Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con...Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.展开更多
Transition metal sulfides have high theoretical capacities and are considered as potential anode materials for sodium-ion batteries.However,due to low inherent conductivity and significant volume expansion,the electro...Transition metal sulfides have high theoretical capacities and are considered as potential anode materials for sodium-ion batteries.However,due to low inherent conductivity and significant volume expansion,the electrochemical performance is greatly limited.In this study,a nickel/manganese sulfide material(Ni_(0.96)S_(x)/MnS_(y)-NC)with adjustable sulfur vacancies and heterogeneous hollow spheres was prepared using a simple method.The introduction of a concentration-adjustable sulfur vacancy enables the generation of a heterogeneous interface between bimetallic sulfide and sulfur vacancies.This interface collectively creates an internal electric field,improving the mobility of electrons and ions,increasing the number of electrochemically active sites,and further optimizing the performance of Na~+storage.The direction of electron flow is confirmed by Density functional theory(DFT)calculations.The hollow nano-spherical material provides a buffer for expansion,facilitating rapid transfer kinetics.Our innovative discovery involves the interaction between the ether-based electrolyte and copper foil,leading to the formation of Cu_9S_5,which grafts the active material and copper current collector,reinforcing mechanical supporting.This results in a new heterostructure of Cu_9S_5 with Ni_(0.96)S_(x)/MnS_(y),contributing to the stabilization of structural integrity for long-cycle performance.Therefore,Ni_(0.96)S_(x)/MnS_(y)-NC exhibits excellent electrochemical properties following our modification route.Regarding stability performance,Ni0_(.96)S_(x)/MnS_(y)-NC demonstrates an average decay rate of 0.00944%after 10,000 cycles at an extremely high current density of 10000 mA g^(-1),A full cell with a high capacity of 304.2 mA h g^(-1)was also successfully assembled by using Na_(3)V_(2)(PO_(4))_(3)/C as the cathode.This study explores a novel strategy for interface/vacancy co-modification in the fabrication of high-performance sodium-ion batteries electrode.展开更多
Electrochemical nitrate(NO_(3)^(-))reduction offers a promising route for ammonia(NH_(3))synthesis from industrial wastewater using renewable energy.However,achieving selective and active NO_(3)^(-)to NH_(3)conversion...Electrochemical nitrate(NO_(3)^(-))reduction offers a promising route for ammonia(NH_(3))synthesis from industrial wastewater using renewable energy.However,achieving selective and active NO_(3)^(-)to NH_(3)conversion at low potentials remains challenging due to complex multi-electron transfer processes and competing reactions.Herein,we tackle this challenge by developing a cascade catalysis approach using synergistic active sites at Cu-Fe_(2)O_(3)interfaces,significantly reducing the NO_(3)^(-)to NH_(3)at a low onset potential to about+0.4 V_(RHE).Specifically,Cu optimizes^(*)NO_(3)adsorption,facilitating NO_(3)^(-)to nitrite(NO_(2)-)conversion,while adjacent Fe species in Fe_(2)O_(3)promote the subsequent NO_(2)-reduction to NH_(3)with favorable^(*)NO_(2)adsorption.Electrochemical operating experiments,in situ Raman spectroscopy,and in situ infrared spectroscopy consolidate this improved onset potential and reduction kinetics via cascade catalysis.An NH_(3)partial current density of~423 mA cm^(-2)and an NH_(3)Faradaic efficiency(FENH_(3))of 99.4%were achieved at-0.6 V_(RHE),with a maximum NH_(3)production rate of 2.71 mmol h^(-1)cm^(-2)at-0.8 V_(RHE).Remarkably,the half-cell energy efficiency exceeded 35%at-0.27 V_(RHE)(80%iR corrected),maintaining an FENH_(3)above 90%across a wide range of NO_(3)^(-)concentrations(0.05^(-1)mol L^(-1)).Using 15N isotopic tracing,we confirmed NO_(3)^(-)as the sole nitrogen source and attained a 98%NO_(3)^(-)removal efficiency.The catalyst exhibit stability over 106-h of continuous operation without noticeable degradation.This work highlights distinctive active sites in Cu-Fe_(2)O_(3)for promoting the cascade NO_(3)^(-)to NO_(2)^(-)and NO_(2)^(-)to NH_(3)electrolysis at industrial relevant current densities.展开更多
The heterogeneous multilayer interface of VN/Ag coatings and transition multilayer interface of VN/Ag coatings were prepared on Inconel 781 and Si(100),and the microstructures,mechanical and tribological properties we...The heterogeneous multilayer interface of VN/Ag coatings and transition multilayer interface of VN/Ag coatings were prepared on Inconel 781 and Si(100),and the microstructures,mechanical and tribological properties were investigated from 25 to 700℃.The results showed that the surface roughness and average grain size of VN/Ag coatings with transition multilayer interface are obviously larger than those of VN/Ag coatings with heterogeneous multilayer interface.The coatings with transition multilayer interface have higher adhesion force and hardness than the coatings with heterogeneous multilayer interface,and both coatings can effectively restrict the initiation and propagation of microcracks.Both coatings have excellent self-adaptive lubricating properties with a decrease of friction coefficient as the temperature increases,but their wear rates reveal a drastic increase.The phase composition of the worn area of both coatings was investigated,which indicates that a smooth Ag,Magnéli phase(V2O5)and bimetallic oxides(Ag3VO4 and AgVO3)can be responsible to the excellent lubricity of both coatings.To sum up,the coatings with transition multilayer interface have excellent adaptive lubricating properties and can properly control the diffusion rate and release rate of the lubricating phase,indicating that they have great potential in solving the problem of friction and wear of mechanical parts.展开更多
Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT...Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work.展开更多
Heterogeneous-structured Cu samples composed of coarse-grained(CG) and ultrafine-grained(UFG) domains with a transitional interface were fabricated by friction stir processing, in order to investigate the effect of in...Heterogeneous-structured Cu samples composed of coarse-grained(CG) and ultrafine-grained(UFG) domains with a transitional interface were fabricated by friction stir processing, in order to investigate the effect of interface constraint on the yielding and fracture behaviors. Tensile test revealed that the synergetic strengthening induced by elastic/plastic interaction between incompatible domains increases with increasing the area of constraint interface. The strain distribution near interface and the fracture morphology were characterized using digital image correlation technique and scanning electron microscopy, respectively. Fracture dimples preferentially formed at the interface, possibly due to extremely high triaxial stress and strain accumulation near the interface. Surprisingly, the CG domain was fractured by pure shear instead of the expected voids growth caused by tensile stress.展开更多
Inhibiting the “shuttle effect” of soluble polysulfides and improving reaction kinetics are the key factors necessary for further exploration of high-performance Li-S batteries. Herein, an effective interface engine...Inhibiting the “shuttle effect” of soluble polysulfides and improving reaction kinetics are the key factors necessary for further exploration of high-performance Li-S batteries. Herein, an effective interface engineering strategy is reported, wherein nitriding of an Ni-based precursor is controlled to enhance Li-S cell regulation. The resulting in-situ formed NiO-Ni_(3)N heterostructure interface not only has a stronger polysulfide adsorption effect than that of monomeric NiO or Ni_(3)N but also has a faster Li ion diffusion ability than a simple physical mixture. More importantly, this approach couples the respective advantages of NiO and Ni_(3)N to reduce polarization and facilitate electron transfer during polysulfide reactions and synergistically catalyze polysulfide conversion. In addition, ultrafine nanoparticles are thought to effectively improve the use of additive materials. In summary, Li-S batteries based on this NiO-Ni_(3)N heterostructure have the features of long cycle stability, rapid charging-discharging, and good performance under high sulfur loading.展开更多
Designing cost-effective and high-efficiency electrocatalysts is critical to the water splitting performance during hydrogen generation.Herein,we have developed Fe_(2)P-Co_(2)P heterostructure nanowire arrays with exc...Designing cost-effective and high-efficiency electrocatalysts is critical to the water splitting performance during hydrogen generation.Herein,we have developed Fe_(2)P-Co_(2)P heterostructure nanowire arrays with excellent lattice torsions and grain boundaries for highly efficient water splitting.According to the microstructural investigations and theoretical calculations,the lattice torsion interface not only contributes to the exposure of more active sites but also effectively tunes the adsorption energy of hydrogen/oxygen intermediates via the accumulation of charge redistribution.As a result,the Fe_(2)P-Co_(2)P heterostructure nanowire array exhibits exceptional bifunctional catalytic activity with overpotentials of 65 and 198 mV at 10 mA cm^(-2) for hydrogen and oxygen evolution reactions,respectively.Moreover,the Fe_(2)P-Co_(2)P/NF-assembled electrolyzer can deliver 10 mA cm^(-2) at an ultralow voltage of1.51 V while resulting in a high solar-to-hydrogen conversion efficiency of 19.8%in the solar-driven water electrolysis cell.展开更多
The sluggish kinetics of both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)generate the large overpotential in water electrolysis and thus high-cost hydrogen production.Here,multidimensional nanop...The sluggish kinetics of both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)generate the large overpotential in water electrolysis and thus high-cost hydrogen production.Here,multidimensional nanoporous interpenetrating-phase FeNiZn alloy and FeNi_(3)intermetallic heterostructure is in situ constructed on NiFe foam(FeNiZn/FeNi_(3)@NiFe)by dealloying protocol.Coupling with the eminent synergism among specific constituents and the highly efficient mass transport from integrated porous backbone,FeNiZn/FeNi_(3)@NiFe depicts exceptional bifunctional activities for water splitting with extremely low overpotentials toward OER and HER(η_(1000)=367/245 mV)as well as the robust durability during the 400 h testing in alkaline solution.The as-built water electrolyzer with FeNiZn/FeNi_(3)@NiFe as both anode and cathode exhibits record-high performances for sustainable hydrogen output in terms of much lower cell voltage of 1.759 and 1.919 V to deliver the current density of 500 and 1000 mA cm^(-2)as well long working lives.Density functional theory calculations disclose that the interface interaction between FeNiZn alloy and FeNi_(3)intermetallic generates the modulated electron structure state and optimized intermediate chemisorption,thus diminishing the energy barriers for hydrogen production in water splitting.With the merits of fine performances,scalable fabrication,and low cost,FeNiZn/FeNi_(3)@NiFe holds prospective application potential as the bifunctional electrocatalyst for water splitting.展开更多
The electronic structures and properties of electrocatalysts,which depend on the physicochemical structure and metallic element components,could significantly affect their electrocatalytic performance and their future...The electronic structures and properties of electrocatalysts,which depend on the physicochemical structure and metallic element components,could significantly affect their electrocatalytic performance and their future applications in Zn-air battery(ZAB)and overall water splitting(OWS).Here,by combining vacancies and heterogeneous interfacial engineering,three-dimensional(3D)core-shell NiCoP/NiO heterostructures with dominated oxygen vacancies have been controllably in-situ grown on carbon cloth for using as highly efficient electrocatalysts toward hydrogen and oxygen electrochemical reactions.Theoretical calculation and electrochemical results manifest that the hybridization of NiCoP core with NiO shell produces a strong synergistic electronic coupling effect.The oxygen vacancy can enable the emergence of new electronic states within the band gap,crossing the Fermi levels of the two spin components and optimizing the local electronic structure.Besides,the hierarchical core-shell NiCoP/NiO nanoarrays also endow the catalysts with multiple exposed active sites,faster mass transfer behavior,optimized electronic strutures and improved electrochemical performance during ZAB and OWS applications.展开更多
Rational coupling of hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) catalysts is extremely important for practical overall water splitting,but it is still challenging to construct such bifunctiona...Rational coupling of hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) catalysts is extremely important for practical overall water splitting,but it is still challenging to construct such bifunctional heterostructures.Herein,we present a metal-organic framework(MOF)-etching strategy to design free-standing and hierarchical hollow CoS_(2)-MoS_(2) heteronanosheet arrays for both HER and OER.Resulting from the controllable etching of MOF by MoO_(4)^(2-) and in-situ sulfuration,the obtained CoS_(2)-MoS_(2) possesses abundant heterointerfaces with modulated local charge distribution,which promote water dissociation and rapid electrocatalytic kinetics.Moreover,the two-dimensional hollow array architecture can not only afford rich surface-active sites,but also facilitate the penetration of electrolytes and the release of evolved H_(2)/O_(2) bubbles.Consequently,the engineered CoS_(2)-MoS_(2) heterostructure exhibits small overpotentials of 82 mV for HER and 266 mV for OER at 10 mA cm^(-2).The corresponding alkaline electrolyzer affords a cell voltage of 1.56 V at 10 mA cm^(-2) to boost overall water splitting,along with robust durability over 24 h, even surpassing the benchmark electrode couple composed of IrO_(2) and Pt/C The present work may provide valuable insights for developing MOF-derived heterogeneous electrocatalysts with tailored interface/surface structure for widespread application in catalysis and other energyrelated areas.展开更多
As Moore’s law deteriorates,the research and development of new materials system are crucial for transitioning into the post Moore era.Traditional semiconductor materials,such as silicon,have served as the cornerston...As Moore’s law deteriorates,the research and development of new materials system are crucial for transitioning into the post Moore era.Traditional semiconductor materials,such as silicon,have served as the cornerstone of modern technologies for over half a century.This has been due to extensive research and engineering on new techniques to continuously enrich silicon-based materials system and,subsequently,to develop better performed silicon-based devices.Meanwhile,in the emerging post Moore era,layered semiconductor materials,such as transition metal dichalcogenides(TMDs),have garnered considerable research interest due to their unique electronic and optoelectronic properties,which hold great promise for powering the new era of next generation electronics.As a result,techniques for engineering the properties of layered semiconductors have expanded the possibilities of layered semiconductor-based devices.However,there remain significant limitations in the synthesis and engineering of layered semiconductors,impeding the utilization of layered semiconductor-based devices for mass applications.As a practical alternative,heterogeneous integration between layered and traditional semiconductors provides valuable opportunities to combine the distinctive properties of layered semiconductors with well-developed traditional semiconductors materials system.Here,we provide an overview of the comparative coherence between layered and traditional semiconductors,starting with TMDs as the representation of layered semiconductors.We highlight the meaningful opportunities presented by the heterogeneous integration of layered semiconductors with traditional semiconductors,representing an optimal strategy poised to propel the emerging semiconductor research community and chip industry towards unprecedented advancements in the coming decades.展开更多
Thermoelectric devices enable direct conversion between thermal and electrical energy.Recent studies have indicated that the thin film/substrate heterostructure is effective in achieving high thermoelectric performanc...Thermoelectric devices enable direct conversion between thermal and electrical energy.Recent studies have indicated that the thin film/substrate heterostructure is effective in achieving high thermoelectric performance via decoupling the Seebeck coefficient and electrical conductivity otherwise adversely inter-dependent in homogenous bulk materials.However,the mechanism underlying the thin film/substrate heterostructure thermoelectricity remains unclear.In addition,the power output of the thin film/substrate heterostructure is limited to the nanowatt scale to date,falling short of the practical application requirement.Here,we fabricated the CrN/SrTiO_(3-x) heterostructures with high thermoelectric output power and outstanding thermal stability.By varying the CrN film thickness and the reduction degree of CrN/SrTiO_(3-x) substrate,the optimized power output and the power density have respectively reached 276μWand 10^(8) mW/cm^(2) for the 30 nm CrN film on a highly reduced surface of CrN/SrTiO_(3-x) under a temperature difference of 300 K.The performance enhancement is attributed to the CrN/CrN/SrTiO_(3-x) heterointerface,corroborated by the band bending as revealed by the scanning Kelvin probe microscopy.These results will stimulate further research efforts towards interface thermoelectrics.展开更多
The transition metal chalcogenides represented by MoS_(2)are the ideal choice for non-precious metal-based hydrogen evolution catalysts.However,whether in acidic or alkaline environments,the catalytic activity of pure...The transition metal chalcogenides represented by MoS_(2)are the ideal choice for non-precious metal-based hydrogen evolution catalysts.However,whether in acidic or alkaline environments,the catalytic activity of pure MoS_(2)is still difficult to compete with Pt.Recent studies have shown that the electronic structure of materials can be adjusted by constructing lattice-matched heterojunctions,thus optimizing the adsorption free energy of intermediates in the catalytic hydrogen production process of materials,so as to effectively improve the electrocatalytic hydrogen production activity of catalysts.However,it is still a great challenge to prepare heterojunctions with lattice-matched structures as efficient electrocatalytic hydrogen production catalysts.Herein,we developed a one-step hydrothermal method to construct Ni-MoS_(2)@NiS_(2)@Ni_(3)S_(2)(Ni-MoS_(2)on behalf of Ni doping MoS_(2))electrocatalyst with multiple heterogeneous interfaces which possesses rich catalytic reaction sites.The Ni-MoS_(2)@NiS_(2)@Ni_(3)S_(2)electrocatalyst produced an extremely low overpotential of 69.4 mV with 10 mA·cm^(−2)current density for hydrogen evolution reaction(HER)in 1.0 M KOH.This work provides valuable enlightenment for exploring the mechanism of HER enhancement to optimize the surface electronic structure of MoS_(2),and provides an effective idea for constructing rare metal catalysts in HER and other fields.展开更多
Sum frequency generation(SFG) vibrational spectroscopy has been proven an excellent tool to measure the molecular structures, symmetries and orientations at surfaces/interfaces because of its strong polarization depen...Sum frequency generation(SFG) vibrational spectroscopy has been proven an excellent tool to measure the molecular structures, symmetries and orientations at surfaces/interfaces because of its strong polarization dependence. However, a precise quantitative analysis of SFG spectral intensity and molecular orientation at interfaces must be carefully performed. In this work, we summarized the parameters and factors that are often ignored and illustrated them by evaluating studies of CO adsorption on the(111) facet of platinum(Pt) and palladium(Pd) single crystals at the gas(ultra-high vacuum, UHV)/solid interfaces and methanol(water) adsorption at the air/liquid(solid/liquid) interfaces in the presence of sodium iodide(chloride) salts. To intuitively estimate the influence of incidence angles and refractive indices on the SFG intensity, solely a defined factor of|Fyyz| was discussed, which can be individually separated from the macroscopic second-order non-linear susceptibility χ yyz^(2) term and represents the SSP intensity. Moreover, effects of refractive indices and the molecular hyperpolarizability ratio(R) were discussed in the orientational analysis of interfacial CO and methanol molecules. When IPPP/ISSP was identical, molecules with a larger R had smaller tilting angles(q) on Pt(assuming q < 51°), and CO molecules on Pd would tilt much closer to the surface than they did on Pt. A total internal reflection(TIR) geometry enhanced the SFG intensity, but it also amplified the influence of refractive index on SFG intensity at the solid(silica)/liquid interface. The refractive index and R-value had similar influence on the methanol orientation in the presence of sodium iodide salts at air/liquid and solid/liquid interfaces. This work should provide a guideline for analyzing the orientation of molecules with different R, which are adsorbed on catalysts or located at liquid interfaces involving changes of refractive indices.展开更多
Homogeneous heterogeneous(heterophase)interfaces regulated with low energy barriers have a fast response to applied electric fields and could provide a unique interfacial polarization,which facilitate the transport of...Homogeneous heterogeneous(heterophase)interfaces regulated with low energy barriers have a fast response to applied electric fields and could provide a unique interfacial polarization,which facilitate the transport of electrons across the substrate.Such regulation on the interfaces is effective in modulating electromagnetic wave absorbing materials.Herein,we construct NbS_(2)–NiS_(2)heterostructures with NiS_(2)nanoparticles uniformly grown in NbS_(2)hollow nanospheres,and such particular structure enhances the interfacial polarization.The strong electron transfer at the interface promotes electron transport throughout the material,which results in less scattering,promotes conduct ion loss and dielectric polarization relaxation,improves dielectric loss,and results in a good impedance matching of the material.Consequently,the absorbing band may be successful tuned.By regulating the amount of NiS_(2),the heterogeneous interface is finely alternated so that the overall wave-absorbing performance is shifted to lower frequencies.With a NiS_(2)content of 15 wt%and an absorber thickness of 1.84 mm,the minimum reflection loss at 14.56 GHz is53.1 dB,and the effective absorption bandwidth is 5.04 GHz;more importantly,the minimum reflection loss in different bands is20 dB,and the microwave energy absorption rate reaches 99%when the thickness is about 1.5–4.5 mm.This work demonstrates the construction of homogeneous heterostructures is effective in improving the electromagnetic absorption properties,providing guideline for the synthesis of highly efficient electromagnetic absorbing materials.展开更多
We report an experimental study of electron transport properties of MnSe/(Bi,Sb)_2Te_3 heterostructures,in which MnSe is an antiferromagnetic insulator,and(Bi,Sb)_2Te_3 is a three-dimensional topological insulator(TI)...We report an experimental study of electron transport properties of MnSe/(Bi,Sb)_2Te_3 heterostructures,in which MnSe is an antiferromagnetic insulator,and(Bi,Sb)_2Te_3 is a three-dimensional topological insulator(TI).Strong magnetic proximity effect is manifested in the measurements of the Hall effect and longitudinal resistances.Our analysis shows that the gate voltage can substantially modify the anomalous Hall conductance,which exceeds 0.1 e^(2)/h at temperature T=1.6 K and magnetic field μ_0H=5 T,even though only the top TI surface is in proximity to MnSe.This work suggests that heterostructures based on antiferromagnetic insulators provide a promising platform for investigating a wide range of topological spintronic phenomena.展开更多
Poor cycling stability in lithium–sulfur(Li–S)batteries necessitates advanced electrode/electrolyte design and innovative interlayer architectures.Heterogeneous catalysis has emerged as a promising approach,leveragi...Poor cycling stability in lithium–sulfur(Li–S)batteries necessitates advanced electrode/electrolyte design and innovative interlayer architectures.Heterogeneous catalysis has emerged as a promising approach,leveraging the adsorption and catalytic performance on lithium polysulfides(LiPSs)to inhibit LiPSs shuttling and improve redox kinetics.In this study,we report an ultrathin and laminar SnO_(2)@MXene heterostructure interlayer(SnO_(2)@MX),where SnO_(2) quantum dots(QDs)are uniformly distributed across the MXene layer.The combined structure of SnO_(2) QDs and MXene,along with the creation of numerous active boundary sites with coordination electron environments,plays a critical role in manipulating the catalytic kinetics of sulfur species.The Li–S cell with the SnO_(2)@MX-modified separator not only demonstrates superior electrochemical performance compared to cells with a bare separator but also induces homogeneous Li deposition during cycling.As a result,an areal capacity of 7.6 mAh cm^(-2) under a sulfur loading of 7.5 mg cm^(-2) and a high stability over 500 cycles are achieved.Our work demonstrates a feasible strategy of utilizing a laminar separator interlayer for advanced Li–S batteries awaiting commercialization and may shed light on the understanding of heterostructure catalysis with enhanced reaction kinetics.展开更多
Heterogeneous metallic structures constitute a novel class of materials with excellent mechanical properties.However,the existing process for obtaining heterostructures from a single material does not meet large-scale...Heterogeneous metallic structures constitute a novel class of materials with excellent mechanical properties.However,the existing process for obtaining heterostructures from a single material does not meet large-scale industrial requirements.In this study,a pure copper heterostructured laminate(HSL)composed of a surface elongatedgrain layer and a central equiaxed-grain layer was fabricated by rolling bonding and annealing.To study the effect of the interface on the mechanical properties of gradient-structured materials,both laminate metal composite(LMC)and non-composite laminate(NCL)were fabricated by cold-rolling pretreatment of the center layer(60%reduction)and cold-rolling bonding of the whole blank(67%reduction).Then,the HSL was obtained by controlling the post-annealing regimes,the microstructure of each layer was optimized,and a larger degree of microstructural heterogeneities,such as grain size,misorientation angle,and grain orientation,was obtained,which resulted in obvious mechanical differences.Tensile tests of the HSL,surface layer,center layer,and NCL specimens revealed that the HSL annealed at 300°C for 1 h had a significantly higher strength than the center layer and a higher elongation than the surface layer.The HSL had a tensile strength and elongation at fracture of 278.08 MPa and 46.2%,respectively,indicating a good balance of strength and plasticity.The improved properties were primarily attributed to the strengthening or strain hardening due to the inhomogeneous deformation of the heterogeneous layers in the laminate and the mutual constraint acquired by the distinct layers with strong mechanical differences.The HSL had an interfacial bonding strength of 178.5 MPa,which played a vital role in the coordinated deformation of the heterogeneous layers.This study proposes an HSL design method that effectively simplifies the process of obtaining heterostructures in homogeneous materials by controlling the cumulative deformation of the surface and center layers.展开更多
Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi...Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi_(2)O_(3)-Bi_(2)S_(3)(BO-BS)heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage.The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi_(2)S_(3) side and electron-poor O center at Bi_(2)O_(3) side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system.Moreover,the as-designed heterogenous interface also benefits to maintaining the electrode integrity.With these advantages,the BO-BS electrode displays a remarkable capacity of 150.36 mAh g^(−1) at 0.67 A g^(-1) and a superior cycling stability.This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52377026 and No.52301192)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+4 种基金Postdoctoral Fellowship Program of CPSF under Grant Number(No.GZB20240327)Shandong Postdoctoral Science Foundation(No.SDCXZG-202400275)Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)China Postdoctoral Science Foundation(No.2024M751563)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.
基金financially supported by the National Nature Science Foundation of Jiangsu Province(BK20221259)。
文摘Transition metal sulfides have high theoretical capacities and are considered as potential anode materials for sodium-ion batteries.However,due to low inherent conductivity and significant volume expansion,the electrochemical performance is greatly limited.In this study,a nickel/manganese sulfide material(Ni_(0.96)S_(x)/MnS_(y)-NC)with adjustable sulfur vacancies and heterogeneous hollow spheres was prepared using a simple method.The introduction of a concentration-adjustable sulfur vacancy enables the generation of a heterogeneous interface between bimetallic sulfide and sulfur vacancies.This interface collectively creates an internal electric field,improving the mobility of electrons and ions,increasing the number of electrochemically active sites,and further optimizing the performance of Na~+storage.The direction of electron flow is confirmed by Density functional theory(DFT)calculations.The hollow nano-spherical material provides a buffer for expansion,facilitating rapid transfer kinetics.Our innovative discovery involves the interaction between the ether-based electrolyte and copper foil,leading to the formation of Cu_9S_5,which grafts the active material and copper current collector,reinforcing mechanical supporting.This results in a new heterostructure of Cu_9S_5 with Ni_(0.96)S_(x)/MnS_(y),contributing to the stabilization of structural integrity for long-cycle performance.Therefore,Ni_(0.96)S_(x)/MnS_(y)-NC exhibits excellent electrochemical properties following our modification route.Regarding stability performance,Ni0_(.96)S_(x)/MnS_(y)-NC demonstrates an average decay rate of 0.00944%after 10,000 cycles at an extremely high current density of 10000 mA g^(-1),A full cell with a high capacity of 304.2 mA h g^(-1)was also successfully assembled by using Na_(3)V_(2)(PO_(4))_(3)/C as the cathode.This study explores a novel strategy for interface/vacancy co-modification in the fabrication of high-performance sodium-ion batteries electrode.
文摘Electrochemical nitrate(NO_(3)^(-))reduction offers a promising route for ammonia(NH_(3))synthesis from industrial wastewater using renewable energy.However,achieving selective and active NO_(3)^(-)to NH_(3)conversion at low potentials remains challenging due to complex multi-electron transfer processes and competing reactions.Herein,we tackle this challenge by developing a cascade catalysis approach using synergistic active sites at Cu-Fe_(2)O_(3)interfaces,significantly reducing the NO_(3)^(-)to NH_(3)at a low onset potential to about+0.4 V_(RHE).Specifically,Cu optimizes^(*)NO_(3)adsorption,facilitating NO_(3)^(-)to nitrite(NO_(2)-)conversion,while adjacent Fe species in Fe_(2)O_(3)promote the subsequent NO_(2)-reduction to NH_(3)with favorable^(*)NO_(2)adsorption.Electrochemical operating experiments,in situ Raman spectroscopy,and in situ infrared spectroscopy consolidate this improved onset potential and reduction kinetics via cascade catalysis.An NH_(3)partial current density of~423 mA cm^(-2)and an NH_(3)Faradaic efficiency(FENH_(3))of 99.4%were achieved at-0.6 V_(RHE),with a maximum NH_(3)production rate of 2.71 mmol h^(-1)cm^(-2)at-0.8 V_(RHE).Remarkably,the half-cell energy efficiency exceeded 35%at-0.27 V_(RHE)(80%iR corrected),maintaining an FENH_(3)above 90%across a wide range of NO_(3)^(-)concentrations(0.05^(-1)mol L^(-1)).Using 15N isotopic tracing,we confirmed NO_(3)^(-)as the sole nitrogen source and attained a 98%NO_(3)^(-)removal efficiency.The catalyst exhibit stability over 106-h of continuous operation without noticeable degradation.This work highlights distinctive active sites in Cu-Fe_(2)O_(3)for promoting the cascade NO_(3)^(-)to NO_(2)^(-)and NO_(2)^(-)to NH_(3)electrolysis at industrial relevant current densities.
基金Project(51505100)supported by the National Natural Science Foundation of China
文摘The heterogeneous multilayer interface of VN/Ag coatings and transition multilayer interface of VN/Ag coatings were prepared on Inconel 781 and Si(100),and the microstructures,mechanical and tribological properties were investigated from 25 to 700℃.The results showed that the surface roughness and average grain size of VN/Ag coatings with transition multilayer interface are obviously larger than those of VN/Ag coatings with heterogeneous multilayer interface.The coatings with transition multilayer interface have higher adhesion force and hardness than the coatings with heterogeneous multilayer interface,and both coatings can effectively restrict the initiation and propagation of microcracks.Both coatings have excellent self-adaptive lubricating properties with a decrease of friction coefficient as the temperature increases,but their wear rates reveal a drastic increase.The phase composition of the worn area of both coatings was investigated,which indicates that a smooth Ag,Magnéli phase(V2O5)and bimetallic oxides(Ag3VO4 and AgVO3)can be responsible to the excellent lubricity of both coatings.To sum up,the coatings with transition multilayer interface have excellent adaptive lubricating properties and can properly control the diffusion rate and release rate of the lubricating phase,indicating that they have great potential in solving the problem of friction and wear of mechanical parts.
基金the National Natural Science Foundation(No.52073187)NSAF Foundation(No.U2230202)for their financial support of this project+3 种基金National Natural Science Foundation(No.51721091)Programme of Introducing Talents of Discipline to Universities(No.B13040)State Key Laboratory of Polymer Materials Engineering(No.sklpme2022-2-03)support of China Scholarship Council
文摘Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work.
基金Projects(11672195,51301092) supported by the National Natural Science Foundation of ChinaProject(2016JQ0047) supported by Sichuan Youth Science and Technology Foundation,China
文摘Heterogeneous-structured Cu samples composed of coarse-grained(CG) and ultrafine-grained(UFG) domains with a transitional interface were fabricated by friction stir processing, in order to investigate the effect of interface constraint on the yielding and fracture behaviors. Tensile test revealed that the synergetic strengthening induced by elastic/plastic interaction between incompatible domains increases with increasing the area of constraint interface. The strain distribution near interface and the fracture morphology were characterized using digital image correlation technique and scanning electron microscopy, respectively. Fracture dimples preferentially formed at the interface, possibly due to extremely high triaxial stress and strain accumulation near the interface. Surprisingly, the CG domain was fractured by pure shear instead of the expected voids growth caused by tensile stress.
基金financial support of the Youth Project of the Provincial Natural Science Foundation of Anhui(No. 2008085QE267)the Doctoral Research Initiation Foundation of Anhui Normal University (No. 751973)+2 种基金the National Natural Science Foundation of China (No. 51972162)the Fundamental Research Funds for the Central Universities (No. 0213-14380196)the Science and Technology Project of Nanchang (No. 2017-SJSYS-008)。
文摘Inhibiting the “shuttle effect” of soluble polysulfides and improving reaction kinetics are the key factors necessary for further exploration of high-performance Li-S batteries. Herein, an effective interface engineering strategy is reported, wherein nitriding of an Ni-based precursor is controlled to enhance Li-S cell regulation. The resulting in-situ formed NiO-Ni_(3)N heterostructure interface not only has a stronger polysulfide adsorption effect than that of monomeric NiO or Ni_(3)N but also has a faster Li ion diffusion ability than a simple physical mixture. More importantly, this approach couples the respective advantages of NiO and Ni_(3)N to reduce polarization and facilitate electron transfer during polysulfide reactions and synergistically catalyze polysulfide conversion. In addition, ultrafine nanoparticles are thought to effectively improve the use of additive materials. In summary, Li-S batteries based on this NiO-Ni_(3)N heterostructure have the features of long cycle stability, rapid charging-discharging, and good performance under high sulfur loading.
基金financially supported by the National Natural Science Foundation of China(U2002213)the Creative Project of Engineering Research Center of Alternative Energy Materials&Devices,Ministry of Education,Sichuan University(AEMD202207)+7 种基金the Open Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials of Guangxi University(2022GXYSOF10)the Guangdong Colleges&Universities Characteristic Innovation Project(2021KTSCX263)the Guangdong Education&Scientific Research Project(2021GXJK535)the Guangzhou Panyu Polytechnic Science&Technology Project(2021KJ01)the East-Land Middle-aged and Young Backbone Teacher of Yunnan University(C176220200)the Yunnan Applied Basic Research Projects(202001BB050006,202001BB050007)the Double Tops Joint Fund of the Yunnan Science and Technology Bureau and Yunnan University(2019FY003025)the Double First Class University Plan(C176220100042)。
文摘Designing cost-effective and high-efficiency electrocatalysts is critical to the water splitting performance during hydrogen generation.Herein,we have developed Fe_(2)P-Co_(2)P heterostructure nanowire arrays with excellent lattice torsions and grain boundaries for highly efficient water splitting.According to the microstructural investigations and theoretical calculations,the lattice torsion interface not only contributes to the exposure of more active sites but also effectively tunes the adsorption energy of hydrogen/oxygen intermediates via the accumulation of charge redistribution.As a result,the Fe_(2)P-Co_(2)P heterostructure nanowire array exhibits exceptional bifunctional catalytic activity with overpotentials of 65 and 198 mV at 10 mA cm^(-2) for hydrogen and oxygen evolution reactions,respectively.Moreover,the Fe_(2)P-Co_(2)P/NF-assembled electrolyzer can deliver 10 mA cm^(-2) at an ultralow voltage of1.51 V while resulting in a high solar-to-hydrogen conversion efficiency of 19.8%in the solar-driven water electrolysis cell.
基金supported by National Science Foundation of China(52201254)Shandong Province(ZR2020MB090,ZR2020QE012)the project of“20 Items of University”of Jinan(202228046)。
文摘The sluggish kinetics of both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)generate the large overpotential in water electrolysis and thus high-cost hydrogen production.Here,multidimensional nanoporous interpenetrating-phase FeNiZn alloy and FeNi_(3)intermetallic heterostructure is in situ constructed on NiFe foam(FeNiZn/FeNi_(3)@NiFe)by dealloying protocol.Coupling with the eminent synergism among specific constituents and the highly efficient mass transport from integrated porous backbone,FeNiZn/FeNi_(3)@NiFe depicts exceptional bifunctional activities for water splitting with extremely low overpotentials toward OER and HER(η_(1000)=367/245 mV)as well as the robust durability during the 400 h testing in alkaline solution.The as-built water electrolyzer with FeNiZn/FeNi_(3)@NiFe as both anode and cathode exhibits record-high performances for sustainable hydrogen output in terms of much lower cell voltage of 1.759 and 1.919 V to deliver the current density of 500 and 1000 mA cm^(-2)as well long working lives.Density functional theory calculations disclose that the interface interaction between FeNiZn alloy and FeNi_(3)intermetallic generates the modulated electron structure state and optimized intermediate chemisorption,thus diminishing the energy barriers for hydrogen production in water splitting.With the merits of fine performances,scalable fabrication,and low cost,FeNiZn/FeNi_(3)@NiFe holds prospective application potential as the bifunctional electrocatalyst for water splitting.
基金financially supported by the National Natural Science Foundation of China(No.22179014,21603019)program for the Hundred Talents Program of Chongqing University。
文摘The electronic structures and properties of electrocatalysts,which depend on the physicochemical structure and metallic element components,could significantly affect their electrocatalytic performance and their future applications in Zn-air battery(ZAB)and overall water splitting(OWS).Here,by combining vacancies and heterogeneous interfacial engineering,three-dimensional(3D)core-shell NiCoP/NiO heterostructures with dominated oxygen vacancies have been controllably in-situ grown on carbon cloth for using as highly efficient electrocatalysts toward hydrogen and oxygen electrochemical reactions.Theoretical calculation and electrochemical results manifest that the hybridization of NiCoP core with NiO shell produces a strong synergistic electronic coupling effect.The oxygen vacancy can enable the emergence of new electronic states within the band gap,crossing the Fermi levels of the two spin components and optimizing the local electronic structure.Besides,the hierarchical core-shell NiCoP/NiO nanoarrays also endow the catalysts with multiple exposed active sites,faster mass transfer behavior,optimized electronic strutures and improved electrochemical performance during ZAB and OWS applications.
基金the financial support by the National Natural Science Foundation of China(NSFC) Grants(51702295)。
文摘Rational coupling of hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) catalysts is extremely important for practical overall water splitting,but it is still challenging to construct such bifunctional heterostructures.Herein,we present a metal-organic framework(MOF)-etching strategy to design free-standing and hierarchical hollow CoS_(2)-MoS_(2) heteronanosheet arrays for both HER and OER.Resulting from the controllable etching of MOF by MoO_(4)^(2-) and in-situ sulfuration,the obtained CoS_(2)-MoS_(2) possesses abundant heterointerfaces with modulated local charge distribution,which promote water dissociation and rapid electrocatalytic kinetics.Moreover,the two-dimensional hollow array architecture can not only afford rich surface-active sites,but also facilitate the penetration of electrolytes and the release of evolved H_(2)/O_(2) bubbles.Consequently,the engineered CoS_(2)-MoS_(2) heterostructure exhibits small overpotentials of 82 mV for HER and 266 mV for OER at 10 mA cm^(-2).The corresponding alkaline electrolyzer affords a cell voltage of 1.56 V at 10 mA cm^(-2) to boost overall water splitting,along with robust durability over 24 h, even surpassing the benchmark electrode couple composed of IrO_(2) and Pt/C The present work may provide valuable insights for developing MOF-derived heterogeneous electrocatalysts with tailored interface/surface structure for widespread application in catalysis and other energyrelated areas.
基金supported by National Key R&D Program of China(2020YFB2008704)the National Natural Science Foundation of China(62004114 and 62174098)+1 种基金Beijing Municipal Science and Technology Commission(Z221100005822011)The Tsinghua-Foshan Innovation Special Fund(2021THFS0215)。
文摘As Moore’s law deteriorates,the research and development of new materials system are crucial for transitioning into the post Moore era.Traditional semiconductor materials,such as silicon,have served as the cornerstone of modern technologies for over half a century.This has been due to extensive research and engineering on new techniques to continuously enrich silicon-based materials system and,subsequently,to develop better performed silicon-based devices.Meanwhile,in the emerging post Moore era,layered semiconductor materials,such as transition metal dichalcogenides(TMDs),have garnered considerable research interest due to their unique electronic and optoelectronic properties,which hold great promise for powering the new era of next generation electronics.As a result,techniques for engineering the properties of layered semiconductors have expanded the possibilities of layered semiconductor-based devices.However,there remain significant limitations in the synthesis and engineering of layered semiconductors,impeding the utilization of layered semiconductor-based devices for mass applications.As a practical alternative,heterogeneous integration between layered and traditional semiconductors provides valuable opportunities to combine the distinctive properties of layered semiconductors with well-developed traditional semiconductors materials system.Here,we provide an overview of the comparative coherence between layered and traditional semiconductors,starting with TMDs as the representation of layered semiconductors.We highlight the meaningful opportunities presented by the heterogeneous integration of layered semiconductors with traditional semiconductors,representing an optimal strategy poised to propel the emerging semiconductor research community and chip industry towards unprecedented advancements in the coming decades.
基金supported by Liaoning Revitalization Talents Program (No. XLYC1807209)Dalian Institute of Chemical Physics (DICP I202037)the National Natural Science Foundation of China (Grant Nos. 21625304, 22022205).
文摘Thermoelectric devices enable direct conversion between thermal and electrical energy.Recent studies have indicated that the thin film/substrate heterostructure is effective in achieving high thermoelectric performance via decoupling the Seebeck coefficient and electrical conductivity otherwise adversely inter-dependent in homogenous bulk materials.However,the mechanism underlying the thin film/substrate heterostructure thermoelectricity remains unclear.In addition,the power output of the thin film/substrate heterostructure is limited to the nanowatt scale to date,falling short of the practical application requirement.Here,we fabricated the CrN/SrTiO_(3-x) heterostructures with high thermoelectric output power and outstanding thermal stability.By varying the CrN film thickness and the reduction degree of CrN/SrTiO_(3-x) substrate,the optimized power output and the power density have respectively reached 276μWand 10^(8) mW/cm^(2) for the 30 nm CrN film on a highly reduced surface of CrN/SrTiO_(3-x) under a temperature difference of 300 K.The performance enhancement is attributed to the CrN/CrN/SrTiO_(3-x) heterointerface,corroborated by the band bending as revealed by the scanning Kelvin probe microscopy.These results will stimulate further research efforts towards interface thermoelectrics.
基金the National Natural Science Foundation of China(No.51902101)Natural Science Foundation of Jiangsu Province(No.BK20201381)+1 种基金Science Foundation of Nanjing University of Posts and Telecommunications(Nos.NY219144 and NY221046)the National College Student Innovation and Entrepreneurship Training Program(No.202210293171K).
文摘The transition metal chalcogenides represented by MoS_(2)are the ideal choice for non-precious metal-based hydrogen evolution catalysts.However,whether in acidic or alkaline environments,the catalytic activity of pure MoS_(2)is still difficult to compete with Pt.Recent studies have shown that the electronic structure of materials can be adjusted by constructing lattice-matched heterojunctions,thus optimizing the adsorption free energy of intermediates in the catalytic hydrogen production process of materials,so as to effectively improve the electrocatalytic hydrogen production activity of catalysts.However,it is still a great challenge to prepare heterojunctions with lattice-matched structures as efficient electrocatalytic hydrogen production catalysts.Herein,we developed a one-step hydrothermal method to construct Ni-MoS_(2)@NiS_(2)@Ni_(3)S_(2)(Ni-MoS_(2)on behalf of Ni doping MoS_(2))electrocatalyst with multiple heterogeneous interfaces which possesses rich catalytic reaction sites.The Ni-MoS_(2)@NiS_(2)@Ni_(3)S_(2)electrocatalyst produced an extremely low overpotential of 69.4 mV with 10 mA·cm^(−2)current density for hydrogen evolution reaction(HER)in 1.0 M KOH.This work provides valuable enlightenment for exploring the mechanism of HER enhancement to optimize the surface electronic structure of MoS_(2),and provides an effective idea for constructing rare metal catalysts in HER and other fields.
基金in part supported by the Austrian Science Fund FWF through projects Com Cat(I 1041-N28)and DK+Solids4Fun(W1243)by TU Wien via the Innovative Project “SFG Spectroscopy”
文摘Sum frequency generation(SFG) vibrational spectroscopy has been proven an excellent tool to measure the molecular structures, symmetries and orientations at surfaces/interfaces because of its strong polarization dependence. However, a precise quantitative analysis of SFG spectral intensity and molecular orientation at interfaces must be carefully performed. In this work, we summarized the parameters and factors that are often ignored and illustrated them by evaluating studies of CO adsorption on the(111) facet of platinum(Pt) and palladium(Pd) single crystals at the gas(ultra-high vacuum, UHV)/solid interfaces and methanol(water) adsorption at the air/liquid(solid/liquid) interfaces in the presence of sodium iodide(chloride) salts. To intuitively estimate the influence of incidence angles and refractive indices on the SFG intensity, solely a defined factor of|Fyyz| was discussed, which can be individually separated from the macroscopic second-order non-linear susceptibility χ yyz^(2) term and represents the SSP intensity. Moreover, effects of refractive indices and the molecular hyperpolarizability ratio(R) were discussed in the orientational analysis of interfacial CO and methanol molecules. When IPPP/ISSP was identical, molecules with a larger R had smaller tilting angles(q) on Pt(assuming q < 51°), and CO molecules on Pd would tilt much closer to the surface than they did on Pt. A total internal reflection(TIR) geometry enhanced the SFG intensity, but it also amplified the influence of refractive index on SFG intensity at the solid(silica)/liquid interface. The refractive index and R-value had similar influence on the methanol orientation in the presence of sodium iodide salts at air/liquid and solid/liquid interfaces. This work should provide a guideline for analyzing the orientation of molecules with different R, which are adsorbed on catalysts or located at liquid interfaces involving changes of refractive indices.
基金supported by the National Natural Science Foundation of China(52372289,52102368,52072192 and 51977009)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020A1515110905)+1 种基金Guangdong Special Fund for key Areas(20237DZX3042)Shenzhen Stable Support Project and the Fundamental Research Fund of Heilongjiang Provincial University(145309101)。
文摘Homogeneous heterogeneous(heterophase)interfaces regulated with low energy barriers have a fast response to applied electric fields and could provide a unique interfacial polarization,which facilitate the transport of electrons across the substrate.Such regulation on the interfaces is effective in modulating electromagnetic wave absorbing materials.Herein,we construct NbS_(2)–NiS_(2)heterostructures with NiS_(2)nanoparticles uniformly grown in NbS_(2)hollow nanospheres,and such particular structure enhances the interfacial polarization.The strong electron transfer at the interface promotes electron transport throughout the material,which results in less scattering,promotes conduct ion loss and dielectric polarization relaxation,improves dielectric loss,and results in a good impedance matching of the material.Consequently,the absorbing band may be successful tuned.By regulating the amount of NiS_(2),the heterogeneous interface is finely alternated so that the overall wave-absorbing performance is shifted to lower frequencies.With a NiS_(2)content of 15 wt%and an absorber thickness of 1.84 mm,the minimum reflection loss at 14.56 GHz is53.1 dB,and the effective absorption bandwidth is 5.04 GHz;more importantly,the minimum reflection loss in different bands is20 dB,and the microwave energy absorption rate reaches 99%when the thickness is about 1.5–4.5 mm.This work demonstrates the construction of homogeneous heterostructures is effective in improving the electromagnetic absorption properties,providing guideline for the synthesis of highly efficient electromagnetic absorbing materials.
基金Supported by the National Key Research and Development Program of China (Grant No.2016YFA0300600)the National Natural Science Foundation of China (Grant No.11961141011)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)。
文摘We report an experimental study of electron transport properties of MnSe/(Bi,Sb)_2Te_3 heterostructures,in which MnSe is an antiferromagnetic insulator,and(Bi,Sb)_2Te_3 is a three-dimensional topological insulator(TI).Strong magnetic proximity effect is manifested in the measurements of the Hall effect and longitudinal resistances.Our analysis shows that the gate voltage can substantially modify the anomalous Hall conductance,which exceeds 0.1 e^(2)/h at temperature T=1.6 K and magnetic field μ_0H=5 T,even though only the top TI surface is in proximity to MnSe.This work suggests that heterostructures based on antiferromagnetic insulators provide a promising platform for investigating a wide range of topological spintronic phenomena.
基金financial support from the Swiss National Science Foundation via the Southeast Asia–Europe Joint Funding Scheme 2020(Grant No.IZJFZ2_202476)funding from the National Natural Science Foundation of China(Grant Nos.22209118 and 00301054A1073)the Fundamental Research Funds for the Central Universities(Grant Nos.1082204112A26,20826044D3083,and 20822041G4080)。
文摘Poor cycling stability in lithium–sulfur(Li–S)batteries necessitates advanced electrode/electrolyte design and innovative interlayer architectures.Heterogeneous catalysis has emerged as a promising approach,leveraging the adsorption and catalytic performance on lithium polysulfides(LiPSs)to inhibit LiPSs shuttling and improve redox kinetics.In this study,we report an ultrathin and laminar SnO_(2)@MXene heterostructure interlayer(SnO_(2)@MX),where SnO_(2) quantum dots(QDs)are uniformly distributed across the MXene layer.The combined structure of SnO_(2) QDs and MXene,along with the creation of numerous active boundary sites with coordination electron environments,plays a critical role in manipulating the catalytic kinetics of sulfur species.The Li–S cell with the SnO_(2)@MX-modified separator not only demonstrates superior electrochemical performance compared to cells with a bare separator but also induces homogeneous Li deposition during cycling.As a result,an areal capacity of 7.6 mAh cm^(-2) under a sulfur loading of 7.5 mg cm^(-2) and a high stability over 500 cycles are achieved.Our work demonstrates a feasible strategy of utilizing a laminar separator interlayer for advanced Li–S batteries awaiting commercialization and may shed light on the understanding of heterostructure catalysis with enhanced reaction kinetics.
基金Supported by National Key Research and Development Program of China(Grant No.2018YFA0707300)General Program of National Natural Science Foundation of China(Grant No.51905372)Postdoctoral Science Foundation of China(Grant No.2020T130463)。
文摘Heterogeneous metallic structures constitute a novel class of materials with excellent mechanical properties.However,the existing process for obtaining heterostructures from a single material does not meet large-scale industrial requirements.In this study,a pure copper heterostructured laminate(HSL)composed of a surface elongatedgrain layer and a central equiaxed-grain layer was fabricated by rolling bonding and annealing.To study the effect of the interface on the mechanical properties of gradient-structured materials,both laminate metal composite(LMC)and non-composite laminate(NCL)were fabricated by cold-rolling pretreatment of the center layer(60%reduction)and cold-rolling bonding of the whole blank(67%reduction).Then,the HSL was obtained by controlling the post-annealing regimes,the microstructure of each layer was optimized,and a larger degree of microstructural heterogeneities,such as grain size,misorientation angle,and grain orientation,was obtained,which resulted in obvious mechanical differences.Tensile tests of the HSL,surface layer,center layer,and NCL specimens revealed that the HSL annealed at 300°C for 1 h had a significantly higher strength than the center layer and a higher elongation than the surface layer.The HSL had a tensile strength and elongation at fracture of 278.08 MPa and 46.2%,respectively,indicating a good balance of strength and plasticity.The improved properties were primarily attributed to the strengthening or strain hardening due to the inhomogeneous deformation of the heterogeneous layers in the laminate and the mutual constraint acquired by the distinct layers with strong mechanical differences.The HSL had an interfacial bonding strength of 178.5 MPa,which played a vital role in the coordinated deformation of the heterogeneous layers.This study proposes an HSL design method that effectively simplifies the process of obtaining heterostructures in homogeneous materials by controlling the cumulative deformation of the surface and center layers.
基金supported by the National Natural Science Foundation of China(52172239)Project of State Key Laboratory of Environment-Friendly Energy Materials(SWUST,Grant Nos.22fksy23 and 18ZD320304)+3 种基金the Frontier Project of Chengdu Tianfu New Area Institute(SWUST,Grand No.2022ZY017)Chongqing Talents:Exceptional Young Talents Project(Grant No.CQYC201905041)Natural Science Foundation of Chongqing China(Grant No.cstc2021jcyj-jqX0031)Interdiscipline Team Project under auspices of“Light of West”Program in Chinese Academy of Sciences(Grant No.xbzg-zdsys-202106).
文摘Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi_(2)O_(3)-Bi_(2)S_(3)(BO-BS)heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage.The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi_(2)S_(3) side and electron-poor O center at Bi_(2)O_(3) side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system.Moreover,the as-designed heterogenous interface also benefits to maintaining the electrode integrity.With these advantages,the BO-BS electrode displays a remarkable capacity of 150.36 mAh g^(−1) at 0.67 A g^(-1) and a superior cycling stability.This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems.