X-style arch bridge on high-speed railways(HSR)is one kind of complicated long-span structure,and the track-bridge interaction is essential to ensure the safety and smoothness of HSR.Taking an X-style steel-box arch b...X-style arch bridge on high-speed railways(HSR)is one kind of complicated long-span structure,and the track-bridge interaction is essential to ensure the safety and smoothness of HSR.Taking an X-style steel-box arch bridge with a main span of450 m on HSR under construction for example,a new integrative mechanic model of rail-stringer-cross beam-suspenderpier-foundation coupling system was established,adopting the nonlinear spring element simulating the longitudinal resistance between track and bridge.The transmission law of continuous welded rail(CWR)on the X-style arch bridge was researched,and comparative study was carried out to discuss the influence of several sensitive factors,such as the temperature load case,the longitudinal resistance model,the scheme of longitudinal restraint conditions,the introverted inclination of arch rib,the stiffness of pier and abutment and the location of the rail expansion device.Calculating results indicate that the longitudinal resistance has a significant impact upon the longitudinal forces of CWR on this kind of bridge,while the arch rib’s inclination has little effect.Besides,temperature variation of arch ribs and suspenders should be taken into account in the calculation.Selecting the restraint system without longitudinally-fixed bearing and setting the rail expansion devices on both ends are more reasonable.展开更多
The paper summarizes the four different construction schemes based on engineering cases for the arch rib construction of continuous beam-arch composite bridges for high-speed railways.These methods include in-situ ass...The paper summarizes the four different construction schemes based on engineering cases for the arch rib construction of continuous beam-arch composite bridges for high-speed railways.These methods include in-situ assembly,segmental lifting,incremental launching and longitudinal moving,and vertical rotation.The temporary structural designs,process methods,and technological equipment for each construction scheme are described in detail.The advantages and disadvantages of each scheme and its application scope under various conditions are analyzed,and opinions and suggestions for guiding the application of each scheme are proposed.The comparison and selection analyses show that the four arch rib construction schemes have certain applicability under different conditions such as bridge site status,bridge span,and construction environment.With the continuous increase of bridge span and progress of construction technological equipment,the arch rib construction technology is developing towards the overall erection direction.This leads to more obvious technical advantages of the segmental lifting method,incremental launching and longitudinal moving method,and vertical rotation method.Therefore,it is necessary to select the best construction scheme according to the construction status and technical conditions during application.展开更多
Purpose–Under different ground motion excitation modes,the spatial coupling effect of seismic response for the arch bridge with thrust,seismic weak parts and the internal force components of the control section of ma...Purpose–Under different ground motion excitation modes,the spatial coupling effect of seismic response for the arch bridge with thrust,seismic weak parts and the internal force components of the control section of main arch ribs are analyzed.Design/methodology/approach–Taking a 490 m deck type railway steel truss arch bridge as the background,the dynamic calculation model of the whole bridge was established by SAP2000 software.The seismic response analyses under one-,two-and three-dimension(1D,2D and 3D)uniform ground motion excitations were carried out.Findings–For the steel truss arch bridge composed of multiple arch ribs,any single direction ground motion excitation will cause large axial force in the chord of arch rib.The axial force caused by transverse and vertical ground motion excitation in the chord of arch crown area is 1.4–3.6 times of the corresponding axial force under longitudinal seismic excitation.The in-plane bending moment caused by the lower chord at the vault is 4.2–5.5 times of the corresponding bending moment under the longitudinal seismic excitation.For the bottom chord of arch rib,the arch foot is the weak part of earthquake resistance,but for the upper chord of arch rib,the arch foot,arch crown and the intersection of column and upper chord can all be the potential earthquake-resistant weak parts.The normal stress of the bottom chord of the arch rib under multidimensional excitation is mainly caused by the axial force,but the normal stress of the upper chord of the arch rib is caused by the axial force,in-plane and out of plane bending moment.Originality/value–The research provides specific suggestions for ground motion excitation mode and also provides reference information for the earthquake-resistant weak part and seismic design of long-span deck type railway steel truss arch bridges.展开更多
Corbels support the crossbeams of half-through arch bridges. They are prone to cracking easily due to their characteristics and complicated loading conditions. Based on a practical diagnosis of a bridge crossbeam, we ...Corbels support the crossbeams of half-through arch bridges. They are prone to cracking easily due to their characteristics and complicated loading conditions. Based on a practical diagnosis of a bridge crossbeam, we bonded steel plates onto bridge corbels to strengthen them. We carried out a numerical analysis on the effectiveness of the reinforcement by using the commercial sof^are ANSYS. The numerical analysis shows that the stresses near the section break increased slightly, but the variation amplitude was small and all the stresses were within an allowable range. The loading test indicates that it is feasible to strengthen the corbel with vertical bonded steel plates. Therefore, the reinforcement is effective and economical. This reinforcement method is suitable for this type of corbel and can be applied in similar cases.展开更多
This work describes the seismic vulnerability assessment of a railway masonry arch bridge.Its conservation state is initially investigated by means of a thorough field and laboratory test campaign, comprising destruct...This work describes the seismic vulnerability assessment of a railway masonry arch bridge.Its conservation state is initially investigated by means of a thorough field and laboratory test campaign, comprising destructive and non-destructive tests. Two different methods are used to evaluate the bridge seismic vulnerability. The first method adopts a deterministic approach and corresponds to a single non-linear static analysis, performed as described in the Eurocodes. The second method employs a probabilistic approach and considers the variability of the involved mechanical parameters(structure geometry and properties of the building materials) and seismic parameters(intensity of the action and site conditions). This method associates the probabilistic values of ground acceleration exceedance to the estimated seismic vulnerability. This is shown by means of fragility curves, which allow to take into consideration the uncertainty of the various components involved in the definition of the seismic vulnerability and display the seismic damage scenarios. Currently no code requires to perform this calculation procedure. In addition,this work compares the values of masonry mechanical properties specified in the Eurocodes with those obtained in an extensive investigation campaign involving more than one hundred masonry bridges. Compressive strength and longitudinal elasticity modulus are the relevant mechanical parameters investigated. The outcomes of this research can contribute to the development of a more efficient maintenance system of the masonry bridges belonging to the railway network. This has an important role when it comes to establishing the priority order of assets intervention.展开更多
基金Projects(51378503,51178471) supported by the National Natural Science Foundation of China
文摘X-style arch bridge on high-speed railways(HSR)is one kind of complicated long-span structure,and the track-bridge interaction is essential to ensure the safety and smoothness of HSR.Taking an X-style steel-box arch bridge with a main span of450 m on HSR under construction for example,a new integrative mechanic model of rail-stringer-cross beam-suspenderpier-foundation coupling system was established,adopting the nonlinear spring element simulating the longitudinal resistance between track and bridge.The transmission law of continuous welded rail(CWR)on the X-style arch bridge was researched,and comparative study was carried out to discuss the influence of several sensitive factors,such as the temperature load case,the longitudinal resistance model,the scheme of longitudinal restraint conditions,the introverted inclination of arch rib,the stiffness of pier and abutment and the location of the rail expansion device.Calculating results indicate that the longitudinal resistance has a significant impact upon the longitudinal forces of CWR on this kind of bridge,while the arch rib’s inclination has little effect.Besides,temperature variation of arch ribs and suspenders should be taken into account in the calculation.Selecting the restraint system without longitudinally-fixed bearing and setting the rail expansion devices on both ends are more reasonable.
文摘The paper summarizes the four different construction schemes based on engineering cases for the arch rib construction of continuous beam-arch composite bridges for high-speed railways.These methods include in-situ assembly,segmental lifting,incremental launching and longitudinal moving,and vertical rotation.The temporary structural designs,process methods,and technological equipment for each construction scheme are described in detail.The advantages and disadvantages of each scheme and its application scope under various conditions are analyzed,and opinions and suggestions for guiding the application of each scheme are proposed.The comparison and selection analyses show that the four arch rib construction schemes have certain applicability under different conditions such as bridge site status,bridge span,and construction environment.With the continuous increase of bridge span and progress of construction technological equipment,the arch rib construction technology is developing towards the overall erection direction.This leads to more obvious technical advantages of the segmental lifting method,incremental launching and longitudinal moving method,and vertical rotation method.Therefore,it is necessary to select the best construction scheme according to the construction status and technical conditions during application.
基金supported by the National Natural Science Foundation of China(Grant No.51768037)“Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University.”。
文摘Purpose–Under different ground motion excitation modes,the spatial coupling effect of seismic response for the arch bridge with thrust,seismic weak parts and the internal force components of the control section of main arch ribs are analyzed.Design/methodology/approach–Taking a 490 m deck type railway steel truss arch bridge as the background,the dynamic calculation model of the whole bridge was established by SAP2000 software.The seismic response analyses under one-,two-and three-dimension(1D,2D and 3D)uniform ground motion excitations were carried out.Findings–For the steel truss arch bridge composed of multiple arch ribs,any single direction ground motion excitation will cause large axial force in the chord of arch rib.The axial force caused by transverse and vertical ground motion excitation in the chord of arch crown area is 1.4–3.6 times of the corresponding axial force under longitudinal seismic excitation.The in-plane bending moment caused by the lower chord at the vault is 4.2–5.5 times of the corresponding bending moment under the longitudinal seismic excitation.For the bottom chord of arch rib,the arch foot is the weak part of earthquake resistance,but for the upper chord of arch rib,the arch foot,arch crown and the intersection of column and upper chord can all be the potential earthquake-resistant weak parts.The normal stress of the bottom chord of the arch rib under multidimensional excitation is mainly caused by the axial force,but the normal stress of the upper chord of the arch rib is caused by the axial force,in-plane and out of plane bending moment.Originality/value–The research provides specific suggestions for ground motion excitation mode and also provides reference information for the earthquake-resistant weak part and seismic design of long-span deck type railway steel truss arch bridges.
文摘Corbels support the crossbeams of half-through arch bridges. They are prone to cracking easily due to their characteristics and complicated loading conditions. Based on a practical diagnosis of a bridge crossbeam, we bonded steel plates onto bridge corbels to strengthen them. We carried out a numerical analysis on the effectiveness of the reinforcement by using the commercial sof^are ANSYS. The numerical analysis shows that the stresses near the section break increased slightly, but the variation amplitude was small and all the stresses were within an allowable range. The loading test indicates that it is feasible to strengthen the corbel with vertical bonded steel plates. Therefore, the reinforcement is effective and economical. This reinforcement method is suitable for this type of corbel and can be applied in similar cases.
基金supported by a collaboration between Sapienza University of Rome and Standard Infrastructure Civil and Experimental, Italian Railway Network (RFI)
文摘This work describes the seismic vulnerability assessment of a railway masonry arch bridge.Its conservation state is initially investigated by means of a thorough field and laboratory test campaign, comprising destructive and non-destructive tests. Two different methods are used to evaluate the bridge seismic vulnerability. The first method adopts a deterministic approach and corresponds to a single non-linear static analysis, performed as described in the Eurocodes. The second method employs a probabilistic approach and considers the variability of the involved mechanical parameters(structure geometry and properties of the building materials) and seismic parameters(intensity of the action and site conditions). This method associates the probabilistic values of ground acceleration exceedance to the estimated seismic vulnerability. This is shown by means of fragility curves, which allow to take into consideration the uncertainty of the various components involved in the definition of the seismic vulnerability and display the seismic damage scenarios. Currently no code requires to perform this calculation procedure. In addition,this work compares the values of masonry mechanical properties specified in the Eurocodes with those obtained in an extensive investigation campaign involving more than one hundred masonry bridges. Compressive strength and longitudinal elasticity modulus are the relevant mechanical parameters investigated. The outcomes of this research can contribute to the development of a more efficient maintenance system of the masonry bridges belonging to the railway network. This has an important role when it comes to establishing the priority order of assets intervention.