期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于信任关系的非线性表征潜在因子模型
1
作者 潘天艺 宋燕 《电子科技》 2025年第2期53-61,共9页
针对高维稀疏无向网络挖掘实体间潜在关联信息的表征能力较弱和计算效率较低的问题,文中在社交推荐模型框架下提出了一种基于信任关系的非负非线性表征潜在因子模型。该模型通过非线性映射塑造潜在矩阵的特征空间,既保证了目标矩阵的非... 针对高维稀疏无向网络挖掘实体间潜在关联信息的表征能力较弱和计算效率较低的问题,文中在社交推荐模型框架下提出了一种基于信任关系的非负非线性表征潜在因子模型。该模型通过非线性映射塑造潜在矩阵的特征空间,既保证了目标矩阵的非负性,又提高了模型的表征能力。通过在模型训练的目标函数中引入图拉普拉斯正则化项保证了信任关系映射前后的结构一致性。基于6个公开数据集的对比实验结果表明,所提模型较其他模型具有明显的优越性。 展开更多
关键词 高维稀疏无向网络 社交推荐模型 信任关系 非负非线性 特征空间 图拉普拉斯正则化 潜在因子模型 小批量梯度下降法
在线阅读 下载PDF
两两关系马尔科夫网的自适应组稀疏化学习
2
作者 刘建伟 任正平 +2 位作者 刘泽宇 黎海恩 罗雄麟 《自动化学报》 EI CSCD 北大核心 2015年第8期1419-1437,共19页
稀疏化学习能显著降低无向图模型的参数学习与结构学习的复杂性,有效地处理无向图模型的学习问题.两两关系马尔科夫网在多值变量情况下,每条边具有多个参数,本文对此给出边参数向量的组稀疏化学习,提出自适应组稀疏化,根据参数向量的模... 稀疏化学习能显著降低无向图模型的参数学习与结构学习的复杂性,有效地处理无向图模型的学习问题.两两关系马尔科夫网在多值变量情况下,每条边具有多个参数,本文对此给出边参数向量的组稀疏化学习,提出自适应组稀疏化,根据参数向量的模大小自适应调整惩罚程度.本文不仅对比了不同边势情况下的稀疏化学习性能,为了加速模型在复杂网络中的训练过程,还对目标函数进行伪似然近似、平均场自由能近似和Bethe自由能近似.本文还给出自适应组稀疏化目标函数分别使用谱投影梯度算法和投影拟牛顿算法时的最优解,并对比了两种优化算法进行稀疏化学习的性能.实验表明自适应组稀疏化具有良好的性能. 展开更多
关键词 无向图模型 两两马尔科夫网 稀疏化学习 自适应组稀疏化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部