期刊文献+
共找到135篇文章
< 1 2 7 >
每页显示 20 50 100
Optimization of fin geometry in heat convection with entransy theory
1
作者 程雪涛 张勤昭 +1 位作者 徐向华 新刚 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期139-144,共6页
The entransy theory developed in recent years is used to optimize the aspect ratio of a plate fin in heat convection.Based on a two-dimensional model,the theoretical analysis shows that the minimum thermal resistance ... The entransy theory developed in recent years is used to optimize the aspect ratio of a plate fin in heat convection.Based on a two-dimensional model,the theoretical analysis shows that the minimum thermal resistance defined with the concept of entransy dissipation corresponds to the maximum heat transfer rate when the temperature of the heating surface is fixed.On the other hand,when the heat flux of the heating surface is fixed,the minimum thermal resistance corresponds to the minimum average temperature of the heating surface.The entropy optimization is also given for the heat transfer processes.It is observed that the minimum entropy generation,the minimum entropy generation number,and the minimum revised entropy generation number do not always correspond to the best heat transfer performance.In addition,the influence factors on the optimized aspect ratio of the plate fin are also discussed.The optimized ratio decreases with the enhancement of heat convection,while it increases with fin thermal conductivity increasing. 展开更多
关键词 entransy dissipation thermal resistance heat convection optimization fin efficiency
在线阅读 下载PDF
Application of First-Order Differential Equation to Heat Convection in Fluid
2
作者 Zahidullah Rehan 《Journal of Applied Mathematics and Physics》 2020年第8期1456-1462,共7页
Differential equation is very important in science and engineering, because it required the description of some measurable quantities (position, temperature, population, concentration, electrical current, etc.) in mat... Differential equation is very important in science and engineering, because it required the description of some measurable quantities (position, temperature, population, concentration, electrical current, etc.) in mathematical form of ordinary differential equations (ODEs). In this research, we determine heat transferred by convection in fluid problems by first-order ordinary differential equations. So in this research work first we discuss the solution of ordinary homogeneous and non-homogeneous differential equation and then apply the solution of first-order ODEs to heat transferring particularly in heat convection in fluid. 展开更多
关键词 Differential Equation heat Transfer Analysis heat convection in Fluid Newton Cooling Law
在线阅读 下载PDF
Numerical Predictions of Laminar Forced Convection Heat Transfer with and without Buoyancy Effects from an Isothermal Horizontal Flat Plate to Supercritical Nitrogen
3
作者 K.S.Rajendra Prasad Sathya Sai +1 位作者 T.R.Seetharam Adithya Garimella 《Frontiers in Heat and Mass Transfer》 EI 2024年第3期889-917,共29页
Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing dow... Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing downwards.Computations are performed by varying the value ofΔT from5 to 30 K and P_(∞)/P_(cr)ratio from1.1 to 1.5.Variation of all the thermophysical properties of supercritical Nitrogen is considered.The wall temperatures are chosen in such a way that two values of Tw are less than T∗(T*is the temperature at which the fluid has a maximum value of Cp for the given pressure),one value equal to T∗and two values greater than T∗.Three different values of U∞are used to obtain Re∞range of 3.6×10_(4)to 4.74×10^(5)for forced convection without buoyancy effects and Gr_(∞)/Re^(2)_(∞)range of 0.011 to 3.107 for the case where buoyancy effects are predominant.Six different forms of correlations are proposed based on numerical predictions and are compared with actual numerical predictions.It has been found that in all six forms of correlations,the maximum deviations are found to occur in those cases where the pseudocritical temperature TT∗lies between the wall temperature and bulk fluid temperature. 展开更多
关键词 Supercritical nitrogen laminar flow numerical methods forced convection heat transfer isothermal horizontal surface
在线阅读 下载PDF
Thermo-Hydraulic Performances of Microchannel Heat Sinks with Different Types of Perforated Rectangular Blocks
4
作者 Heng Zhao Honghua Ma +4 位作者 Hui Liu Xiang Yan Huaqing Yu Yongjun Xiao Xiao Xiao 《Fluid Dynamics & Materials Processing》 2025年第1期87-105,共19页
The behavior of single-phase flow and conjugate heat transfer in micro-channel heat sinks(MCHS)subjected to auniform heat flux is investigated by means of numerical simulations.Various geometrical configurations areex... The behavior of single-phase flow and conjugate heat transfer in micro-channel heat sinks(MCHS)subjected to auniform heat flux is investigated by means of numerical simulations.Various geometrical configurations areexamined,particularly,the combinations of rectangular solid and perforated blocks,used to create a disturbancein the flow.The analysis focuses on several key aspects and related metrics,including the temperature distribution,the mean Fanning friction factor,the pressure drop,the Nusselt number,and the overall heat transfer coefficientacross a range of Reynolds numbers(80–870).It is shown that the introduction of such blocks significantlyenhances the heat transfer performances of the MCHS compared to the straight-through flow channel.Specifically,a case is found where the Nusselt number increases by 2.3 times relative to the reference case.The integrationof perforated blocks facilitates the generation of vorticity within the channel,promoting the mixing of coldand hot fluids.Notably,MCHS incorporating perforated rectangular blocks exhibit more pronounced heat transferbenefits at Reynolds numbers smaller than 400. 展开更多
关键词 Micro-channel heat sink(MCHS) perforated rectangular blocks thermal performance convection heat transfer
在线阅读 下载PDF
Pattern Formations in Heat Convection Problems
5
作者 Takaaki NISHIDA Yoshiaki TERAMOTO 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2009年第6期769-784,共16页
After Bénard's experiment in 1900, Rayleigh formulated heat convection problems by the Oberbeck-Boussinesq approximation in the horizontal strip domain in 1916. The pattern formations have been investigated by t... After Bénard's experiment in 1900, Rayleigh formulated heat convection problems by the Oberbeck-Boussinesq approximation in the horizontal strip domain in 1916. The pattern formations have been investigated by the bifurcation theory, weakly nonlinear theories and computational approaches. The boundary conditions for the velocity on the upper and lower boundaries are usually assumed as stress-free or no-slip. In the first part of this paper, some bifurcation pictures for the case of the stress-free on the upper boundary and the no-slip on the lower boundary are obtained. In the second part of this paper, the bifurcation pictures for the case of the stress-free on both boundaries by a computer assisted proof are verified. At last., Bénard-Marangoni heat convections for the ease of the free surface of the upper boundary are considered. 展开更多
关键词 Oberbeck-Boussinesq equation heat convection Pattern formation Computer assisted proof
原文传递
Heat Convection Between Two Confocal Elliptic Tubes Placed at Different Orientations
6
作者 F.M.Mahfouz H.M.Badr 《Advances in Applied Mathematics and Mechanics》 SCIE 2009年第5期639-663,共25页
In this paper,transient and steady natural convection heat transfer in an elliptical annulus has been investigated.The annulus occupies the space between two horizontal concentric tubes of elliptic cross-section.The r... In this paper,transient and steady natural convection heat transfer in an elliptical annulus has been investigated.The annulus occupies the space between two horizontal concentric tubes of elliptic cross-section.The resulting velocity and thermal fields are predicted at different annulus orientations assuming isothermal surfaces.The full governing equations of mass,momentum and energy are solved numerically using the Fourier Spectral method.The heat convection process between the two tubes depends on Rayleigh number,Prandtl number,angle of inclination of tube axes and the geometry and dimensions of both tubes.The Prandtl number and inner tube axis ratio are fixed at 0.7 and 0.5,respectively.The problem is solved for the two Rayleigh numbers of 104 and 105 considering a ratio between the two major axes up to 3 while the angle of orientation of the minor axes varies from 0 to 90◦.The results for local and average Nusselt numbers are obtained and discussed together with the details of both flow and thermal fields.For isothermal heating conditions,the study has shown an optimum value for major axes ratio that minimizes the rate of heat transfer between the two tubes.Another important aspect of this paper is to prove the successful use of the Fourier Spectral Method in solving confined flow and heat convection problems. 展开更多
关键词 heat convection Elliptic tubes Fourier spectral methods Rayleigh number Prandtle number
原文传递
Laminar Forced Convection Heat and Mass Transfer of Humid Air across a Vertical Plate with Condensation 被引量:3
7
作者 李成 李俊明 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第6期944-954,共11页
Condensation of humid air along a vertical plate was numerically investigated, with the mathematical model built on the full boundary layer equations and the film-wise condensation assumption. The velocity, heat and m... Condensation of humid air along a vertical plate was numerically investigated, with the mathematical model built on the full boundary layer equations and the film-wise condensation assumption. The velocity, heat and mass transfer characteristics at the gas-liquid interface were numerical analyzed and the results indicated that it was not reasonable to neglect the condensate film from the point of its thickness only. The condensate film thickness, interface temperature drop and the interface tangential velocity affect the physical fields weakly. However, the subcooling and the interface normal velocity were important factors to be considered before the simplification was made. For higher wall temperature, the advective mass transfer contributed much to the total mass transfer. Therefore, the boundary conditions were the key to judge the rationality of neglecting the condensate film for numerical solutions. The numerical results were checked by comparing with experiments and correlations. 展开更多
关键词 CONDENSATION binary mixture convective heat and mass transfer
在线阅读 下载PDF
Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow 被引量:23
8
作者 Siavashi Majid Jamali Mohammad 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1850-1865,共16页
Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determ... Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determine entropy generation of fully developed flow, two approaches are employed and it is shown that only one of these methods can provide appropriate results for flow inside annuli. The effects of concentration of nanoparticles, Reynolds number and thermal boundaries on heat transfer enhancement and entropy generation of developing laminar flow inside annuli with different radius ratios and same cross sectional areas are studied. The results show that radius ratio is a very important decision parameter of an annular heat exchanger such that in each Re, there is an optimum radius ratio to maximize Nu and minimize entropy generation. Moreover, the effect of nanoparticles concentration on heat transfer enhancement and minimizing entropy generation is stronger at higher Reynolds. 展开更多
关键词 nanofluid heat transfer enhancement forced convection entropy generation annulus radius ratio
在线阅读 下载PDF
A New Idea of Fractal-Fractional Derivative with Power Law Kernel for Free Convection Heat Transfer in a Channel Flow between Two Static Upright Parallel Plates 被引量:1
9
作者 Dolat Khan Gohar Ali +3 位作者 Arshad Khan Ilyas Khan Yu-Ming Chu Kottakkaran Sooppy Nisar 《Computers, Materials & Continua》 SCIE EI 2020年第11期1237-1251,共15页
Nowadays some new ideas of fractional derivatives have been used successfully in the present research community to study different types of mathematical models.Amongst them,the significant models of fluids and heat or... Nowadays some new ideas of fractional derivatives have been used successfully in the present research community to study different types of mathematical models.Amongst them,the significant models of fluids and heat or mass transfer are on priority.Most recently a new idea of fractal-fractional derivative is introduced;however,it is not used for heat transfer in channel flow.In this article,we have studied this new idea of fractal fractional operators with power-law kernel for heat transfer in a fluid flow problem.More exactly,we have considered the free convection heat transfer for a Newtonian fluid.The flow is bounded between two parallel static plates.One of the plates is heated constantly.The proposed problem is modeled with a fractal fractional derivative operator with a power-law kernel and solved via the Laplace transform method to find out the exact solution.The results are graphically analyzed via MathCad-15 software to study the behavior of fractal parameters and fractional parameter.For the influence of temperature and velocity profile,it is observed that the fractional parameter raised the velocity and temperature as compared to the fractal operator.Therefore,a combined approach of fractal fractional explains the memory of the function better than fractional only. 展开更多
关键词 Fractal-fractional derivative power law kernel convection heat transfer upright parallel plates
在线阅读 下载PDF
Characteristics of radiation and convection heat transfer in indirect near-infrared-ray heating chamber 被引量:1
10
作者 CHOI Hoon-ki YOO Geun-jong KIM Churl-hwan 《Journal of Central South University》 SCIE EI CAS 2011年第3期731-738,共8页
Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design pa... Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design parameters such as the shape of heat absorbing cylinder and heat releasing fin on the pressure drop and heat transfer coefficient were analyzed with different Reynolds numbers. The Reynolds numbers were varied from 103 to 3x106, which was defined based on the hydraulic diameter of the heat absorbing cylinder. Analyses were performed to obtain the inner and outer flow and the temperature distributions in the heat absorbing cylinder and the rates of radiation heat transfer and convection heat transfer. As the Reynolds number increases, the convection heat transfer rate is increased while the radiation heat transfer rate is decreased. The average convection heat transfer rate follows a power rule of the Reynolds number. Addition of three-dimensional heat releasing fin to the outside of the heat absorbing cylinder enhances the convection heat transfer. 展开更多
关键词 near infrared ray indirect near infrared ray heater absorbing cylinder heat releasing fin radiation heat transfer convection heat transfer Reynolds number
在线阅读 下载PDF
Experimental study on convection heat transfer and air drag in sinter layer 被引量:2
11
作者 潘利生 魏小林 +2 位作者 彭岩 时小宝 刘怀亮 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2841-2848,共8页
Convection heat transfer coefficient and air pressure drop in sinter layer are important factors for the design of sinter cooling craft. Due to the lack of necessary data, the two parameters are studied by experimenta... Convection heat transfer coefficient and air pressure drop in sinter layer are important factors for the design of sinter cooling craft. Due to the lack of necessary data, the two parameters are studied by experimental method. The experimental results show that heat conduction of sinter impacts the measurement of convection heat transfer coefficient. Convection heat transfer increases with the increase of air volumetric flow rate. Sinter layer without small particles(sample I) gives higher convection heat transfer coefficient than that with small particles(sample II). Under the considered conditions, volumetric convection heat transfer coefficient is in the range of 400-1800 W/(m3·°C). Air pressure drop in sinter layer increases with the increase of normal superficial velocity, as well as with the rise of air temperature. Additionally, air pressure drop also depends on sinter particle size distribution. In considered experimental conditions, pressure drop in sinter sample II is 2-3 times that in sinter sample I, which resulted from 17% small scale particles in sinter sample II. 展开更多
关键词 sinter layer convection heat transfer pressure drop
在线阅读 下载PDF
Mixed convection heat transfer in horizontal channel filled with nanofluids 被引量:1
12
作者 Tao FAN Hang XU I. POP 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第3期339-350,共12页
The laminar fully developed nanofluid flow and heat transfer in a horizonal channel are investigated. Highly accurate solutions for the temperature and nanopavticle concentration distributions are obtained. The effect... The laminar fully developed nanofluid flow and heat transfer in a horizonal channel are investigated. Highly accurate solutions for the temperature and nanopavticle concentration distributions are obtained. The effects of the Brownian motion parameter Nb, the thermophoresis parameter Nt, and the Lewis number Le on the temperature and nanoparticle concentration distributions are discussed. The current analysis shows that the nanoparticles can improve the heat transfer characteristics significantly for this flow problem. 展开更多
关键词 nanofluid flow horizontal channel mixed convection heat transfer homotopy analysis method (HAM)
在线阅读 下载PDF
Laminar natural convection characteristics in an enclosure with heated hexagonal block for non-Newtonian power law fluids 被引量:2
13
作者 Krunal M.Gangawane B.Manikandan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第5期555-571,共17页
This work illustrates the steady state, two dimensional natural convective flow and heat transfer features in square enclosure containing heated hexagonal block maintained either at constant wall temperature(CWT) or u... This work illustrates the steady state, two dimensional natural convective flow and heat transfer features in square enclosure containing heated hexagonal block maintained either at constant wall temperature(CWT) or uniform heat flux(UHF) thermal conditions. Governing equations(mass, momentum and energy) are solved by using finite volume method(FVM) with 3rd order accurate QUICK discretization scheme and SIMPLE algorithm for range of field pertinent parameters such as, Grashof number(10~3≤ Gr ≤ 10~6), Prandtl number(1 ≤ Pr ≤ 100) and power law index(0.5 ≤ n ≤ 1.5). The analysis of momentum and heat transfer characteristics are delineated by evolution of streamlines, isotherms, variation of average Nusselt number value and Colburn factor for natural convection(j_(nH)). A remarkable change is observed on fluid flow and thermal distribution pattern in cavity for both thermal conditions. Nusselt number shows linear variation with Grashof and Prandtl numbers; while rate of heat transfer by convection decreases for power law index value. Higher heat transfer rate can be achieved by using uniform heat flux condition. A Nusselt number correlation is developed for possible utilization in engineering/scientific design purpose. 展开更多
关键词 Square cavity heated block Grashof number Natural convection Power law index
在线阅读 下载PDF
Two-Dimensional Simulation of the Navier-Stokes Equations for Laminar and Turbulent Flow around a Heated Square Cylinder with Forced Convection 被引量:2
14
作者 Romulo D.C.Santos Sílvio M.A.Gama Ramiro G.R.Camacho 《Applied Mathematics》 2018年第3期291-312,共22页
Few studies jointly investigate thermal and turbulent effects. In general, these subjects are treated separately. The purpose of this paper is to use the Immersed Boundary Method (IBM) coupled with the Virtual Physica... Few studies jointly investigate thermal and turbulent effects. In general, these subjects are treated separately. The purpose of this paper is to use the Immersed Boundary Method (IBM) coupled with the Virtual Physical Model (VPM) to investigate incompressible two-dimensional Newtonian flow around a heated square cylinder at constant temperature on its surface with forced convection and turbulence. The VPM model dynamically evaluates the force that the fluid exerts on the immersed surface and the thermal exchange between both in the Reynolds numbers (Re) window 40 ≤ Re ≤ 5×103 . For simulations of turbulence the Smagorinsky and Spalart-Allmaras models are used. The first model uses the Large Eddy Simulation (LES) methodology and is based on the local equilibrium hypothesis for small scales associated with the Boussinesq hypothesis, such that the energy injected into the spectrum of the turbulence balances the energy dissipated by convective effects. The second model uses the concept Unsteady Reynolds Averaged Navier-Stokes Equations (URANS), with only one transport equation for turbulent viscosity, being calibrated in pressure gradient layers. The goal of this work is to analyse the combination of the heat-transfer phenomena with the turbulence for the thermo-fluid-structure interaction in a square cylinder. For this, it was developed a C/C++ code that requires low computational costs in regards to memory and computer facilities. It is observed that, with the increase of the Reynolds number, an increase of the drag coefficient occurs, as well as reinforces the influence of the pressure distribution downstream of the cylinder, which is strongly influenced by the formation and detachment of vortices on the upper and lower sides of the square cylinder. 展开更多
关键词 Immersed Boundary Method Virtual Physical Model heated Square Cylinder Forced convection Turbulence Models
在线阅读 下载PDF
Nanofluids Transport Model Based on Fokker-Planck Equation and the Convection Heat Transfer Calculation
15
作者 LIN Xiaohui ZHANG Chibin +3 位作者 YANG Juekuan JIANG Shuyun REN Weisong GU Jun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第6期1277-1284,共8页
In current research about nanofluid convection heat transfer, random motion of nanoparticles in the liquid distribution problem mostly was not considered. In order to study on the distribution of nanoparticles in liqu... In current research about nanofluid convection heat transfer, random motion of nanoparticles in the liquid distribution problem mostly was not considered. In order to study on the distribution of nanoparticles in liquid, nanofluid transport model in pipe is established by using the continuity equation, momentum equation and Fokker-Planck equation. The velocity distribution and the nanoparticles distribution in liquid are obtained by numerical calculation, and the effect of particle size and particle volume fraction on convection heat transfer coefficient of nanofluids is analyzed. The result shows that in high volume fraction ( 0 _-- 0.8% ), the velocity distribution of nanofluids characterizes as a "cork-shaped" structure, which is significantly different from viscous fluid with a parabolic distribution. The convection heat transfer coefficient increases while the particle size of nanoparticle in nanofluids decreases. And the convection heat transfer coefficient of nanofluids is in good agreement with the experimental result both in low (0 ~〈 0.1% ) and high ( q = 0.6% ) volume fractions. In presented model, Brown motion, the effect of interactions between nanoparticles and fluid coupling, is also considered, but any phenomenological parameter is not introduced. Nanoparticles in liquid transport distribution can be quantitatively calculated by this model. 展开更多
关键词 nanofluids convection heat transfer transport theory Fokker-Planck equation
在线阅读 下载PDF
Analysis and calculating for preheat temperature and average convection heat change coefficient in the continue annealing furnace
16
作者 WAN Fei and JIN Min Baosteel Engineering &Technologies Group Ltd.,Co.,Shanghai 201900,China 《Baosteel Technical Research》 CAS 2010年第S1期117-,共1页
The aim of the thesis is to utilize essential theory of heat transfer,to use correlative expressions to calculate average convection heat change coefficient and heating temperature of strip in Jet Preheat Furnace (JPF... The aim of the thesis is to utilize essential theory of heat transfer,to use correlative expressions to calculate average convection heat change coefficient and heating temperature of strip in Jet Preheat Furnace (JPF),make the calculating results accordant with production data,and make the calculation to be used the process of production.The method is to collect:entry temperature and speed of strip,temperature and speed of N_2 - H_2,to analyse heat transfer according to length and thickness of strip,jet hole and mutual position of jet piping in JPF,to analyse heat transfer and built the physical model.In mathematic model, Martin correlative expressions are tried to calculate using the data from production,and are modified in part properly.At the same time,heat boundary condition is analysed with theory of impact jet and production data.The conclusion is obtained that boundary condition is rarely average numerical value of temperature of strip and N_2 - H_2 with impact jet condition,instead of a relation of function of temperature of strip, temperature and speed of N_2- H_2,array of jet holes,diameter of hole,distance between hole and strip,and acquired a calculating expression.In calculation of examples,the thesis collected and calculated 15 kinds of strips.The thickness of strips are 2=0.51~1.41 mm,material DQ - IF、DDQ,EDDQ,SEDDQ and 340DDQ.Main assess numerical value is temperature value after strip is heated with certain speed and within section of time.Maximum error in 9 groups of numerical value in the thesis is 3.36%comparing with production data.The correlative expressions can be used in production to adjust temperature of strip through changing speed and temperature of N_2 - H_2 and speed of strip.The correlative expressions are compiled computer process.The process can be applied in on line control of production by rapid calculating speed. 展开更多
关键词 preheat jet impact convection convection heat change coefficient
在线阅读 下载PDF
Optimization of natural convection heat transfer of Newtonian nanofluids in a cylindrical enclosure
17
作者 Hamid Moradi Bahamin Bazooyar +1 位作者 Ahmad Moheb Seyed Gholamreza Etemad 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第8期1266-1274,共9页
This study characterizes and optimizes natural convection heat transfer of two Newtonian Al2O3 and Ti O2/water nano fluids in a cylindrical enclosure. Nusselt number(Nu) of nano fluids in relation to Rayleigh number(R... This study characterizes and optimizes natural convection heat transfer of two Newtonian Al2O3 and Ti O2/water nano fluids in a cylindrical enclosure. Nusselt number(Nu) of nano fluids in relation to Rayleigh number(Ra) for different concentrations of nano fluids is investigated at different con figurations and orientations of the enclosure.Results show that adding nanoparticles to water has a negligible or even adverse in fluence upon natural convection heat transfer of water: only a slight increase in natural convection heat transfer of Al2O3/water is observed,while natural convection heat transfer for TiO2/water nano fluid is inferior to that for the base fluid. Results also reveal that at low Ra, the likelihood of enhancement in natural convection heat transfer is more than at high Ra: at low Ra, inclination angle, aspect ratio of the enclosure and nanoparticle concentration in fluence natural convection heat transfer more pronouncedly than that in high Ra. 展开更多
关键词 Natural convection heat transfer Nanofluid Optimization Cylinder orientation
在线阅读 下载PDF
Turbulent forced convection in a heat exchanger square channel with wavy-ribs vortex generator
18
作者 Amnart Boonloi Withada Jedsadaratanachai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第8期1256-1265,共10页
Turbulent forced convective heat transfer and flow con figurations in a square channel with wavy-ribs inserted diagonally are examined numerically. The in fluences of the 30° and 45° flow attack angles for w... Turbulent forced convective heat transfer and flow con figurations in a square channel with wavy-ribs inserted diagonally are examined numerically. The in fluences of the 30° and 45° flow attack angles for wavy-ribs, blockage ratio, R B= b/H = 0.05–0.25 with single pitch ratio, R P= P/H = 1 are investigated for the Reynolds number based on the hydraulic diameter of the square channel, Re = 3000–20000. The use of the wavy-ribs, which inserted diagonal in the square channel, is aimed to help to improve the thermal performance in heat exchange systems.The finite volume method and SIMPLE algorithm are applied to the present numerical simulation. The results are presented on the periodic flow and heat transfer pro files, flow con figurations, heat transfer characteristics and the performance evaluations. The mathematical results reveal that the use of wavy-ribs leads to a higher heat transfer rate and friction loss over the smooth channel. The heat transfer enhancements are around 1.97–5.14 and 2.04–5.27 times over the smooth channel for 30° and 45° attack angles, respectively. However, the corresponding friction loss values for 30° and 45° are around 4.26–86.55 and 5.03–97.98 times higher than the smooth square channel, respectively. The optimum thermal enhancement factor on both cases is found at R B= 0.10 and the lowest Reynolds number, Re = 3000, to be about 1.47 and 1.52, respectively, for 30° and 45° wavy-ribs. 展开更多
关键词 Flow configuration Forced convection heat transfer characteristic Turbulent flow Wavy-ribs
在线阅读 下载PDF
Design of a Mobile Probe to Predict Convection Heat Transfer on BIPV (Building Integrated Photovoltaic) at UTS (University of Technology Sydney)
19
作者 Jafar Madadnia 《Journal of Energy and Power Engineering》 2015年第11期976-985,共10页
In the absence of a simple technique to predict convection heat transfer on BIPV (building integrated photovoltaic) surfaces, a mobile probe with two thermocouples was designed. Thermal boundary layers on vertical f... In the absence of a simple technique to predict convection heat transfer on BIPV (building integrated photovoltaic) surfaces, a mobile probe with two thermocouples was designed. Thermal boundary layers on vertical flat surfaces ofa PV (photovoltaic) and a metallic plate were traversed. The plate consisted of twelve heaters where heat flux and surface temperature were controlled and measured. Uniform heat flux condition was developed on the heaters to closely simulate non-uniform temperature distribution on vertical PV modules. The two thermocouples on the probe measured local air temperature and contact temperature with the wall surface. Experimental results were presented in the forms of local Nusselt numbers versus Rayleigh numbers "Nu = a'(Ra)b'', and surface temperature versus dimensionless height (Ts - T∞ = c.(z/h)d). The constant values for "a", "b", "c" and "d" were determined from the best curve-fitting to the power-law relation. The convection heat transfer predictions from the empirical correlations were found to be in consistent with those predictions made by a number of correlations published in the open literature. A simple technique is then proposed to employ two experimental data from the probe to refine empirical correlations as the operational conditions change. A flexible technique to update correlations is of prime significance requirement in thermal design and operation of BIPV modules. The work is in progress to further extend the correlation to predict the combined radiation and convection on inclined PVs and channels. 展开更多
关键词 Natural convection heat transfer PV BIPV experimental method empirical correlations.
在线阅读 下载PDF
Convection Heat Transfer from Heated Thin Cylinders Inside a Ventilated Enclosure
20
作者 Ali Riaz Adnan Ibrahim +3 位作者 Muhammad Sohail Bashir Muhammad Abdullah Ajmal Shah Abdul Quddus 《Semiconductor Science and Information Devices》 2022年第2期10-16,共7页
Experimental study was conducted to determine the effect of velocity of axial fan,outlet vent height,position,area,and aspect ratio(h/w)of ventilated enclosure on convection heat transfer.Rectangular wooden ventilated... Experimental study was conducted to determine the effect of velocity of axial fan,outlet vent height,position,area,and aspect ratio(h/w)of ventilated enclosure on convection heat transfer.Rectangular wooden ventilated enclosure having top and front transparent wall was made up of Perspex for visualization,and internal physical dimensions of box were 200 mm×200 mm×400 mm.Inlet vent was at bottom while outlet vents were at the side and top wall.Electrically heated cylindrical heat source having 6.1 slenderness ratio was fabricated and hanged at the centre of the enclosure.To calculate heat transfer rates,thermocouples were attached to the inner surface of heat source with silica gel.Heat source was operated at constant heat flux in order to quantify the effect of velocity of air on heat transfer.It was observed that average Nusselt number was increased from 68 to 216 by changing velocity from 0 to 3.34 m/s at constant modified Grashof number i.e.5.67E+09.While variation in outlet height at the front wall did not affect heat transfer in forced convection region.However,Nusselt number decreased to 5%by changing the outlet position from top to the front wall or by 50%reduction in outlet area during forced convection.Mean rise in temperature of enclosure increased from 8.19 K to 9.40 K by increasing aspect ratio of enclosure from 1.5 to 2 by operating heat source at constant heat flux i.e.541.20 w/m^(2). 展开更多
关键词 EXPERIMENTATION Ventilated enclosures convection heat transfer Dimensionless data
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部