Stable TiO_2–water nanofluids are prepared by a two-step method, stabilities of nanofluids are investigated by precipitation method and transmittance method respectively, and thermal conductivities and viscosities ar...Stable TiO_2–water nanofluids are prepared by a two-step method, stabilities of nanofluids are investigated by precipitation method and transmittance method respectively, and thermal conductivities and viscosities are also measured. An experimental system for studying the heat transfer enhancement of nanofluids is established,and heat transfer and flow characteristics of TiO_2–water nanofluids in heat exchanger systems with a triangular tube and circular tube are experimentally studied. The effects of nanoparticle mass fractions(ω = 0.1 wt%–0.5 wt%) and Reynolds numbers(Re = 800–10000) on the heat transfer and flow performances of nanofluids are analyzed. Fitting formulas for Nusselt number and resistance coefficient of nanofluids in a triangular tube are put forward based on the experimental data. The comprehensive performances of nanofluids in a triangular tube are investigated. It is found that nanofluids in a triangular tube can significantly improve the heat transfer performance at the cost of a small increase in resistance coefficient compared with that in a circular tube, especially the resistance coefficients are almost the same between different nanoparticle mass fractions at turbulent flow. It is also found that the comprehensive evaluation index η decreases with Reynolds number at laminar flow but a critical maximum value appears at turbulent flow.展开更多
基金Supported by the National Natural Science Foundation of China(51606214)
文摘Stable TiO_2–water nanofluids are prepared by a two-step method, stabilities of nanofluids are investigated by precipitation method and transmittance method respectively, and thermal conductivities and viscosities are also measured. An experimental system for studying the heat transfer enhancement of nanofluids is established,and heat transfer and flow characteristics of TiO_2–water nanofluids in heat exchanger systems with a triangular tube and circular tube are experimentally studied. The effects of nanoparticle mass fractions(ω = 0.1 wt%–0.5 wt%) and Reynolds numbers(Re = 800–10000) on the heat transfer and flow performances of nanofluids are analyzed. Fitting formulas for Nusselt number and resistance coefficient of nanofluids in a triangular tube are put forward based on the experimental data. The comprehensive performances of nanofluids in a triangular tube are investigated. It is found that nanofluids in a triangular tube can significantly improve the heat transfer performance at the cost of a small increase in resistance coefficient compared with that in a circular tube, especially the resistance coefficients are almost the same between different nanoparticle mass fractions at turbulent flow. It is also found that the comprehensive evaluation index η decreases with Reynolds number at laminar flow but a critical maximum value appears at turbulent flow.
文摘旋流动力稳定性是影响旋流传热和流动性能的重要因素, 今提出了基于旋流稳定性基本判据的瑞利判据和失稳指标b,分析旋流动力稳定性的影响因素及其对传热效果的影响作用。结果表明旋流强度、轴向分量速度和旋转流道的几何尺寸均会对旋流稳定性产生重要影响。随着旋流失稳指标b 的提高传热系数明显增加,对于Vz=2.14ms-1的旋流, b 由0增至500时传热系数提高100%以上。旋流动力稳定性的研究结果为旋流强化传热研究的深入提供重要的手段。