 位作者 Zhou Yan Zhai Cheng Zhu Chuanjie 《International Journal of Mining Science and Technology》 SCIE EI 2013年第6期841-846,共6页
To improve the gas extraction efficiency of single seam with high gas and low air permeability,we developed the"fracturing-sealing"integration technology,and carried out the engineering experiment in the3305... To improve the gas extraction efficiency of single seam with high gas and low air permeability,we developed the"fracturing-sealing"integration technology,and carried out the engineering experiment in the3305 Tunliu mine.In the experiment,coal seams can achieve the aim of antireflection effect through the following process:First,project main cracks with the high energy pulse jet.Second,break the coal body by delaying the propellant blasting.Next,destroy the dense structure of the hard coal body,and form loose slit rings around the holes.Finally,seal the boreholes with the"strong-weak-strong"pressurized sealing technology.The results are as follows:The average concentration of gas extraction increases from8.3%to 39.5%.The average discharge of gas extraction increases from 0.02 to 0.10 m^3/min.The tunneling speeds up from 49.5 to 130 m/month.And the permeability of coal seams improves nearly tenfold.Under the same conditions,the technology is much more efficient in depressurization and antireflection than common methods.In other words,it will provide a more effective way for the gas extraction of single seam with high gas and low air permeability. 展开更多
关键词 Coal gas high-energy gas fracturing "Fracturing-sealing" integration Pressure relief and permeability increase Gas extraction
在线阅读 下载PDF
Solid-state mechanochemistry advancing two dimensional materials for lithium-ion storage applications:A mini review 被引量:2
16
作者 Xingang Liu Wenbin Kang +4 位作者 Xi Li Li Zeng Yijun Li Qi Wang Chuhong Zhang 《Nano Materials Science》 EI CAS CSCD 2023年第2期210-227,共18页
The vigorous development of two-dimensional(2D)materials brings about numerous opportunities for lithiumion batteries(LIBs)due to their unique 2D layered structure,large specific surface area,outstanding mechanical an... The vigorous development of two-dimensional(2D)materials brings about numerous opportunities for lithiumion batteries(LIBs)due to their unique 2D layered structure,large specific surface area,outstanding mechanical and flexibility properties,etc.Modern technologies for production of 2D materials include but are not limited to mechanochemical(solid-state/liquid-phase)exfoliation,the solvothermal method and chemical vapor deposition.In this review,strategies leading to the production of 2D materials via solid-state mechanochemistry featuring traditional high energy ball-milling and Sichuan University patented pan-milling are highlighted.The mechanism involving exfoliation,edge selective carbon radical generation of the 2D materials is delineated and this is followed by detailed discussion on representative mechanochemical techniques for tailored and improved lithium-ion storage performance.In the light of the advantages of the solid-state mechanochemical method,there is great promise for the commercialization of 2D materials for the next-generation high performance LIBs. 展开更多
关键词 Two-dimensional materials Solid-state mechanochemistry Ball-milling PAN-MILLING Lithium-ion batteries
在线阅读 下载PDF
In situ(Mg_2Si+MgO)/Mg composites fabricated from AZ91-Al_2(SiO_3)_3 with assistance of high-energy ultrasonic field 被引量:2
17
作者 张松利 赵玉涛 陈刚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第11期2096-2099,共4页
In situ (Mg2Si+MgO)/Mg composites fabricated from AZ91-A12(SiO3)3 under high-energy ultrasonic field were investigated by XRD, DSC and SEM. The results indicate that the size, morphology and distribution of the i... In situ (Mg2Si+MgO)/Mg composites fabricated from AZ91-A12(SiO3)3 under high-energy ultrasonic field were investigated by XRD, DSC and SEM. The results indicate that the size, morphology and distribution of the in situ Mg2Si particles are greatly optimized with the assistance of the high-energy ultrasonic field. The amounts of the in situ Mg2Si particles are increased, the sizes are refined, the distributions become uniform, and the morphologies are changed to smooth olive-shape or spherical shape. The amounts of brittle fl-Mgl7All2 phases are decreased and the morphologies are granulated. The values of the tensile strength ab and HB hardness are increased. These are due to the cavitation effects and acoustic streaming effects induced by the high-energy ultrasonic field. 展开更多
关键词 in situ composites high-energy ultrasonic field morphology microstructure mechanical property
在线阅读 下载PDF
Optimization of Process Parameters for in High-Energy Ball Milling of CNTs/Al2024 Composites Through Response Surface Methodology 被引量:3
18
作者 Li Guo Xiaolan Cai +5 位作者 Lei Zhou Cui Hu Changjiang Yang Ziyang Wang Wenzhong Zhang Gang Peng 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第1期53-59,共7页
The mathematical models are developed to evaluate the ultimate tensile strength( UTS) and hardness of CNTs / Al2024 composites fabricated by high-energy ball milling. The effects of the preparation variables which are... The mathematical models are developed to evaluate the ultimate tensile strength( UTS) and hardness of CNTs / Al2024 composites fabricated by high-energy ball milling. The effects of the preparation variables which are milling time,rotational speed,mass fraction of CNTs and ball to powder ratio on UST and hardness of CNTs / Al2024 composites are investigated. Based on the central composite design( CCD),a quadratic model is developed to correlate the fabrication variables to the UST and hardness. From the analysis of variance( ANOVA),the most influential factor on each experimental design response is identified. The optimum conditions for preparing CNTs / Al2024 composites are found as follows: 1. 53 h milling time,900 r / min rotational speed,mass fraction of CNTs 2. 87% and Ball to powder ratio 25 ∶ 1. The predicted maximum UST and hardness are 273.30 MPa and 261.36 HV,respectively. And the experimental values are 283.25 MPa and256.8 HV,respectively. It is indicated that the predicted UST and hardness after process optimization are found to agree satisfactory with the experimental values. 展开更多
关键词 high-energy ball milling CNTs/Al2024 Central composite design OPTIMIZATION
在线阅读 下载PDF
Azimuthal distributions of final-state particles and fragments and transverse structure of emission source in high-energy nucleus-nucleus collisions 被引量:2
19
作者 刘福虎 马引群 段麦英 《Chinese Physics B》 SCIE EI CAS CSCD 2005年第12期2458-2466,共9页
The azimuthal distributions of final-state particles and fragments produced in high-energy nucleus-nucleus collisions are described by a modified multisource ideal gas model which contains the expansions and movements... The azimuthal distributions of final-state particles and fragments produced in high-energy nucleus-nucleus collisions are described by a modified multisource ideal gas model which contains the expansions and movements of the emission sources. The transverse structures of the sources are given in the transverse plane by momentum components Px and Py, and described by parameters in the model. The results of the azimuthal distributions, calculated by the Monte Carlo method, are in good agreement with the experimental data in nucleus-nucleus collisions at high energies. 展开更多
关键词 high-energy nucleus-nucleus collisions final-state particles and fragments azimuthal distributions transverse structure of emission source
在线阅读 下载PDF
Characterization of MCrAlY/nano-Al_(2)O_(3) nanocomposite powder produced by high-energy mechanical milling as feedstock for high-velocity oxygen fuel spraying deposition 被引量:4
20
作者 F.Ghadami A.Sabour Rouh Aghdam S.Ghadami 《International Journal of Minerals,Metallurgy and Materials》 CSCD 2021年第9期1534-1543,共10页
Al_(2)O_(3) nanoparticles and MCrAlY/nano-Al_(2)O_(3) nanocomposite powder(M=Ni,Co,or NiCo)were produced using high-energy ball milling.The MCrAlY/nano-Al_(2)O_(3) coating was deposited by selecting an optimum nanocom... Al_(2)O_(3) nanoparticles and MCrAlY/nano-Al_(2)O_(3) nanocomposite powder(M=Ni,Co,or NiCo)were produced using high-energy ball milling.The MCrAlY/nano-Al_(2)O_(3) coating was deposited by selecting an optimum nanocomposite powder as feedstock for high-velocity oxy-gen fuel thermal spraying.The morphological and microstructural examinations of the Al_(2)O_(3) nanoparticles and the commercial MCrAlY and MCrAlY/nano-Al_(2)O_(3) nanocomposite powders were investigated using X-ray diffraction analysis,field-emission scanning electron microscopy coupled with electron dispersed spectroscopy,and transmission electron microscopy.The structural investigations and Williamson-Hall res-ults demonstrated that the ball-milled Al_(2)O_(3) powder after 48 h has the smallest crystallite size and the highest amount of lattice strain among the as-received and ball-milled Al_(2)O_(3) owing to its optimal nanocrystalline structure.In the case of developing MCrAlY/nano-Al_(2)O_(3) nanocompos-ite powder,the particle size of the nanocomposite powders decreased with increasing mechanical-milling duration of the powder mixture. 展开更多
关键词 MCRALY Nanocomposite powder high-energy mechanical milling Williamson-Hall analysis HVOF coating
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部