A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivat...A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivation for the chip facets were performed to achieve improved reliability performance.The laser chips were p-side-down mounted on the AlN submount,and then tested at continuous wave(CW)operation with the heat-sink temperature setting to 25℃using a thermoelectric cooler(TEC).As high as 60.5%of the wall-plug efficiency(WPE)was achieved at the injection current of 11 A.The maximum output power of 30.1 W was obtained at 29.5 A when the TEC temperature was set to 12°C.Accelerated life-time test showed that the laser diodes had lifetimes of over 62111 h operating at rated power of 10 W.展开更多
The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM)....The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.展开更多
We study a laser wakefield acceleration driven by mid-infrared (mid-IR) laser pulses through two-dimensional particle-in-cell simulations. Since a mid-IR laser pulse can deliver a larger ponderomotive force as compa...We study a laser wakefield acceleration driven by mid-infrared (mid-IR) laser pulses through two-dimensional particle-in-cell simulations. Since a mid-IR laser pulse can deliver a larger ponderomotive force as compared with the usual 0.8 μm wavelength laser pulse, it is found that electron self-injection into the wake wave occurs at an earlier time, the plasma density threshold for injection becomes lower, and the electron beam charge is substantially enhanced. Meanwhile, our study also shows that quasimonoenergetic electron beams with a narrow energy-spread can be generated by using mid-IR laser pulses. Such a mid-IR laser pulse can provide a feasible method for obtaining a high quality and high charge electron beam. Therefore, the current efforts on constructing mid-IR terawatt laser systems can greatly benefit the laser wakefield acceleration research.展开更多
We fabricate the Tm-doped double cladding silica fiber by using the vapor-solution hybrid-doping method, then build up an all-fiber Tin-doped fiber laser which can provide the output power of up to 121 W, correspondin...We fabricate the Tm-doped double cladding silica fiber by using the vapor-solution hybrid-doping method, then build up an all-fiber Tin-doped fiber laser which can provide the output power of up to 121 W, corresponding to a slope efficiency of 51% and an optical-optical efficiency of 48%. By using the domestic Tin-doped fiber, it is the first time a hundred-watt level output at 1915nm has been achieved, to the best of our knowledge. The thermal effect of Tm-doped fiber laser is also analyzed.展开更多
Keyhole is one of the important phenomena in high-power laser welding process. By studying the keyhole characteristic and detecting the seam offset during high-power fiber laser welding, an infrared sensitive high-spe...Keyhole is one of the important phenomena in high-power laser welding process. By studying the keyhole characteristic and detecting the seam offset during high-power fiber laser welding, an infrared sensitive high-speed camera arranged off-axis orientation of laser beam was applied to capture the dynamic thermal images of a molten pool. The 304 austenitic stainless steel plate butt joint welding experiment with laser power 10 kW was carried out. Through analyzing the keyhole infrared image, the weld position was calculated. Least squares method was used to determine the actual weld position. Image filtering technique was used to process the keyhole image, and the keyhole centroid coordinate were calculated. Also, least squares method was used to fit the keyhole centroid curve equation and establish a nonlinear continuous model which described the deviation between keyhole centroid and weld seam. The heat accumulation effect affected by the infrared radiation was analyzed to determine whether the laser beam focus spot deviated from the desired welding seam. Experimental results showed that the keyhole centroid has related to the seam offset, and can reflect the welding quality.展开更多
Optimization of the high power single-lateral-mode double-trench ridge waveguide semiconductor laser based on InGaAsP/InP quantum-well heterostructures with a separate confinement layer is reported. Two different wave...Optimization of the high power single-lateral-mode double-trench ridge waveguide semiconductor laser based on InGaAsP/InP quantum-well heterostructures with a separate confinement layer is reported. Two different waveguide structures of Fabry-Perot lasers emitting at a wavelength of 1.55 μm are fabricated. The influence of an effective lateral refractive index step on the maximum output power is investigated. A cw single mode output power of 165mW is obtained for a 1-mm-long uncoated laser.展开更多
The performances of high power Er/Yb codoped fiber linear cavity lasers are investigated numerically. The numerical analysis is based on the iterative solution of rate equations for population density of the Er/Yb ion...The performances of high power Er/Yb codoped fiber linear cavity lasers are investigated numerically. The numerical analysis is based on the iterative solution of rate equations for population density of the Er/Yb ions. The behaviors of co-pump and counter-pump methods are contrasted. Dependence of output power on input pump power, output reflectivity, operating wavelength and active fiber length is simulated, respectively. High conversion efficiency Er/Yb laser output is obtained in simulations and experiments.展开更多
We successfully obtain a high-average-power high-stability Q-switched green laser based on diode-side-pumped composite ceramic Nd:YAG in a straight piano-concave cavity. The temperature distribution in composite cera...We successfully obtain a high-average-power high-stability Q-switched green laser based on diode-side-pumped composite ceramic Nd:YAG in a straight piano-concave cavity. The temperature distribution in composite ceramic Nd:YAG crystal is numerically analyzed and compared with that of conventional Nd:YAG crystal. By using a composite ceramic Nd:YAG rod and a type-II high gray track resistance KTP (HGTR-KTP) crystal, a green laser with an average output power of 165 W is obtained at a repetition rate of 25 kHz, with a diode-to-green optical conversion of 14.68%, and a pulse width of 162 ns. To the best of our knowledge, both the output power and optical-to-optical efficiency are the highest values for green laser systems with intracavity frequency doubling of this novel composite ceramic Nd:YAG laser to date. The power fluctuation at around 160 W is lower than 0.3% in 2.5 hours.展开更多
We observe the phenomenon of priority oscillation of the unexpected a-polarization in high-power Nd:YVO4 ring laser. The severe thermal lens of the a-polarized lasing, compared with the n-polarized lasing, is the onl...We observe the phenomenon of priority oscillation of the unexpected a-polarization in high-power Nd:YVO4 ring laser. The severe thermal lens of the a-polarized lasing, compared with the n-polarized lasing, is the only reason for the phenomenon. By designing a wedge Nd:YVO4 crystal as the gain medium, the unexpected a-polarization is completely suppressed in the entire range of pump powers, and the polarization stability of the expected zc-polarized output is enhanced. With the output power increasing from threshold to the maximum power, no a-polarization lasing is observed. As a result, 25.3 W of stable single-frequency laser output at 532 nm is experimentally demonstrated.展开更多
We present a new method that can be used to calculate pulse-front distortion by measuring the spectral interference of two point-diffraction fields in their overlapped district. We demonstrate, for the first time, the...We present a new method that can be used to calculate pulse-front distortion by measuring the spectral interference of two point-diffraction fields in their overlapped district. We demonstrate, for the first time, the measurement of the pulse-front distortion of the pulse from a complex multi-pass amplification system, which exists in almost all high-power laser systems, and obtain the irregular pulse-front distribution. The method presented does not need any reference light or assumption about the pulse-front distribution, and has an accuracy of several femtoseconds.展开更多
High power optically pumped vertical-external-cavity surface-emitting lasers with front and end pump are re- ported. The gain chip consists of 15 repeats of In0.26GaAs/GaAsP0.02 multiple quantum wells and 30 pairs of ...High power optically pumped vertical-external-cavity surface-emitting lasers with front and end pump are re- ported. The gain chip consists of 15 repeats of In0.26GaAs/GaAsP0.02 multiple quantum wells and 30 pairs of Alo.2GaAs/Alo.98GaAs distributed Bragg reflectors. The maximum output power of 3 W, optical-to-optical conversion efficiency of 22.4%, and slope efficiency of 29.8% are obtained with 5-℃ heatsink temperature under the front pump, while the maximum output power of 1.1 W, optical-to-optical conversion efficiency of 23.2%, and slope efficiency of 30.8% are reached with 5-℃ heatsink temperature under the end pump. Influences of thermal effects on the output power of the laser with front and end pump are discussed.展开更多
Catastrophic degradation of high power laser diodes is due to the generation of extended defects inside the active parts of the laser structure during the laser operation.The mechanism driving the degradation is stron...Catastrophic degradation of high power laser diodes is due to the generation of extended defects inside the active parts of the laser structure during the laser operation.The mechanism driving the degradation is strongly related to the existence of localized thermal stresses generated during the laser operation.These thermal stresses can overcome the yield strength of the materials forming the active part of the laser diode.Different factors contribute to reduce the laser power threshold for degradation.Among them the thermal transport across the laser structure constitutes a critical issue for the reliability of the device.展开更多
To improve the performance of double clad high power fibre lasers, inner cladding design plays a significant role. A triangular inner cladding and silica structure second cladding with large air holes go acquire high ...To improve the performance of double clad high power fibre lasers, inner cladding design plays a significant role. A triangular inner cladding and silica structure second cladding with large air holes go acquire high inner cladding numerical aperture are designed. Single mode and high power output of the fibre lasers need the double clad Yb doped fibre with large core. A fibre with annular refractive index distribution core and low numerical aperture to acquire a large mode area fibre core is designed and fabricated. Furthermore co-doping with aluminium (A1) has been used to improve the solubility of ytterbium (Yb) into silicate network, and the core absorption coefficients of two Yb doped fibres are compared with different A1 concentration experimentally.展开更多
The semiconductor laser array with single-mode emission is presented in this paper.The 6-μm-wide ridge waveguides(RWGs)are fabricated to select the lateral mode.Thus the fundamental mode of laser array can be obtaine...The semiconductor laser array with single-mode emission is presented in this paper.The 6-μm-wide ridge waveguides(RWGs)are fabricated to select the lateral mode.Thus the fundamental mode of laser array can be obtained by the RWGs.And the maximum output power of single-mode emission can reach 36 W at an injection current of 43 A,after that,a kink will appear.The slow axis(SA)far-field divergence angle of the unit is 13.65.The beam quality factor M;of the units determined by the second-order moment(SOM)method,is 1.2.This single-mode emission laser array can be used for laser processing.展开更多
High laser-induced damage threshold and large aperture were focuses on the studies of high power laser coatings. This paper reports the research activities at our center. Several measures were developed for evaluating...High laser-induced damage threshold and large aperture were focuses on the studies of high power laser coatings. This paper reports the research activities at our center. Several measures were developed for evaluating characters of laser damage, including determination of laser induced damage threshold and detection of absorption based on surface thermal lensing technique. Defect was deemed to be the initial source of laser damage, and was the main factor restricting the laser damage resistance of optical coatings. The contribution of several kinds of typical defects to laser damage was analyzed, and some deposition measures were adopted to control and eliminate the origin of defect. Furthermore, some post-treatment methods were also employed to alleviate the influence of the defect and to improve the laser damage resistance. Correction mask was introduced to improve the thickness uniformity, and the thickness uniformity can be amended to less than 1% in the range of Φ650 mm. Preliminary investigation related to surface deformation was also conducted.展开更多
A mathematical model was developed to describe moving laser welding by using the rotary Gauss body heat source model, and the effect of recoil pressure was taken into account. The formation of the long and narrow pool...A mathematical model was developed to describe moving laser welding by using the rotary Gauss body heat source model, and the effect of recoil pressure was taken into account. The formation of the long and narrow pool in high power fiber laser welding can be explained by the mathematical model (laser power: 10 kW, welding speed: 4 -20 m/min). Numerical simulation was conducted by PHOENICS software. The results show that at high welding velocity the plasma accelerated the velocity of liquid metal around the keyhole which is the main reason for the formation of the long and narrow molten pool in high power laser welding.展开更多
During deep penetration laser welding,there exist plume(weak plasma) and spatters,which are the results of weld material ejection due to strong laser heating.The characteristics of plume and spatters are related to ...During deep penetration laser welding,there exist plume(weak plasma) and spatters,which are the results of weld material ejection due to strong laser heating.The characteristics of plume and spatters are related to welding stability and quality.Characteristics of metallic plume and spatters were investigated during high-power disk laser bead-on-plate welding of Type 304 austenitic stainless steel plates at a continuous wave laser power of 10 kW.An ultraviolet and visible sensitive high-speed camera was used to capture the metallic plume and spatter images.Plume area,laser beam path through the plume,swing angle,distance between laser beam focus and plume image centroid,abscissa of plume centroid and spatter numbers are defined as eigenvalues,and the weld bead width was used as a characteristic parameter that reflected welding stability.Welding status was distinguished by SVM(support vector machine) after data normalization and characteristic analysis.Also,PCA(principal components analysis) feature extraction was used to reduce the dimensions of feature space,and PSO(particle swarm optimization) was used to optimize the parameters of SVM.Finally a classification model based on SVM was established to estimate the weld bead width and welding stability.Experimental results show that the established algorithm based on SVM could effectively distinguish the variation of weld bead width,thus providing an experimental example of monitoring high-power disk laser welding quality.展开更多
We report on a research of the loading of ultracold sodium atoms in an optical dipole trap,generated by two beams from a high power fiber laser.The effects of optical trap light power on atomic number,temperature and ...We report on a research of the loading of ultracold sodium atoms in an optical dipole trap,generated by two beams from a high power fiber laser.The effects of optical trap light power on atomic number,temperature and phase space density are experimentally investigated.A simple theory is proposed and it is in good accordance with the experimental results of the loaded atomic numbers.In a general estimation,an optimal value for each beam with a power of 9 W from the fiber laser is achieved.Our results provide a further understanding of the loading process of optical dipole trap and laid the foundation for generation of a sodium Bose–Einstein condensation with an optical dipole trap.展开更多
There are many appearances in the literature of reliable observations of studying so-called “jets” and “sprites” - the discharges in the gigantic natural capacitor “Ionosphere-Earth” [1]. The volume of such a di...There are many appearances in the literature of reliable observations of studying so-called “jets” and “sprites” - the discharges in the gigantic natural capacitor “Ionosphere-Earth” [1]. The volume of such a discharge is approximately 5-10 thousand cubic kilometers and usually it appears above the surface of ocean. There are the cases also of above mentioned discharges on the ground. The value of the energy transferred to the earth can comprise to several terajoule. Events are accompanied by the emission of the waves of ultra-low frequency. Their study has the significant interest from many points of view. The essence of the observed irregular phenomena consists of the electromechanical conversion of the energy excesses of natural electricity into mechanical and thermal energy of cyclones, typhoons and other natural cataclysms. The ionosphere can retain only the specific quantity of energy. Otherwise, it discards the surpluses of electricity through the atmosphere or transforms them into the energy of storms, in that number and inside the Earth. By using the part of the natural electricity for useful purposes it is possible to govern the weather of planet. Causing the artificial breakdowns of the ionosphere it could be possible to arrange the discharge of the controlled aqueous sediments at the necessary points of the globe. It could be possible as well to attempt to regulate the climate of planet and to decrease the amplitudes of the magnetic storms, earthquakes and hurricanes.展开更多
Operation of 808-nm laser diode pumping at elevated temperature is crucial to many applications. Reliable operation at high power is limited by high thermal load and low catastrophic optical mirror damage (COMD) thres...Operation of 808-nm laser diode pumping at elevated temperature is crucial to many applications. Reliable operation at high power is limited by high thermal load and low catastrophic optical mirror damage (COMD) threshold at elevated temperature range. We demonstrated high efficiency and high power operation at elevated temperature with high COMD power. These results were achieved through device design optimization such as growth conditions, doping profile, and materials composition of the quantum-well and other layers. Electrical-to-optical efficiency as high as 62% was obtained through lowered threshold current, lowered series resistance and increased slope efficiency. The performance of single broad-area laser diodes scales to that of high power single bars on water-cooled copper micro-channel heatsinks or conductively-cooled CS heatsinks. No reduction in bar performance or significant spectral broadening is seen when these micro-channel coolers are assembled into 6-bar and 18-bar CW stacks for the highest power levels.展开更多
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2018GY-005, No. 2017GY-065, No. 2017KJXX-72)
文摘A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivation for the chip facets were performed to achieve improved reliability performance.The laser chips were p-side-down mounted on the AlN submount,and then tested at continuous wave(CW)operation with the heat-sink temperature setting to 25℃using a thermoelectric cooler(TEC).As high as 60.5%of the wall-plug efficiency(WPE)was achieved at the injection current of 11 A.The maximum output power of 30.1 W was obtained at 29.5 A when the TEC temperature was set to 12°C.Accelerated life-time test showed that the laser diodes had lifetimes of over 62111 h operating at rated power of 10 W.
基金supported by the National Key R&D Program of China,No.2022YFB4601201.
文摘The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.
基金Supported by the National Basic Research Program of China under Grant Nos 2013CBA01504the National Natural Science Foundation of China under Grant Nos 11475260,11374209 and 11375265
文摘We study a laser wakefield acceleration driven by mid-infrared (mid-IR) laser pulses through two-dimensional particle-in-cell simulations. Since a mid-IR laser pulse can deliver a larger ponderomotive force as compared with the usual 0.8 μm wavelength laser pulse, it is found that electron self-injection into the wake wave occurs at an earlier time, the plasma density threshold for injection becomes lower, and the electron beam charge is substantially enhanced. Meanwhile, our study also shows that quasimonoenergetic electron beams with a narrow energy-spread can be generated by using mid-IR laser pulses. Such a mid-IR laser pulse can provide a feasible method for obtaining a high quality and high charge electron beam. Therefore, the current efforts on constructing mid-IR terawatt laser systems can greatly benefit the laser wakefield acceleration research.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2013AA031501the National Natural Science Foundation of China for Director Fund of WNLO
文摘We fabricate the Tm-doped double cladding silica fiber by using the vapor-solution hybrid-doping method, then build up an all-fiber Tin-doped fiber laser which can provide the output power of up to 121 W, corresponding to a slope efficiency of 51% and an optical-optical efficiency of 48%. By using the domestic Tin-doped fiber, it is the first time a hundred-watt level output at 1915nm has been achieved, to the best of our knowledge. The thermal effect of Tm-doped fiber laser is also analyzed.
文摘Keyhole is one of the important phenomena in high-power laser welding process. By studying the keyhole characteristic and detecting the seam offset during high-power fiber laser welding, an infrared sensitive high-speed camera arranged off-axis orientation of laser beam was applied to capture the dynamic thermal images of a molten pool. The 304 austenitic stainless steel plate butt joint welding experiment with laser power 10 kW was carried out. Through analyzing the keyhole infrared image, the weld position was calculated. Least squares method was used to determine the actual weld position. Image filtering technique was used to process the keyhole image, and the keyhole centroid coordinate were calculated. Also, least squares method was used to fit the keyhole centroid curve equation and establish a nonlinear continuous model which described the deviation between keyhole centroid and weld seam. The heat accumulation effect affected by the infrared radiation was analyzed to determine whether the laser beam focus spot deviated from the desired welding seam. Experimental results showed that the keyhole centroid has related to the seam offset, and can reflect the welding quality.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61274046 and 61474111the National Basic Research Program of China under Grant No 2013AA014202
文摘Optimization of the high power single-lateral-mode double-trench ridge waveguide semiconductor laser based on InGaAsP/InP quantum-well heterostructures with a separate confinement layer is reported. Two different waveguide structures of Fabry-Perot lasers emitting at a wavelength of 1.55 μm are fabricated. The influence of an effective lateral refractive index step on the maximum output power is investigated. A cw single mode output power of 165mW is obtained for a 1-mm-long uncoated laser.
基金National Natural Science Foundation of China ( 60137010 ) Tianjin Key Project Foundation of China(033183611)
文摘The performances of high power Er/Yb codoped fiber linear cavity lasers are investigated numerically. The numerical analysis is based on the iterative solution of rate equations for population density of the Er/Yb ions. The behaviors of co-pump and counter-pump methods are contrasted. Dependence of output power on input pump power, output reflectivity, operating wavelength and active fiber length is simulated, respectively. High conversion efficiency Er/Yb laser output is obtained in simulations and experiments.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61107086, 61172010, and 61101058)the Science and Technology Committee of Tianjin, China (Grant No. 11JCYBJC01100)the National High Technology Research and Development Program of China (Grant No. 2011AA010205)
文摘We successfully obtain a high-average-power high-stability Q-switched green laser based on diode-side-pumped composite ceramic Nd:YAG in a straight piano-concave cavity. The temperature distribution in composite ceramic Nd:YAG crystal is numerically analyzed and compared with that of conventional Nd:YAG crystal. By using a composite ceramic Nd:YAG rod and a type-II high gray track resistance KTP (HGTR-KTP) crystal, a green laser with an average output power of 165 W is obtained at a repetition rate of 25 kHz, with a diode-to-green optical conversion of 14.68%, and a pulse width of 162 ns. To the best of our knowledge, both the output power and optical-to-optical efficiency are the highest values for green laser systems with intracavity frequency doubling of this novel composite ceramic Nd:YAG laser to date. The power fluctuation at around 160 W is lower than 0.3% in 2.5 hours.
基金supported by the National High Technology Research and Development Program of China(Grant No.2011AA030203)the National Basic Research Program of China(Grant No.2010CB923101)+1 种基金the National Natural Science Foundation of China(Grant No.61008001)the Natural Science Foundation of Shanxi Province,China(Grant No.2011021003-2)
文摘We observe the phenomenon of priority oscillation of the unexpected a-polarization in high-power Nd:YVO4 ring laser. The severe thermal lens of the a-polarized lasing, compared with the n-polarized lasing, is the only reason for the phenomenon. By designing a wedge Nd:YVO4 crystal as the gain medium, the unexpected a-polarization is completely suppressed in the entire range of pump powers, and the polarization stability of the expected zc-polarized output is enhanced. With the output power increasing from threshold to the maximum power, no a-polarization lasing is observed. As a result, 25.3 W of stable single-frequency laser output at 532 nm is experimentally demonstrated.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10904132 and 11074225)the National Defense Science Technology Foundation of State Key Laboratory of High Temperature and Density Plasma Physics,China (Grant No. 9140C680604110C6805)
文摘We present a new method that can be used to calculate pulse-front distortion by measuring the spectral interference of two point-diffraction fields in their overlapped district. We demonstrate, for the first time, the measurement of the pulse-front distortion of the pulse from a complex multi-pass amplification system, which exists in almost all high-power laser systems, and obtain the irregular pulse-front distribution. The method presented does not need any reference light or assumption about the pulse-front distribution, and has an accuracy of several femtoseconds.
基金Project supported by the Chongqing Research Program of Basic Research and Frontier Technology(Grant No.cstc2015jcyj BX0098)the National Natural Science Foundation of China(Grant No.61575011)the Foundation for the Creative Research Groups of Higher Education of Chongqing(Grant No.CXTDX201601016)
文摘High power optically pumped vertical-external-cavity surface-emitting lasers with front and end pump are re- ported. The gain chip consists of 15 repeats of In0.26GaAs/GaAsP0.02 multiple quantum wells and 30 pairs of Alo.2GaAs/Alo.98GaAs distributed Bragg reflectors. The maximum output power of 3 W, optical-to-optical conversion efficiency of 22.4%, and slope efficiency of 29.8% are obtained with 5-℃ heatsink temperature under the front pump, while the maximum output power of 1.1 W, optical-to-optical conversion efficiency of 23.2%, and slope efficiency of 30.8% are reached with 5-℃ heatsink temperature under the end pump. Influences of thermal effects on the output power of the laser with front and end pump are discussed.
基金funded by the Spanish Government(MAT-2010-20441-C02)
文摘Catastrophic degradation of high power laser diodes is due to the generation of extended defects inside the active parts of the laser structure during the laser operation.The mechanism driving the degradation is strongly related to the existence of localized thermal stresses generated during the laser operation.These thermal stresses can overcome the yield strength of the materials forming the active part of the laser diode.Different factors contribute to reduce the laser power threshold for degradation.Among them the thermal transport across the laser structure constitutes a critical issue for the reliability of the device.
文摘To improve the performance of double clad high power fibre lasers, inner cladding design plays a significant role. A triangular inner cladding and silica structure second cladding with large air holes go acquire high inner cladding numerical aperture are designed. Single mode and high power output of the fibre lasers need the double clad Yb doped fibre with large core. A fibre with annular refractive index distribution core and low numerical aperture to acquire a large mode area fibre core is designed and fabricated. Furthermore co-doping with aluminium (A1) has been used to improve the solubility of ytterbium (Yb) into silicate network, and the core absorption coefficients of two Yb doped fibres are compared with different A1 concentration experimentally.
基金Project supported by the National Science and Technology Major Project of China(Grant Nos.2018YFB0504600and 2017YFB0405102)the Frontier Science Key Program of the President of the Chinese Academy of Sciences(Grant No.QYZDY-SSW-JSC006)+7 种基金the Pilot Project of the Chinese Academy of Sciences(Grant No.XDB43030302)the National Natural Science Foundation of China(Grant Nos.62090051,62090052,62090054,11874353,61935009,61934003,61904179,61727822,61805236,62004194,and 61991433)the Science and Technology Development Project of Jilin Province,China(Grant Nos.20200401062GX,202001069GX,20200501006GX,20200501007GX,20200501008GX,and 20190302042GX)the Key Research and Development Project of Guangdong Province,China(Grant No.2020B090922003)the Equipment Pre-researchChina(Grant No.2006ZYGG0304)the Special Scientific Research Project of the Academician Innovation Platform in Hainan Province,China(Grant No.YSPTZX202034)the Dawn Talent Training Program of CIOMP,China。
文摘The semiconductor laser array with single-mode emission is presented in this paper.The 6-μm-wide ridge waveguides(RWGs)are fabricated to select the lateral mode.Thus the fundamental mode of laser array can be obtained by the RWGs.And the maximum output power of single-mode emission can reach 36 W at an injection current of 43 A,after that,a kink will appear.The slow axis(SA)far-field divergence angle of the unit is 13.65.The beam quality factor M;of the units determined by the second-order moment(SOM)method,is 1.2.This single-mode emission laser array can be used for laser processing.
文摘High laser-induced damage threshold and large aperture were focuses on the studies of high power laser coatings. This paper reports the research activities at our center. Several measures were developed for evaluating characters of laser damage, including determination of laser induced damage threshold and detection of absorption based on surface thermal lensing technique. Defect was deemed to be the initial source of laser damage, and was the main factor restricting the laser damage resistance of optical coatings. The contribution of several kinds of typical defects to laser damage was analyzed, and some deposition measures were adopted to control and eliminate the origin of defect. Furthermore, some post-treatment methods were also employed to alleviate the influence of the defect and to improve the laser damage resistance. Correction mask was introduced to improve the thickness uniformity, and the thickness uniformity can be amended to less than 1% in the range of Φ650 mm. Preliminary investigation related to surface deformation was also conducted.
文摘A mathematical model was developed to describe moving laser welding by using the rotary Gauss body heat source model, and the effect of recoil pressure was taken into account. The formation of the long and narrow pool in high power fiber laser welding can be explained by the mathematical model (laser power: 10 kW, welding speed: 4 -20 m/min). Numerical simulation was conducted by PHOENICS software. The results show that at high welding velocity the plasma accelerated the velocity of liquid metal around the keyhole which is the main reason for the formation of the long and narrow molten pool in high power laser welding.
基金partly supported by National Natural Science Foundation of China(No.51175095)Guangdong Provincial Natural Science Foundation of China(No.10251009001000001)the Guangdong Provincial Project of Science and Technology Innovation of Discipline Construction,China(No.2013KJCX0063)
文摘During deep penetration laser welding,there exist plume(weak plasma) and spatters,which are the results of weld material ejection due to strong laser heating.The characteristics of plume and spatters are related to welding stability and quality.Characteristics of metallic plume and spatters were investigated during high-power disk laser bead-on-plate welding of Type 304 austenitic stainless steel plates at a continuous wave laser power of 10 kW.An ultraviolet and visible sensitive high-speed camera was used to capture the metallic plume and spatter images.Plume area,laser beam path through the plume,swing angle,distance between laser beam focus and plume image centroid,abscissa of plume centroid and spatter numbers are defined as eigenvalues,and the weld bead width was used as a characteristic parameter that reflected welding stability.Welding status was distinguished by SVM(support vector machine) after data normalization and characteristic analysis.Also,PCA(principal components analysis) feature extraction was used to reduce the dimensions of feature space,and PSO(particle swarm optimization) was used to optimize the parameters of SVM.Finally a classification model based on SVM was established to estimate the weld bead width and welding stability.Experimental results show that the established algorithm based on SVM could effectively distinguish the variation of weld bead width,thus providing an experimental example of monitoring high-power disk laser welding quality.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFA0304203)the National Natural Science Foundation of China(Grant Nos.61722507,61675121,61705123,62020106014,and 62011530047)+4 种基金the PCSIRT(Grant No.IRT-17R70)the 111 Project(Grant No.D18001)the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi(OIT)the Applied Basic Research Project of Shanxi Province,China(Grant Nos.201801D221004,201901D211191,and 201901D211188)the Shanxi 1331 KSC.
文摘We report on a research of the loading of ultracold sodium atoms in an optical dipole trap,generated by two beams from a high power fiber laser.The effects of optical trap light power on atomic number,temperature and phase space density are experimentally investigated.A simple theory is proposed and it is in good accordance with the experimental results of the loaded atomic numbers.In a general estimation,an optimal value for each beam with a power of 9 W from the fiber laser is achieved.Our results provide a further understanding of the loading process of optical dipole trap and laid the foundation for generation of a sodium Bose–Einstein condensation with an optical dipole trap.
文摘There are many appearances in the literature of reliable observations of studying so-called “jets” and “sprites” - the discharges in the gigantic natural capacitor “Ionosphere-Earth” [1]. The volume of such a discharge is approximately 5-10 thousand cubic kilometers and usually it appears above the surface of ocean. There are the cases also of above mentioned discharges on the ground. The value of the energy transferred to the earth can comprise to several terajoule. Events are accompanied by the emission of the waves of ultra-low frequency. Their study has the significant interest from many points of view. The essence of the observed irregular phenomena consists of the electromechanical conversion of the energy excesses of natural electricity into mechanical and thermal energy of cyclones, typhoons and other natural cataclysms. The ionosphere can retain only the specific quantity of energy. Otherwise, it discards the surpluses of electricity through the atmosphere or transforms them into the energy of storms, in that number and inside the Earth. By using the part of the natural electricity for useful purposes it is possible to govern the weather of planet. Causing the artificial breakdowns of the ionosphere it could be possible to arrange the discharge of the controlled aqueous sediments at the necessary points of the globe. It could be possible as well to attempt to regulate the climate of planet and to decrease the amplitudes of the magnetic storms, earthquakes and hurricanes.
文摘Operation of 808-nm laser diode pumping at elevated temperature is crucial to many applications. Reliable operation at high power is limited by high thermal load and low catastrophic optical mirror damage (COMD) threshold at elevated temperature range. We demonstrated high efficiency and high power operation at elevated temperature with high COMD power. These results were achieved through device design optimization such as growth conditions, doping profile, and materials composition of the quantum-well and other layers. Electrical-to-optical efficiency as high as 62% was obtained through lowered threshold current, lowered series resistance and increased slope efficiency. The performance of single broad-area laser diodes scales to that of high power single bars on water-cooled copper micro-channel heatsinks or conductively-cooled CS heatsinks. No reduction in bar performance or significant spectral broadening is seen when these micro-channel coolers are assembled into 6-bar and 18-bar CW stacks for the highest power levels.