期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv7-tiny的PCB缺陷检测算法
1
作者 侯培国 韩超明 +1 位作者 李宁 宋涛 《燕山大学学报》 北大核心 2025年第2期167-176,共10页
针对现有PCB缺陷检测算法检测效率低、参数量大以及结构复杂的问题,提出了一种改进的YOLOv7-tiny算法。设计了多尺度捕获模块,通过多尺度特征捕获、上下文信息融合以及特征增强的方法,提高算法对图像特征提取的能力,改善CSPSPP层单一池... 针对现有PCB缺陷检测算法检测效率低、参数量大以及结构复杂的问题,提出了一种改进的YOLOv7-tiny算法。设计了多尺度捕获模块,通过多尺度特征捕获、上下文信息融合以及特征增强的方法,提高算法对图像特征提取的能力,改善CSPSPP层单一池化操作掩盖特征图内部有效信息的问题。提出了全局局部门控感知模块,通过选择性特征融合、局部与全局信息结合的方法,降低颈部网络的参数量。基于DeepPCB数据集进行实验得出,改进后的模型较传统模型精度提升了1.5%,参数量和计算量分别下降了66%和20.6%,模型规模降低了66.3%。改进后的算法识别精度高、参数量少、计算量小,可以为PCB缺陷的快速准确识别提供良好的条件。 展开更多
关键词 PCB表面缺陷检测 YOLOv7-tiny 多尺度捕获模块 全局局部门控感知模块 轻量化
在线阅读 下载PDF
基于ResNet-TSM和BiGRU网络的移动视频感知质量评价模型 被引量:1
2
作者 杜丽娜 杨硕 +2 位作者 卓力 张菁 李嘉锋 《北京工业大学学报》 CAS CSCD 北大核心 2024年第1期18-26,共9页
考虑到卡顿、质量切换、内容特征等因素对用户体验质量的影响都会直接体现在客户端的失真视频里,提出了一种客户端的移动视频感知质量评价模型。该模型无须对每种影响因素均进行表征和度量,而是基于深度特征提取+回归的思路,直接建立失... 考虑到卡顿、质量切换、内容特征等因素对用户体验质量的影响都会直接体现在客户端的失真视频里,提出了一种客户端的移动视频感知质量评价模型。该模型无须对每种影响因素均进行表征和度量,而是基于深度特征提取+回归的思路,直接建立失真视频与平均意见分数之间的映射模型。首先,构建了ResNet-TSM网络结构,提取失真视频片段的深度时空特征;为了避免维度灾难,采用LargeVis算法对提取的深度特征进行降维,同时提升特征的表达与区分能力。然后,采用双向门控循环单元网络对视频的长时间依赖关系进行建模,得到各视频片段的打分,再利用时间平均池化方法将各片段分数进行聚合,得到整个视频的打分结果。在WaterlooSQoE-Ⅲ和LIVE-NFLX-Ⅱ数据集上的实验结果表明,提出的模型可以获得更高的预测精度。 展开更多
关键词 视频感知质量评价 平均意见分数 卷积神经网络 时间移位模块 双向门控循环单元 深度时空特征
在线阅读 下载PDF
通过N-gram增强局部上下文视野感知的中文生成式摘要
3
作者 尹宝生 安鹏飞 《中文信息学报》 CSCD 北大核心 2022年第8期135-143,153,共10页
基于序列到序列模型的生成式文档摘要算法已经取得了良好的效果。鉴于中文N-gram蕴含着丰富的局部上下文信息,该文提出将N-gram信息整合到现有模型的神经框架NgramSum,即利用N-gram信息增强神经模型局部上下文语义感知能力。该框架以现... 基于序列到序列模型的生成式文档摘要算法已经取得了良好的效果。鉴于中文N-gram蕴含着丰富的局部上下文信息,该文提出将N-gram信息整合到现有模型的神经框架NgramSum,即利用N-gram信息增强神经模型局部上下文语义感知能力。该框架以现有的神经模型为主干,从本地语料库提取N-gram信息,提出了一个局部上下文视野感知增强模块和一个门模块,并来分别对这些信息进行编码和聚合。在NLPCC 2017中文单文档摘要评测数据集上的实验结果表明:该框架有效增强了基于LSTM、Transformer、预训练模型三种不同层次的序列到序列的强基线模型,其中ROUGE-1/2/L相较基线模型平均分别提高了2.76,3.25,3.10个百分点。进一步的实验和分析也证明了该框架在不同N-gram度量方面的鲁棒性。 展开更多
关键词 生成式文摘 N-GRAM 局部上下文视野感知增强 门模块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部