This study proposes a Green's function, an essential representation of water-saturated ground under moving excitation, to simulate ground borne vibration from trains. First, general solutions to the governing equatio...This study proposes a Green's function, an essential representation of water-saturated ground under moving excitation, to simulate ground borne vibration from trains. First, general solutions to the governing equations of poroelastic medium are derived by means of integral transform. Secondly, the transmission and reflection matrix approach is used to formulate the relationship between displacement and stress of the stratified ground, which results in the matrix of the Green's function. Then the Green's function is combined into a train-track-ground model, and is verified by typical examples and a field test. Additional simulations show that the computed ground vibration attenuates faster in the immediate vicinity of the track than in the surrounding area. The wavelength of wheel-rail unevenness has a notable effect on computed displacement and pore pressure. The variation of vibration intensity with the depth of ground is significantly influenced by the layering of the strata soil. When the train speed is equal to the velocity of the Rayleigh wave, the Mach cone appears in the simulated wave field. The proposed Green's function is an appropriate representation for a layered ground with shallow ground water table, and will be helpful to understand the dynamic responses of the ground to complicated moving excitation.展开更多
The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-s...The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-space.The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces,which are then applied to the total system with the opposite sign.By adding solutions restricted in the loaded layer to solutions from the reaction forces,the global solutions in the wavenumber domain are obtained,and the dynamic Green’s functions in the space domain are recovered by the inverse Fourier transform.The presented formulations can be reduced to the isotropic case developed by Wolf(1985),and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI halfspace subjected to horizontally distributed loads which are special cases of the more general problem addressed.The deduced Green’s functions,in conjunction with boundary element methods,will lead to significant advances in the investigation of a variety of wave scattering,wave radiation and soil-structure interaction problems in a layered TI site.Selected numerical results are given to investigate the influence of material anisotropy,frequency of excitation,inclination angle and layered on the responses of displacement and stress,and some conclusions are drawn.展开更多
In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general soluti...In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general solutions of displacements and stresses.Then,we obtain the analytical solutions of half-space and bimaterial Green’s functions.Besides,the interfacial Green’s function for bimaterials is also obtained in the analytical form.Before numerical studies,a comparative study is carried out to validate the present solutions.Typical numerical examples are performed to investigate the effects of multi-physics loadings such as the line force,the line dislocation,the line charge,and the phason line force.As a result,the coupling effect among the phonon field,the phason field,and the electric field is prominent,and the butterfly-shaped contours are characteristic in 2D PQCs.In addition,the changes of material parameters cause variations in physical quantities to a certain degree.展开更多
In this paper, as is studied are the electro-elastic solutions for a piezoelectric halfspace subjected Io a line force, a line charge and a line dislocation, i. e.. Green sfunclions on the basis of Stroh formalism and...In this paper, as is studied are the electro-elastic solutions for a piezoelectric halfspace subjected Io a line force, a line charge and a line dislocation, i. e.. Green sfunclions on the basis of Stroh formalism and the concept of analytical continuation,explicit expressions for Green's functions are derived. As a direct application of theresults obtained, an infinite piezoelectric solid containing a semi-infinite crack isexammed. Attention iffocused on the stress and electric displacement fields of a cracktip. The stress and electric displacement intensity .factors are given explicitly.展开更多
Based on the solutions of the Green's function for a saturated porous medium obtained by the authors, and using transformation of axisymmetric coordinates, Sommerfeld integrals and superposition of the influence fiel...Based on the solutions of the Green's function for a saturated porous medium obtained by the authors, and using transformation of axisymmetric coordinates, Sommerfeld integrals and superposition of the influence field on a free surface, the authors have obtained displacement solutions of a saturated porous medium subjected to a torsional force in a half-space. The relationship curves of the displacement solutions and various parameters (permeability, frequency, etc.) under action of a unit of torque are also given in this paper. The results are consistent with previous Reissner's solutions, where a two-phase medium decays to a single-phase medium. The solution is useful in solving relevant dynamic problems of a two- phase saturated medium in engineering.展开更多
The structure of a microwave radiator used for medical purposes is described. The dyadic Green's function and the method are used to analyze this Kind of multimode rectangular medium-filled cavity. The distributio...The structure of a microwave radiator used for medical purposes is described. The dyadic Green's function and the method are used to analyze this Kind of multimode rectangular medium-filled cavity. The distribution of electromagnetic field intensity and the power density,as well as the temperature effect in the biological sample load are obtained.OPtimization of the size of cavity and the position of the input aperture have been performed with the computer to optimize the uniformity or microwave effect and the input VSWR.Necessary experiments were performed to compare the data obtained with theoretical analysis.展开更多
Half-space Green's function due to a spatially harmonic line load has been expressed as a sum of the full-space Green's functions and a 2-D integral representation of the reflected waves by the free surface of...Half-space Green's function due to a spatially harmonic line load has been expressed as a sum of the full-space Green's functions and a 2-D integral representation of the reflected waves by the free surface of the half-space.By using the obtained half-space Green's function,an integral rep- resentation of the scattered waves by a cylindrical obstacle is then derived.Finally,by analyzing the far-zone behavior of the integrands of the integral representation.the far-field pattern of the scattered waves in a half-space obtained.展开更多
Few studies of wave propagation in layered saturated soils have been reported in the literature.In this paper,a general solution of the equation of wave motion in saturated soils,based on one kind of practical Blot...Few studies of wave propagation in layered saturated soils have been reported in the literature.In this paper,a general solution of the equation of wave motion in saturated soils,based on one kind of practical Blot's equation, was deduced by introducing wave potentials.Then exact dynamic-stiffness matrices for a poroelastic soil layer and half- space were derived,which extended Wolf's theory for an elastic layered site to the case of poroelasticity,thus resolving a fundamental problem in the field of wave propagation and soil-structure interaction in a poroelastic layered soil site.By using the integral transform method,Green's functions of horizontal and vertical uniformly distributed loads in a poroelastic layered soil site were given.Finally,the theory was verified by numerical examples and dynamic responses by comparing three different soil sites.This study has the following advantages:all parameters in the dynamic-stiffness matrices have explicitly physical meanings and the thickness of the sub-layers does not affect the precision of the calculation which is very convenient for engineering applications.The present theory can degenerate into Wolf's theory and yields numerical results approaching those for an ideal elastic layered site when porosity tends to zero.展开更多
The solutions of Green’s function are significant for simplification of problem on a two-phase saturated medium.Using transformation of axisymmetric cylindrical coordinate and Sommerfeld’s integral,superposition of ...The solutions of Green’s function are significant for simplification of problem on a two-phase saturated medium.Using transformation of axisymmetric cylindrical coordinate and Sommerfeld’s integral,superposition of the influence field on a free surface,authors obtained the solutions of a two-phase saturated medium subjected to a concentrated force on the semi-space.展开更多
In dealing with the square lattice model,we replace the traditionally needed Born-Von Karmann periodic boundary condition with additional Hamiltonian terms to make up a ring lattice.In doing so,the lattice Green's...In dealing with the square lattice model,we replace the traditionally needed Born-Von Karmann periodic boundary condition with additional Hamiltonian terms to make up a ring lattice.In doing so,the lattice Green's function of an infinite square lattice in the second nearest-neighbour interaction approximation can be derived by means of the matrix Green's function method.It is shown that the density of states may change when the second nearest-neighbour interaction is turned on.展开更多
A new type of dual boundary integral equations(DBIE)is presented first,through which,a smaller system of equations needs to be solved in fracture analysis.Then a non-conforming crack tip element in two-dimensional pro...A new type of dual boundary integral equations(DBIE)is presented first,through which,a smaller system of equations needs to be solved in fracture analysis.Then a non-conforming crack tip element in two-dimensional problems is proposed.The exact formula for the hypersingular integral over the non-con- forming crack tip element is given next.By virtue of Green's-function-library strategy,a series of stress in- tensity factors(SIF)of different crack orientations,locations and/or sizes in a complicated structure can be obtained easily and efficiently.Finally,several examples of fracture analysis in two dimensions are given to demonstrate the accuracy and efficiency of the method proposed.展开更多
Using the entangled state representation we present a formulation of Green'sfunction in solving Schrodinger equation for bipartite system with kinetic coupling.
The problem of three-dimensional(3D) acoustic scattering in a complex medium has aroused considerable interest of researchers for many years. An ultrasonic scattered field calculating technique is proposed to study th...The problem of three-dimensional(3D) acoustic scattering in a complex medium has aroused considerable interest of researchers for many years. An ultrasonic scattered field calculating technique is proposed to study the scattering echo from strongly scattered materials in a two-layer medium in this work. Firstly, with the high frequency stationary phase method,the Green's function of two-layer fluid media is derived. And then based on the idea of integral equation discretization,the Green's function method is extended to two-layer fluid media to derive the scattering field expression of defects in a complex medium. With this method, the scattering field of 3D defect in a two-layer medium is calculated and the characteristics of received echoes are studied. The results show that this method is able to solve the scattering P wave field of 3D defect with arbitrary shape at any scattering intensity in two-layer media. Considering the circumstance of waterimmersion ultrasonic non-destructive test(NDT), the scattering sound field characteristics of different types of defects are analyzed by simulation, which will help to optimize the detection scheme and corresponding imaging method in practice so as to improve the detection quality.展开更多
The generalized 2-D problem of a half-infinite interfacial electrode layer between two arbitrary piezoelectric half-spaces is studied. Based on the Stroh formalism, exact expressions for the (Green's) functions of...The generalized 2-D problem of a half-infinite interfacial electrode layer between two arbitrary piezoelectric half-spaces is studied. Based on the Stroh formalism, exact expressions for the (Green's) functions of a line force, a line charge and a line electric dipole applied at an arbitrary point near the electrode edge,were presented, respectively. The corresponding solutions for the intensity factors of fields were also obtained in an explicit form. These results can be used as the foundational solutions in boundary element method (BEM) to solve more complicated fracture problems of piezoelectric composites.展开更多
In this paper, a model of transversely isotropic elastic strata is used to simulate the soil layers situated on a half space. Instead of the half space, an artificial transmitting boundary is used to absorb the vibrat...In this paper, a model of transversely isotropic elastic strata is used to simulate the soil layers situated on a half space. Instead of the half space, an artificial transmitting boundary is used to absorb the vibration energy. The displacement formulas at any soil layer interface under vertical or horizontal harmonic ring loads are obtained by using the thin layer element method. From these formulas, the explicit solutions of Green's functions_the displacement responses at any interface of these strata under vertical and horizon harmonic point loads_are derived. The examples show that the method presented in this paper is close to the theoretical method and the transversely isotropic property has evident influence on the Green's functions.展开更多
By using Stroh's formalism and the conformal mapping technique,this paper derives simple exphcit Green's functions of a piezoelectric anisotropic body with a free or fixed hyperbolic boundary.The corresponding...By using Stroh's formalism and the conformal mapping technique,this paper derives simple exphcit Green's functions of a piezoelectric anisotropic body with a free or fixed hyperbolic boundary.The corresponding elastic fields in the medium are obtained,too.In particular,degenerated solutions of an ex- ternal crack from those of a hyperbolic problem are analysed in detail.Then the singular stress fields and the fracture mechanics parameters are found.The solutions obtained are valid not only for plane and antiplane problems but also for the coupled ones between inplane and outplane deformations.展开更多
An approximate three-dimensional closed-form Green's function with the type of exponential function is derived over a lossy multilayered substrate by means of the Fourier transforms and a novel complex fitting app...An approximate three-dimensional closed-form Green's function with the type of exponential function is derived over a lossy multilayered substrate by means of the Fourier transforms and a novel complex fitting approach. This Green's function is used to extract the capacitance matrix for an arbitrary three-dimensional arrangement of conductors located anywhere in the silicon IC substrate. Using this technique, the substrate loss in silicon integrated circuits can be analyzed. An example of inductor modeling is presented to show that the technique is quite effective.展开更多
By using Stroh's formalism and the conformal mapping technique,we derive the simple ex- plicit elastic fields of a generalized line dislocation and a generalized line force in a general anisotropic piezo- electric...By using Stroh's formalism and the conformal mapping technique,we derive the simple ex- plicit elastic fields of a generalized line dislocation and a generalized line force in a general anisotropic piezo- electric strip with fixed surfaces,which are two fixed conductor electrodes.The solutions obtained are usually considered as Green's functions which play important roles in the boundary element methods.The Coulomb forces of the distributed charges along the region boundaries on the line charge q at z^0 are analysed in detail. The results are valid not only for plane and antiplane problems but also for the coupled problems between in- plane and outplane deformations.展开更多
Restricted Boltzmann machine(RBM)has been proposed as a powerful variational ansatz to represent the ground state of a given quantum many-body system.On the other hand,as a shallow neural network,it is found that the ...Restricted Boltzmann machine(RBM)has been proposed as a powerful variational ansatz to represent the ground state of a given quantum many-body system.On the other hand,as a shallow neural network,it is found that the RBM is still hardly able to capture the characteristics of systems with large sizes or complicated interactions.In order to find a way out of the dilemma,here,we propose to adopt the Green's function Monte Carlo(GFMC)method for which the RBM is used as a guiding wave function.To demonstrate the implementation and effectiveness of the proposal,we have applied the proposal to study the frustrated J_(1)-J_(2)Heisenberg model on a square lattice,which is considered as a typical model with sign problem for quantum Monte Carlo simulations.The calculation results demonstrate that the GFMC method can significantly further reduce the relative error of the ground-state energy on the basis of the RBM variational results.This encourages to combine the GFMC method with other neural networks like convolutional neural networks for dealing with more models with sign problem in the future.展开更多
This paper presents an indirect boundary integration equation method for diffraction of plane SV waves by a 2-D cavity in a poroelastic half-space.The Green's functions of compressive and shear wave sources are deriv...This paper presents an indirect boundary integration equation method for diffraction of plane SV waves by a 2-D cavity in a poroelastic half-space.The Green's functions of compressive and shear wave sources are derived based on Biot's theory. The scattered waves are constructed using fictitious wave sources close to the boundary of the cavity, and their magnitudes are determined by the boundary conditions. Verification of the accuracy is performed by: (1) checking the satisfaction extent of the boundary conditions, (2) comparing the degenerated solutions of a single-phased case with well- known solutions, and (3) examining the numerical stability of the solutions. The nature of diffraction of plane SV waves around a cavity in a poroelastic half-space is investigated by numerical examples.展开更多
基金National Natural Science Foundation of China Key Project,under Grant No.50538030Postdoctoral Science Foundation of China under Grant No.2013M531084Natural Science Foundation of Heilongjiang Province of China under Grant No.E201221
文摘This study proposes a Green's function, an essential representation of water-saturated ground under moving excitation, to simulate ground borne vibration from trains. First, general solutions to the governing equations of poroelastic medium are derived by means of integral transform. Secondly, the transmission and reflection matrix approach is used to formulate the relationship between displacement and stress of the stratified ground, which results in the matrix of the Green's function. Then the Green's function is combined into a train-track-ground model, and is verified by typical examples and a field test. Additional simulations show that the computed ground vibration attenuates faster in the immediate vicinity of the track than in the surrounding area. The wavelength of wheel-rail unevenness has a notable effect on computed displacement and pore pressure. The variation of vibration intensity with the depth of ground is significantly influenced by the layering of the strata soil. When the train speed is equal to the velocity of the Rayleigh wave, the Mach cone appears in the simulated wave field. The proposed Green's function is an appropriate representation for a layered ground with shallow ground water table, and will be helpful to understand the dynamic responses of the ground to complicated moving excitation.
基金National Natural Science Foundation of China under grant No.51578373 and 51578372the Natural Science Foundation of Tianjin Municipality under Grant No.16JCYBJC21600
文摘The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-space.The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces,which are then applied to the total system with the opposite sign.By adding solutions restricted in the loaded layer to solutions from the reaction forces,the global solutions in the wavenumber domain are obtained,and the dynamic Green’s functions in the space domain are recovered by the inverse Fourier transform.The presented formulations can be reduced to the isotropic case developed by Wolf(1985),and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI halfspace subjected to horizontally distributed loads which are special cases of the more general problem addressed.The deduced Green’s functions,in conjunction with boundary element methods,will lead to significant advances in the investigation of a variety of wave scattering,wave radiation and soil-structure interaction problems in a layered TI site.Selected numerical results are given to investigate the influence of material anisotropy,frequency of excitation,inclination angle and layered on the responses of displacement and stress,and some conclusions are drawn.
基金the National Natural Science Foundation of China(Nos.11972365 and 12102458)。
文摘In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general solutions of displacements and stresses.Then,we obtain the analytical solutions of half-space and bimaterial Green’s functions.Besides,the interfacial Green’s function for bimaterials is also obtained in the analytical form.Before numerical studies,a comparative study is carried out to validate the present solutions.Typical numerical examples are performed to investigate the effects of multi-physics loadings such as the line force,the line dislocation,the line charge,and the phason line force.As a result,the coupling effect among the phonon field,the phason field,and the electric field is prominent,and the butterfly-shaped contours are characteristic in 2D PQCs.In addition,the changes of material parameters cause variations in physical quantities to a certain degree.
文摘In this paper, as is studied are the electro-elastic solutions for a piezoelectric halfspace subjected Io a line force, a line charge and a line dislocation, i. e.. Green sfunclions on the basis of Stroh formalism and the concept of analytical continuation,explicit expressions for Green's functions are derived. As a direct application of theresults obtained, an infinite piezoelectric solid containing a semi-infinite crack isexammed. Attention iffocused on the stress and electric displacement fields of a cracktip. The stress and electric displacement intensity .factors are given explicitly.
基金National Natural Science Foundation of China Under Grant No.11172268
文摘Based on the solutions of the Green's function for a saturated porous medium obtained by the authors, and using transformation of axisymmetric coordinates, Sommerfeld integrals and superposition of the influence field on a free surface, the authors have obtained displacement solutions of a saturated porous medium subjected to a torsional force in a half-space. The relationship curves of the displacement solutions and various parameters (permeability, frequency, etc.) under action of a unit of torque are also given in this paper. The results are consistent with previous Reissner's solutions, where a two-phase medium decays to a single-phase medium. The solution is useful in solving relevant dynamic problems of a two- phase saturated medium in engineering.
文摘The structure of a microwave radiator used for medical purposes is described. The dyadic Green's function and the method are used to analyze this Kind of multimode rectangular medium-filled cavity. The distribution of electromagnetic field intensity and the power density,as well as the temperature effect in the biological sample load are obtained.OPtimization of the size of cavity and the position of the input aperture have been performed with the computer to optimize the uniformity or microwave effect and the input VSWR.Necessary experiments were performed to compare the data obtained with theoretical analysis.
文摘Half-space Green's function due to a spatially harmonic line load has been expressed as a sum of the full-space Green's functions and a 2-D integral representation of the reflected waves by the free surface of the half-space.By using the obtained half-space Green's function,an integral rep- resentation of the scattered waves by a cylindrical obstacle is then derived.Finally,by analyzing the far-zone behavior of the integrands of the integral representation.the far-field pattern of the scattered waves in a half-space obtained.
基金National Natural Science Foundation of China Under Grant No.50378063
文摘Few studies of wave propagation in layered saturated soils have been reported in the literature.In this paper,a general solution of the equation of wave motion in saturated soils,based on one kind of practical Blot's equation, was deduced by introducing wave potentials.Then exact dynamic-stiffness matrices for a poroelastic soil layer and half- space were derived,which extended Wolf's theory for an elastic layered site to the case of poroelasticity,thus resolving a fundamental problem in the field of wave propagation and soil-structure interaction in a poroelastic layered soil site.By using the integral transform method,Green's functions of horizontal and vertical uniformly distributed loads in a poroelastic layered soil site were given.Finally,the theory was verified by numerical examples and dynamic responses by comparing three different soil sites.This study has the following advantages:all parameters in the dynamic-stiffness matrices have explicitly physical meanings and the thickness of the sub-layers does not affect the precision of the calculation which is very convenient for engineering applications.The present theory can degenerate into Wolf's theory and yields numerical results approaching those for an ideal elastic layered site when porosity tends to zero.
基金supported by the National Natural Science Foundation of China (10572129)
文摘The solutions of Green’s function are significant for simplification of problem on a two-phase saturated medium.Using transformation of axisymmetric cylindrical coordinate and Sommerfeld’s integral,superposition of the influence field on a free surface,authors obtained the solutions of a two-phase saturated medium subjected to a concentrated force on the semi-space.
文摘In dealing with the square lattice model,we replace the traditionally needed Born-Von Karmann periodic boundary condition with additional Hamiltonian terms to make up a ring lattice.In doing so,the lattice Green's function of an infinite square lattice in the second nearest-neighbour interaction approximation can be derived by means of the matrix Green's function method.It is shown that the density of states may change when the second nearest-neighbour interaction is turned on.
基金the Aeronautical Science Foundation of China (No.99C53026).
文摘A new type of dual boundary integral equations(DBIE)is presented first,through which,a smaller system of equations needs to be solved in fracture analysis.Then a non-conforming crack tip element in two-dimensional problems is proposed.The exact formula for the hypersingular integral over the non-con- forming crack tip element is given next.By virtue of Green's-function-library strategy,a series of stress in- tensity factors(SIF)of different crack orientations,locations and/or sizes in a complicated structure can be obtained easily and efficiently.Finally,several examples of fracture analysis in two dimensions are given to demonstrate the accuracy and efficiency of the method proposed.
文摘Using the entangled state representation we present a formulation of Green'sfunction in solving Schrodinger equation for bipartite system with kinetic coupling.
基金Project supported by the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. ZDBS-LY-7023)。
文摘The problem of three-dimensional(3D) acoustic scattering in a complex medium has aroused considerable interest of researchers for many years. An ultrasonic scattered field calculating technique is proposed to study the scattering echo from strongly scattered materials in a two-layer medium in this work. Firstly, with the high frequency stationary phase method,the Green's function of two-layer fluid media is derived. And then based on the idea of integral equation discretization,the Green's function method is extended to two-layer fluid media to derive the scattering field expression of defects in a complex medium. With this method, the scattering field of 3D defect in a two-layer medium is calculated and the characteristics of received echoes are studied. The results show that this method is able to solve the scattering P wave field of 3D defect with arbitrary shape at any scattering intensity in two-layer media. Considering the circumstance of waterimmersion ultrasonic non-destructive test(NDT), the scattering sound field characteristics of different types of defects are analyzed by simulation, which will help to optimize the detection scheme and corresponding imaging method in practice so as to improve the detection quality.
文摘The generalized 2-D problem of a half-infinite interfacial electrode layer between two arbitrary piezoelectric half-spaces is studied. Based on the Stroh formalism, exact expressions for the (Green's) functions of a line force, a line charge and a line electric dipole applied at an arbitrary point near the electrode edge,were presented, respectively. The corresponding solutions for the intensity factors of fields were also obtained in an explicit form. These results can be used as the foundational solutions in boundary element method (BEM) to solve more complicated fracture problems of piezoelectric composites.
文摘In this paper, a model of transversely isotropic elastic strata is used to simulate the soil layers situated on a half space. Instead of the half space, an artificial transmitting boundary is used to absorb the vibration energy. The displacement formulas at any soil layer interface under vertical or horizontal harmonic ring loads are obtained by using the thin layer element method. From these formulas, the explicit solutions of Green's functions_the displacement responses at any interface of these strata under vertical and horizon harmonic point loads_are derived. The examples show that the method presented in this paper is close to the theoretical method and the transversely isotropic property has evident influence on the Green's functions.
文摘By using Stroh's formalism and the conformal mapping technique,this paper derives simple exphcit Green's functions of a piezoelectric anisotropic body with a free or fixed hyperbolic boundary.The corresponding elastic fields in the medium are obtained,too.In particular,degenerated solutions of an ex- ternal crack from those of a hyperbolic problem are analysed in detail.Then the singular stress fields and the fracture mechanics parameters are found.The solutions obtained are valid not only for plane and antiplane problems but also for the coupled ones between inplane and outplane deformations.
基金This project was supported by the Key Project of National Nature Science Foundation of China(69931020).
文摘An approximate three-dimensional closed-form Green's function with the type of exponential function is derived over a lossy multilayered substrate by means of the Fourier transforms and a novel complex fitting approach. This Green's function is used to extract the capacitance matrix for an arbitrary three-dimensional arrangement of conductors located anywhere in the silicon IC substrate. Using this technique, the substrate loss in silicon integrated circuits can be analyzed. An example of inductor modeling is presented to show that the technique is quite effective.
文摘By using Stroh's formalism and the conformal mapping technique,we derive the simple ex- plicit elastic fields of a generalized line dislocation and a generalized line force in a general anisotropic piezo- electric strip with fixed surfaces,which are two fixed conductor electrodes.The solutions obtained are usually considered as Green's functions which play important roles in the boundary element methods.The Coulomb forces of the distributed charges along the region boundaries on the line charge q at z^0 are analysed in detail. The results are valid not only for plane and antiplane problems but also for the coupled problems between in- plane and outplane deformations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11934020 and 11874421)the Natural Science Foundation of Beijing(Grant No.Z180013)。
文摘Restricted Boltzmann machine(RBM)has been proposed as a powerful variational ansatz to represent the ground state of a given quantum many-body system.On the other hand,as a shallow neural network,it is found that the RBM is still hardly able to capture the characteristics of systems with large sizes or complicated interactions.In order to find a way out of the dilemma,here,we propose to adopt the Green's function Monte Carlo(GFMC)method for which the RBM is used as a guiding wave function.To demonstrate the implementation and effectiveness of the proposal,we have applied the proposal to study the frustrated J_(1)-J_(2)Heisenberg model on a square lattice,which is considered as a typical model with sign problem for quantum Monte Carlo simulations.The calculation results demonstrate that the GFMC method can significantly further reduce the relative error of the ground-state energy on the basis of the RBM variational results.This encourages to combine the GFMC method with other neural networks like convolutional neural networks for dealing with more models with sign problem in the future.
基金Program for New Century Excellent Talents in University Under Grant No. NCET-05-0248the Key Program for Applied Basic Research of Tianjin Municipality Under Grant No. 07JCZDJC10100
文摘This paper presents an indirect boundary integration equation method for diffraction of plane SV waves by a 2-D cavity in a poroelastic half-space.The Green's functions of compressive and shear wave sources are derived based on Biot's theory. The scattered waves are constructed using fictitious wave sources close to the boundary of the cavity, and their magnitudes are determined by the boundary conditions. Verification of the accuracy is performed by: (1) checking the satisfaction extent of the boundary conditions, (2) comparing the degenerated solutions of a single-phased case with well- known solutions, and (3) examining the numerical stability of the solutions. The nature of diffraction of plane SV waves around a cavity in a poroelastic half-space is investigated by numerical examples.