Using the data of “A field experiment on landatmosphere interaction over arid region in Northwest China” carried out in Dunhuang of Gansu Province from May to June 2000;Characteristics of the atmospheric humidity ov...Using the data of “A field experiment on landatmosphere interaction over arid region in Northwest China” carried out in Dunhuang of Gansu Province from May to June 2000;Characteristics of the atmospheric humidity over desert and Gobi near oasis in the Northwest China Arid Region are analyzed. According to the difference of the characteristics in different wind directions, the impacts of oasis on atmospheric hydrological cycle over desert and Gobi near it are revealed. The relation of atmosphere inverse humidity and negative water vapor flux to wind direction and atmospheric stability is studied. It shows that distribution of the atmosphere inverse humidity is inconsistent with that of the negative water vapor flux;sometimes 1-hour-average value demonstrates the characteristic of counter-gradient transfer. And the diurnal variation of distribution of the counter-gradient transfer and the effect of atmospheric stability on the counter-gradient transfer are also given.展开更多
针对大气可降水量(Precipitable Water Vapor,PWV)精细化过程中插值算法的选取,本文系统性地分析了线性插值三角网法、克里金插值法、空间反距离(Inverse Distance Weighting,IDW)插值法3种方法,并提出了顾及GNSS水汽特性和站间距离的优...针对大气可降水量(Precipitable Water Vapor,PWV)精细化过程中插值算法的选取,本文系统性地分析了线性插值三角网法、克里金插值法、空间反距离(Inverse Distance Weighting,IDW)插值法3种方法,并提出了顾及GNSS水汽特性和站间距离的优化IDW插值方法.该方法通过分析GNSS站点距离与大气水汽分布特性对插值结果的影响,进而对插值参数进行优化,使插值结果靠近高精度的观测值.利用2017年5—7月徐州连续运行参考站的GNSS实测数据与探空站数据对该方法进行分析,实验结果表明:顾及GNSS水汽特性和站间距离的优化IDW插值方法的标准差、平均绝对误差、平均相对误差、均方根误差都要低于其他3种经典插值方法,其中均方根误差分别降低了14.88%、15.70%、4.12%.此外,本文分析了暴雨天气下不同插值算法重构高分辨率大气水汽分布图的能力,发现采用优化IDW插值方法能够显著减小采样站点分布不均及降水量激增造成的插值误差.这表明优化方法有助于重构局部地区稀疏GNSS站网的高分辨率大气水汽分布图,改进监测能力.展开更多
Precipitable Water Vapor(PWV),as an important indicator of atmospheric water vapor,can be derived from Global Navigation Satellite System(GNSS)observations with the advantages of high precision and all-weather capacit...Precipitable Water Vapor(PWV),as an important indicator of atmospheric water vapor,can be derived from Global Navigation Satellite System(GNSS)observations with the advantages of high precision and all-weather capacity.GNSS-derived PWV with a high spatiotemporal resolution has become an important source of observations in mete-orology,particularly for severe weather conditions,for water vapor is not well sampled in the current meteorological observing systems.In this study,an empirical atmospheric weighted mean temperature(Tm)model for Guilin is estab-lished using the radiosonde data from 2012 to 2017.Then,the observations at 11 GNSS stations in Guilin are used to investigate the spatiotemporal features of GNSS-derived PWV under the heavy rainfalls from June to July 2017.The results show that the new Tm model in Guilin has better performance with the mean bias and Root Mean Square(RMS)of−0.51 and 2.12 K,respectively,compared with other widely used models.Moreover,the GNSS PWV estimates are validated with the data at Guilin radiosonde station.Good agreements are found between GNSS-derived PWV and radiosonde-derived PWV with the mean bias and RMS of−0.9 and 3.53 mm,respectively.Finally,an investigation on the spatiotemporal characteristics of GNSS PWV during heavy rainfalls in Guilin is performed.It is shown that variations of PWV retrieved from GNSS have a direct relationship with the in situ rainfall measurements,and the PWV increases sharply before the arrival of a heavy rainfall and decreases to a stable state after the cease of the rainfall.It also reveals the moisture variation in several regions of Guilin during a heavy rainfall,which is significant for the moni-toring of rainfalls and weather forecast.展开更多
文摘Using the data of “A field experiment on landatmosphere interaction over arid region in Northwest China” carried out in Dunhuang of Gansu Province from May to June 2000;Characteristics of the atmospheric humidity over desert and Gobi near oasis in the Northwest China Arid Region are analyzed. According to the difference of the characteristics in different wind directions, the impacts of oasis on atmospheric hydrological cycle over desert and Gobi near it are revealed. The relation of atmosphere inverse humidity and negative water vapor flux to wind direction and atmospheric stability is studied. It shows that distribution of the atmosphere inverse humidity is inconsistent with that of the negative water vapor flux;sometimes 1-hour-average value demonstrates the characteristic of counter-gradient transfer. And the diurnal variation of distribution of the counter-gradient transfer and the effect of atmospheric stability on the counter-gradient transfer are also given.
文摘针对大气可降水量(Precipitable Water Vapor,PWV)精细化过程中插值算法的选取,本文系统性地分析了线性插值三角网法、克里金插值法、空间反距离(Inverse Distance Weighting,IDW)插值法3种方法,并提出了顾及GNSS水汽特性和站间距离的优化IDW插值方法.该方法通过分析GNSS站点距离与大气水汽分布特性对插值结果的影响,进而对插值参数进行优化,使插值结果靠近高精度的观测值.利用2017年5—7月徐州连续运行参考站的GNSS实测数据与探空站数据对该方法进行分析,实验结果表明:顾及GNSS水汽特性和站间距离的优化IDW插值方法的标准差、平均绝对误差、平均相对误差、均方根误差都要低于其他3种经典插值方法,其中均方根误差分别降低了14.88%、15.70%、4.12%.此外,本文分析了暴雨天气下不同插值算法重构高分辨率大气水汽分布图的能力,发现采用优化IDW插值方法能够显著减小采样站点分布不均及降水量激增造成的插值误差.这表明优化方法有助于重构局部地区稀疏GNSS站网的高分辨率大气水汽分布图,改进监测能力.
基金the National Natural Foundation of China(41704027,41664002,41864002)the Guangxi Natural Science Foundation of China(2017GXNSFBA198139,2017GXNSFDA198016,2018GXNSFAA281182,2018GXNSFAA281279)the“Ba Gui Scholars”program of the provincial government of Guangxi,and the Open Fund of Hunan Natural Resources Investigation and Monitoring Engineering Technology Research Center(No:2020-9).
文摘Precipitable Water Vapor(PWV),as an important indicator of atmospheric water vapor,can be derived from Global Navigation Satellite System(GNSS)observations with the advantages of high precision and all-weather capacity.GNSS-derived PWV with a high spatiotemporal resolution has become an important source of observations in mete-orology,particularly for severe weather conditions,for water vapor is not well sampled in the current meteorological observing systems.In this study,an empirical atmospheric weighted mean temperature(Tm)model for Guilin is estab-lished using the radiosonde data from 2012 to 2017.Then,the observations at 11 GNSS stations in Guilin are used to investigate the spatiotemporal features of GNSS-derived PWV under the heavy rainfalls from June to July 2017.The results show that the new Tm model in Guilin has better performance with the mean bias and Root Mean Square(RMS)of−0.51 and 2.12 K,respectively,compared with other widely used models.Moreover,the GNSS PWV estimates are validated with the data at Guilin radiosonde station.Good agreements are found between GNSS-derived PWV and radiosonde-derived PWV with the mean bias and RMS of−0.9 and 3.53 mm,respectively.Finally,an investigation on the spatiotemporal characteristics of GNSS PWV during heavy rainfalls in Guilin is performed.It is shown that variations of PWV retrieved from GNSS have a direct relationship with the in situ rainfall measurements,and the PWV increases sharply before the arrival of a heavy rainfall and decreases to a stable state after the cease of the rainfall.It also reveals the moisture variation in several regions of Guilin during a heavy rainfall,which is significant for the moni-toring of rainfalls and weather forecast.