期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Catenary dropper fault identification based on improved FCOS algorithm
1
作者 GU Guimei WEN Bokang +1 位作者 JIA Yaohua ZHANG Cunjun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第4期571-578,共8页
The contact network dropper works in a harsh environment,and suffers from the impact effect of pantographs during running of trains,which may lead to faults such as slack and broken of the dropper wire and broken of t... The contact network dropper works in a harsh environment,and suffers from the impact effect of pantographs during running of trains,which may lead to faults such as slack and broken of the dropper wire and broken of the current-carrying ring.Due to the low intelligence and poor accuracy of the dropper fault detection network,an improved fully convolutional one-stage(FCOS)object detection network was proposed to improve the detection capability of the dropper condition.Firstly,by adjusting the parameterαin the network focus loss function,the problem of positive and negative sample imbalance in the network training process was eliminated.Secondly,the generalized intersection over union(GIoU)calculation was introduced to enhance the network’s ability to recognize the relative spatial positions of the prediction box and the bounding box during the regression calculation.Finally,the improved network was used to detect the status of dropper pictures.The detection speed was 150 sheets per millisecond,and the MAP of different status detection was 0.9512.Through the simulation comparison with other object detection networks,it was proved that the improved FCOS network had advantages in both detection time and accuracy,and could identify the state of dropper accurately. 展开更多
关键词 catenary dropper fully convolutional one-stage(FCOS)network defect identification generalized intersection over union(giou) focal loss
在线阅读 下载PDF
基于图像分割网络的深度假脸视频篡改检测 被引量:15
2
作者 胡永健 高逸飞 +1 位作者 刘琲贝 廖广军 《电子与信息学报》 EI CSCD 北大核心 2021年第1期162-170,共9页
随着深度学习技术的快速发展,利用深度神经网络模型伪造出的深度假脸(deepfake)视频越来越逼真,假脸视频造成的威胁也越来越大。文献中已出现一些基于卷积神经网络的换脸视频检测算法,他们在库内获得较好的检测效果,但跨库检测性能急剧... 随着深度学习技术的快速发展,利用深度神经网络模型伪造出的深度假脸(deepfake)视频越来越逼真,假脸视频造成的威胁也越来越大。文献中已出现一些基于卷积神经网络的换脸视频检测算法,他们在库内获得较好的检测效果,但跨库检测性能急剧下降,存在泛化能力不足的问题。该文从假脸篡改的机制出发,将视频换脸视为特殊的拼接篡改问题,利用流行的神经分割网络首先预测篡改区域,得到预测掩膜概率图,去噪并二值化,然后根据换脸主要发生在人脸区域的前提,提出一种计算人脸交并比的新方法,并进一步根据换脸处理的先验知识改进人脸交并比的计算,将其作为篡改检测的分类准则。所提出方法分别在3个不同的基础分割网络上实现,并在TIMIT,FaceForensics++,FFW数据库上进行了实验,与文献中流行的同类方法相比,在保持库内检测的高准确率同时,跨库检测的平均错误率显著下降。在近期发布的合成质量较高的DFD数据库上也获得了很好的检测性能,充分证明了所提出方法的有效性和通用性。 展开更多
关键词 假脸视频 图像分割网络 人脸交并比 信任机制 泛化能力
在线阅读 下载PDF
基于改进Faster R-CNN的钢轨踏面块状伤损检测方法 被引量:4
3
作者 罗晖 贾晨 +1 位作者 芦春雨 李健 《计算机应用》 CSCD 北大核心 2021年第3期904-910,共7页
针对钢轨踏面块状伤损存在的尺度变化大、样本数据集小的问题,提出了基于改进Faster R-CNN的钢轨踏面块状伤损检测方法。首先,基于ResNet-101基础网络结构来构建多尺度特征金字塔(FPN),以实现深、浅层特征信息的融合,从而提高了小尺度... 针对钢轨踏面块状伤损存在的尺度变化大、样本数据集小的问题,提出了基于改进Faster R-CNN的钢轨踏面块状伤损检测方法。首先,基于ResNet-101基础网络结构来构建多尺度特征金字塔(FPN),以实现深、浅层特征信息的融合,从而提高了小尺度伤损的检测精度;然后,采用广义交并比(GIoU)损失解决了Faster R-CNN中回归损失SmoothL1对预测边框位置不敏感问题;最后,提出引导锚定的区域提名网络(GA-RPN)方法,从而解决了区域生成网络(RPN)生成的锚点大量冗余而导致的检测网络训练中正负样本失衡问题。训练过程中,基于翻转、裁剪、噪声扰动等图像预处理方法对RSSDs数据集进行扩充,解决了钢轨踏面块状伤损训练样本不充足问题。实验结果表明,所提改进方法对钢轨踏面块状伤损检测的平均精度均值(mAP)可达到82.466%,相较于Faster R-CNN提高了13.201个百分点,能够更加准确地检测钢轨踏面块状伤损。 展开更多
关键词 钢轨踏面 块状伤损检测 Faster区域卷积神经网络 特征金字塔 广义交并比 区域建议网络
在线阅读 下载PDF
基于改进掩膜区域卷积神经网络的输电线路绝缘子自爆检测 被引量:22
4
作者 苟军年 杜愫愫 刘力 《电工技术学报》 EI CSCD 北大核心 2023年第1期47-59,共13页
由于背景复杂、目标所占像素比例较小,掩膜区域卷积神经网络(Mask R-CNN)模型对输电线路绝缘子缺陷检测能力不足,该文提出一种改进的MaskR-CNN模型。具体地,首先,在特征提取网络中引入卷积注意力模块(CBAM),分别从通道和空间提升小目标... 由于背景复杂、目标所占像素比例较小,掩膜区域卷积神经网络(Mask R-CNN)模型对输电线路绝缘子缺陷检测能力不足,该文提出一种改进的MaskR-CNN模型。具体地,首先,在特征提取网络中引入卷积注意力模块(CBAM),分别从通道和空间提升小目标特征保持性;其次,使用全局交并比(GIoU)计算目标间的相似度,提升定位准确性;最后,使用Tversky损失计算掩膜分支的损失,以提升不平衡样本下的检测效果。使用某输电运检中心无人机巡检作业所得具有自爆缺陷的绝缘子照片作为数据集对该模型进行验证,实验结果表明,与原始Mask R-CNN模型相比,该方法的平均精确率AP50:90、AP50和AP75分别提升至0.56、0.79和0.72;与三种经典目标检测算法相比,该算法具有较高的检测精度,模型的分割性能有一定提升,且比原始模型具有更好的鲁棒性,可以满足电力巡检中准确性和快速性的要求。 展开更多
关键词 绝缘子缺陷检测 掩膜区域卷积神经网络 卷积注意力模块 特征融合 全局交并比 Tversky损失
在线阅读 下载PDF
基于改进YOLOv3的桥梁底部裂缝目标检测方法 被引量:8
5
作者 杨富强 余波 +2 位作者 赵嘉彬 闫涛 唐伟 《中国科技论文》 CAS 北大核心 2022年第3期252-259,共8页
为实现桥梁裂缝的快速、准确定位,考虑光照变化、污渍阴影等干扰因素的影响,提出一种结合桥梁检测机和改进单阶段目标检测(you only look once version 3,YOLOv3)算法的桥梁裂缝检测方法。首先,在预处理阶段,采用改进自适应Mask匀光算... 为实现桥梁裂缝的快速、准确定位,考虑光照变化、污渍阴影等干扰因素的影响,提出一种结合桥梁检测机和改进单阶段目标检测(you only look once version 3,YOLOv3)算法的桥梁裂缝检测方法。首先,在预处理阶段,采用改进自适应Mask匀光算法对数据集进行处理,矫正阴影和光照不均等问题,提高算法环境适应能力;其次,在目标检测阶段,针对桥梁裂缝的特点,对数据集使用k-means++算法聚类先验框以适应裂缝的不同尺寸,采用广义交并比对YOLOv3损失函数进行改进以提高定位精度;最后,采用迁移学习对YOLOv3进行训练。实验结果表明,在迭代140个epoch后,检测速度可达到31帧/s,平均精度(average precision,AP)达到94.88%,相比于采用原始数据集的原始YOLOv3网络AP值提高了13.16%,能够满足实时性和高精度的检测要求。 展开更多
关键词 计算机技术应用 桥梁裂缝 目标检测 Mask匀光算法 k-means++聚类 广义交并比
在线阅读 下载PDF
一种基于YOLOv4的改进DeepSort目标跟踪算法 被引量:16
6
作者 陈紫强 张雅琼 《桂林电子科技大学学报》 2021年第2期140-145,共6页
针对车辆检测在弱光照和有遮挡情况下出现的漏检问题,提出了一种基于YOLOv4的改进DeepSort目标跟踪算法。首先使用YOLOv4算法对输入图片进行特征提取,获得目标信息,然后采用卡尔曼滤波算法估计车辆的轨迹状态并进行状态更新,最后在级联... 针对车辆检测在弱光照和有遮挡情况下出现的漏检问题,提出了一种基于YOLOv4的改进DeepSort目标跟踪算法。首先使用YOLOv4算法对输入图片进行特征提取,获得目标信息,然后采用卡尔曼滤波算法估计车辆的轨迹状态并进行状态更新,最后在级联匹配中运用匈牙利匹配算法对检测框和预测框进行匹配。对未成功匹配的轨迹和检测结果,用广义交并比(GIOU)关联匹配代替交并比(IOU)匹配,提高DeepSort跟踪算法的匹配性能。对比单一检测算法和加入跟踪算法后的车辆检测效果,结果表明,加入跟踪算法后的车辆模型漏检现象变少,检测效果得到提高,鲁棒性增强,且MOTA提高了7.55%,证明了改进方法的有效性。 展开更多
关键词 车辆检测跟踪 YOLOv4 DeepSort 广义交并比 匈牙利算法
在线阅读 下载PDF
基于EAST改进的任意方向场景文本检测 被引量:1
7
作者 庞宇 张焱杰 +1 位作者 林金朝 蔡元奇 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2021年第5期868-876,共9页
高效和准确的场景文本(efficient and accuracy scene text,EAST)检测算法速度快且结构简单,但是由于文本结构的特殊性,导致在检测中尺寸较小的文本会被遗漏,而较长的文本则完整性较差。针对EAST算法存在的问题提出一种新的自然场景文... 高效和准确的场景文本(efficient and accuracy scene text,EAST)检测算法速度快且结构简单,但是由于文本结构的特殊性,导致在检测中尺寸较小的文本会被遗漏,而较长的文本则完整性较差。针对EAST算法存在的问题提出一种新的自然场景文本检测模型。该方法利用自动架构搜索的特征金字塔网络(neural architecture search feature pyramid network,NAS-FPN)设计搜索空间,覆盖所有可能的跨尺度连接提取自然场景图像特征。针对输出层进行修改,一方面通过广义交并比(generalized intersection over union,GIOU)作为指标提升边界框的回归效果;另一方面通过对损失函数进行修改解决类别失衡问题。输出场景图像中任意方向的文本区域检测框。该方法在ICDAR2013和ICDAR2015数据集上都取得了较好的检测结果,与其他文本检测方法相比,检测效果也得到了明显提升。 展开更多
关键词 文本检测 全卷积网络 搜索空间 广义交并比 类别失衡
在线阅读 下载PDF
改进YOLOv3算法下通航机场场面运动目标检测 被引量:5
8
作者 夏正洪 魏汝祥 李彦冬 《中国安全科学学报》 CAS CSCD 北大核心 2023年第2期82-88,共7页
为获得更好的检测精度和更快的检测速度,保障通航机场场面运行安全,提出一种改进的YOLOv3算法,分别从网络结构和损失函数2方面进行改进。首先,在主干网络中使用深度可分离卷积代替原卷积,构建基于距离交并比(DIoU)的目标框回归损失函数... 为获得更好的检测精度和更快的检测速度,保障通航机场场面运行安全,提出一种改进的YOLOv3算法,分别从网络结构和损失函数2方面进行改进。首先,在主干网络中使用深度可分离卷积代替原卷积,构建基于距离交并比(DIoU)的目标框回归损失函数;然后,以某通航机场为研究对象,搭建通航机场场面目标检测场景,采用迁移学习和冻结训练相结合的训练方法,以提升场面目标检测的速度;最后,比较分析所提算法与传统的YOLOv3、YOLOv4算法的识别效果。结果表明:飞机目标的检测效果明显优于车辆和人员目标,改进的YOLOv3算法对目标的检测精度、召回率、全类平均精度(mAP)分别达到92.96%、80.51%、91.96%,图形处理器处理速度高达74帧/s,较传统的YOLOv3、YOLOv4算法性能均有明显提升,可实现通航机场场面运动目标的有效检测。 展开更多
关键词 改进YOLOv3算法 通航机场 目标检测 深度可分离卷积 距离交并比(DIoU)
在线阅读 下载PDF
基于RetinaNet改进的车辆信息检测 被引量:15
9
作者 刘革 郑叶龙 赵美蓉 《计算机应用》 CSCD 北大核心 2020年第3期854-858,共5页
移动端计算力不足和存储有限导致车辆信息检测模型精度不高、速度较慢。针对这一问题,提出一种基于RetinaNet改进的车辆信息检测算法。首先,开发新的车辆信息检测框架,将特征金字塔网络(FPN)模块的深层特征信息融合进浅层特征层,以Mobil... 移动端计算力不足和存储有限导致车辆信息检测模型精度不高、速度较慢。针对这一问题,提出一种基于RetinaNet改进的车辆信息检测算法。首先,开发新的车辆信息检测框架,将特征金字塔网络(FPN)模块的深层特征信息融合进浅层特征层,以MobileNet V3为基础特征提取网络;其次,引入目标检测任务的直接评价指标GIoU指导定位任务;最后,使用维度聚类算法找出Anchor的较好尺寸并匹配到相对应的特征层。与原始RetinaNet目标检测算法的对比实验表明,所提算法在车辆信息检测数据集上的精度有10.2个百分点的提升。以MobileNet V3为基础网络时平均准确率均值(mAP)可达97.2%且在ARM v7设备上单帧前向推断用时可达100 ms。实验结果表明,所提方法能够有效提高移动端车辆信息检测算法性能。 展开更多
关键词 卷积神经网络 目标检测 维度聚类 特征融合 giou
在线阅读 下载PDF
基于改进faster RCNN的木材运输车辆检测 被引量:7
10
作者 徐义鎏 贺鹏 +3 位作者 任东 王慧 董婷 邵攀 《计算机应用》 CSCD 北大核心 2020年第S01期209-214,共6页
针对目前森林资源受到盗砍盗伐威胁,相关木材运输车辆行为隐蔽,进而导致无法准确地在交通视频中被识别的问题,提出了一种基于改进fater区域卷积神经网络(faster RCNN)的木材运输车辆检测方法。首先,采用faster RCNN作为基础检测框架,使... 针对目前森林资源受到盗砍盗伐威胁,相关木材运输车辆行为隐蔽,进而导致无法准确地在交通视频中被识别的问题,提出了一种基于改进fater区域卷积神经网络(faster RCNN)的木材运输车辆检测方法。首先,采用faster RCNN作为基础检测框架,使用金字塔特征网络(FPN)、多尺度训练、锚点框聚类作为基础改进措施;其次,以广义交并比(GIoU)损失函数替换原算法中的smoothL1损失函数作为边界框定位回归的损失函数;最后,计算出在多种实验条件下的模型平均精度均值(mAP),对各种算法进行了对比。实验结果表明,使用GIoU作为损失函数的faster RCNN相比原算法对木材运输车辆检测的平均精度(AP)上升了7.5%,模型平均精度均值(mAP)上升了4.3%;同时,在大型数据集PASCALVOC上,使用GIoU作为损失函数的faster RCNN的mAP达到73.4%,相比其他算法具有明显优势。 展开更多
关键词 广义交并比 目标检测 损失函数 金字塔特征网络 faster区域卷积神经网络 车型检测
在线阅读 下载PDF
基于YOLO v3算法改进的交通标志识别算法 被引量:35
11
作者 江金洪 鲍胜利 +1 位作者 史文旭 韦振坤 《计算机应用》 CSCD 北大核心 2020年第8期2472-2478,共7页
针对目前交通标志识别任务在使用深度学习算法时存在模型参数量大、实时性较差和准确率较低的问题,提出了基于YOLO v3改进的交通标志识别算法。该算法首先将深度可分离卷积引入YOLO v3算法的特征提取层,将卷积过程分解为深度卷积、逐点... 针对目前交通标志识别任务在使用深度学习算法时存在模型参数量大、实时性较差和准确率较低的问题,提出了基于YOLO v3改进的交通标志识别算法。该算法首先将深度可分离卷积引入YOLO v3算法的特征提取层,将卷积过程分解为深度卷积、逐点卷积两部分,实现通道内卷积与通道间卷积之间的分离,从而保证了在较高识别准确率的基础上极大地减少了算法模型参数数量以及计算量。其次,在损失函数设计上使用广义交并比(GIoU)损失替换均方误差(MSE)损失,将评测标准量化为损失,解决了MSE损失存在的优化不一致和尺度敏感的问题,同时将Focal损失加入到损失函数以解决正负样本严重不均衡的问题,通过降低大量简单背景类的权重使得算法更专注于检测前景类。将该算法应用于交通标志任务中的结果表明,在TT100K数据集上,该算法的平均精度均值(mAP)指标达到了89%,相较于YOLO v3算法提升了6.6个百分点,且其参数量仅为原始YOLO v3算法的1/5左右,每秒帧数(FPS)亦比YOLO v3算法提升了60%。该算法在极大地减少模型参数量和计算量的同时,提高了检测速度和检测精度。 展开更多
关键词 交通标志识别 YOLO v3算法 广义交并比 深度可分离卷积 损失函数 Focal损失
在线阅读 下载PDF
多尺度特征DCA融合的海上船舶检测算法研究 被引量:5
12
作者 潘慧 段先华 罗斌强 《计算机工程与应用》 CSCD 北大核心 2022年第4期177-185,共9页
为了加强海上交通的安全性,以常见的民用船和军用船为研究对象,针对原始YOLOV3算法在船舶数据集上检测精度不高、目标框出现误检和小目标漏检的问题,提出了改进的船舶检测算法MS-YOLOV3。构建船舶图像数据集Shipdataset,包括数据采集、... 为了加强海上交通的安全性,以常见的民用船和军用船为研究对象,针对原始YOLOV3算法在船舶数据集上检测精度不高、目标框出现误检和小目标漏检的问题,提出了改进的船舶检测算法MS-YOLOV3。构建船舶图像数据集Shipdataset,包括数据采集、增强和标签标注,使用维度聚类算法在该数据集中找出合适尺寸的先验框,并应用于相对应的尺度特征图。以Darknet-53的网络框架为基础特征提取网络,增加网络预测尺度,在多尺度特征融合中加入DCA融合策略,提高模型对船舶的检测能力。以MS-YOLOV3为算法框架,采用GIOU作为边框损失函数的参数,提升模型对边界框位置信息的预测准确度。结果MS-YOLOV3与YOLOV3检测算法的对比实验表明,前者在船舶数据集上的精度有7.9个百分点的提升。同时加入的GIOU边框损失,拉低了模型的平均损失,加强了模型的鲁棒性,使得目标框的定位误差大大减小。根据Pascal VOC2007数据集上的训练效果,MS-YOLOV3的平均精度相较于YOLO系列算法、SSD300和Faster-RCNN,精确度优势更加明显。提出的MS-YOLOV3检测模型使得船舶的位置信息和类别精度更加准确。 展开更多
关键词 深度学习 卷积神经网络(CNN) 船舶检测 多尺度特征 YOLOV3 判别相关分析(DCA) 广义交并比(giou)
在线阅读 下载PDF
(∈,∈∨q_(λ,μ))-模糊Γ-子环及同态 被引量:1
13
作者 曾俊俏 廖祖华 +3 位作者 范莹莹 陈静 张余娟 范晓威 《模糊系统与数学》 CSCD 北大核心 2014年第1期15-22,共8页
引入(∈,∈∨q(λ,μ))-模糊Γ-子环以及广义模糊Γ-子环的概念,给出它们的等价刻画,研究它们的交与并的性质。根据直积运算的定义,探讨广义模糊Γ-子环与(∈,∈∨q(λ,μ))-模糊Γ-环直积运算的性质。利用Γ-环满同态的定义,探讨(∈,∈... 引入(∈,∈∨q(λ,μ))-模糊Γ-子环以及广义模糊Γ-子环的概念,给出它们的等价刻画,研究它们的交与并的性质。根据直积运算的定义,探讨广义模糊Γ-子环与(∈,∈∨q(λ,μ))-模糊Γ-环直积运算的性质。利用Γ-环满同态的定义,探讨(∈,∈∨q(λ,μ))-模糊Γ-子环的同态像及同态原像的相关性质,得到了(∈,∈∨q(λ,μ))-模糊Γ-子环的同态像及同态原像也是(∈,∈∨q(λ,μ))-模糊Γ-子环的结论。 展开更多
关键词 ( ∈∨q( λ μ)) -模糊Γ-子环 广义模糊Γ-子环 满同态
原文传递
一种改进的无人机对地小目标检测方法 被引量:9
14
作者 仇男豪 曹杰 +1 位作者 马俊杰 龚永富 《电子设计工程》 2020年第12期79-84,共6页
无人机拥有空中视野良好,可监测范围广等优势,被广泛地应用于实际的目标检测任务中,由于无人机距离地面较远,任务中频繁出现小型目标检测效果不佳,虚检率和漏检率较高的情况。针对以上问题,提出一种改进的无人机对地小目标识别方法。本... 无人机拥有空中视野良好,可监测范围广等优势,被广泛地应用于实际的目标检测任务中,由于无人机距离地面较远,任务中频繁出现小型目标检测效果不佳,虚检率和漏检率较高的情况。针对以上问题,提出一种改进的无人机对地小目标识别方法。本文基于YOLOV3卷积神经网络,首先建立一个无人机航拍数据集,并使用维度聚类方法设计合适的锚框,其次将广义交并比应用于网络的坐标损失函数中,替代原本的和方差损失,最后将YOLOV3网络4倍降采样特征图与经过上采样的8倍降采样特征图进行拼接,建立新的4倍降采样的目标检测层。实验结果表明,相比于YOLOV3,应用广义交并比的网络的平均精确度均值提高了3.4%,应用改进的YOLOV3网络平均精确率均值提高了8.2%,其中行人类小目标的平均精确率提高了10.2%,改进的检测方法对无人机平台下的小目标检测效果有所提升。 展开更多
关键词 无人机 小目标检测 YOLOV3 广义交并比
在线阅读 下载PDF
基于广义交并比的无人艇激光与视觉目标关联算法 被引量:4
15
作者 周嘉华 王鸿东 +1 位作者 魏圣哲 楼建坤 《船舶工程》 CSCD 北大核心 2023年第3期120-127,共8页
针对采用异源传感器关联水面小尺度目标时易出现的漏匹配和误匹配问题,考虑到传统的距离和交并比(Io U)等相关系数对方位偏差较大的目标的相关性度量能力不足,提出一种基于广义交并比(GIo U)和匈牙利算法的水面多目标关联算法。通过实... 针对采用异源传感器关联水面小尺度目标时易出现的漏匹配和误匹配问题,考虑到传统的距离和交并比(Io U)等相关系数对方位偏差较大的目标的相关性度量能力不足,提出一种基于广义交并比(GIo U)和匈牙利算法的水面多目标关联算法。通过实船试验,比较基于不同相关系数的目标关联结果。试验结果表明:GIo U能克服Io U需目标区域相交的度量限制,能有效匹配小尺度目标;相比距离和Io U相关系数,GIo U能取得更高的目标关联平均准确率和平均召回率(分别达到95.97%和96.24%),能有效降低漏匹配率和误匹配率,具有较高的工程应用价值。 展开更多
关键词 广义交并比 匈牙利算法 无人艇 目标关联
原文传递
基于改进ExfuseNet模型的街景语义分割 被引量:2
16
作者 陈劲宏 陈玮 尹钟 《电子科技》 2022年第6期28-34,共7页
使用ExfuseNet模型进行街景语义分割时,由于街景图像背景复杂度较高,造成感兴趣类之间的面积占比与分布不均衡,特别是图像中面积占比低且密度低的感兴趣目标,越到网络深层越容易被错误分类,最终导致模型分割性能下降。为解决该问题,文中... 使用ExfuseNet模型进行街景语义分割时,由于街景图像背景复杂度较高,造成感兴趣类之间的面积占比与分布不均衡,特别是图像中面积占比低且密度低的感兴趣目标,越到网络深层越容易被错误分类,最终导致模型分割性能下降。为解决该问题,文中对ExfuseNet模型进行了改进。为了获取不同尺度的语义信息,在不增加模型参数量的条件下,多监督模块采用不同空洞率的带孔卷积。在下采样特征融合后,立刻采用随机丢弃层来减少模型参数量,提高泛化力。在主输出前采用CBAM注意力机制模块以便更高效地对感兴趣目标类的深度语义信息进行采样,并在多监督模块之后采用类平衡函数来改善数据集Camvid的类不平衡问题。实验结果表明,改进的ExfuseNet模型语义分割效果有明显提升,其均交并比提升到了68.32%,Pole类分类准确率提升到38.14%。 展开更多
关键词 街景图像 多监督 空洞率 带孔卷积 随机丢弃层 泛化力 注意力机制 类平衡 均交并比
在线阅读 下载PDF
基于机器视觉的指针式仪表检测 被引量:11
17
作者 赵辉 姜立锋 +1 位作者 王红君 岳有军 《科学技术与工程》 北大核心 2021年第34期14665-14672,共8页
提出了一种基于机器视觉的变电站指针式仪表检测算法。该算法基于YOLO v3神经网络,引入Res2Net残差模块以及采用特征层融合的方式,采用更少的模块和网络层数获取更高的特征提取效率,通过增加空间池化金字塔(spatial pyramid pooling,SPP... 提出了一种基于机器视觉的变电站指针式仪表检测算法。该算法基于YOLO v3神经网络,引入Res2Net残差模块以及采用特征层融合的方式,采用更少的模块和网络层数获取更高的特征提取效率,通过增加空间池化金字塔(spatial pyramid pooling,SPP)模块融合多重感受野,使用GIoU(generalized intersection over union)损失函数代替原有的损失函数。此外,针对数据集的不同,采取k-means++聚类算法重新选择锚点框的尺寸。实验结果证明,在保证精度的前提下,相对于Faster R-CNN和原始的YOLO v3网络,速度分别提升了73.7%和45.8%。 展开更多
关键词 YOLO v3 Res2Net 空间池化金字塔(SPP) giou(generalized intersection over union) k-means++ 速度 检测识别
在线阅读 下载PDF
基于改进YOLOv3算法的行人检测研究 被引量:7
18
作者 叶飞 刘子龙 《电子科技》 2021年第1期5-9,30,共6页
YOLOv3算法在单一物体目标检测时使用Darknet53作为主干,网络出现冗余现象,导致参数过多,检测速度变慢,传统的边界框损失函数影响检测定位准确性。针对这一问题,文中提出了改进YOLOv3算法的行人检测方法。通过构造以Darknet19为主干网... YOLOv3算法在单一物体目标检测时使用Darknet53作为主干,网络出现冗余现象,导致参数过多,检测速度变慢,传统的边界框损失函数影响检测定位准确性。针对这一问题,文中提出了改进YOLOv3算法的行人检测方法。通过构造以Darknet19为主干网络多尺度融合的新型网络,加快训练速度和检测速度,还通过引入广义交并比损失函数来提高检测精确度。实验结果表明,在行人检测数据集如INRIA行人数据集中,相比于原始算法,文中所提算法的精确度提高了5%。和Faster R-CNN相比,在保证准确率的情况下,采用文中算法使单张图片的检测速度达到了每张0.015 s。 展开更多
关键词 目标检测 广义交并比 YOLOv3 多尺度融合 行人检测 INRIA数据集
在线阅读 下载PDF
目标检测中框回归损失函数的研究 被引量:12
19
作者 张翠文 张长伦 +1 位作者 何强 王恒友 《计算机工程与应用》 CSCD 北大核心 2021年第20期97-103,共7页
在目标检测中,框回归损失函数的设定直接影响预测框的定位准确性。预测框与目标框的交并比(IOU)被设定为优化预测框的损失函数,但是当两框无重叠面积时无法进行梯度回传。广义的交并比(GIOU)在IOU损失函数的基础上增加非重叠面积部分,... 在目标检测中,框回归损失函数的设定直接影响预测框的定位准确性。预测框与目标框的交并比(IOU)被设定为优化预测框的损失函数,但是当两框无重叠面积时无法进行梯度回传。广义的交并比(GIOU)在IOU损失函数的基础上增加非重叠面积部分,将两部分优化项作为损失函数调整预测框位置,解决了无法梯度回传的情况。但当两框是包含关系时,GIOU的第二部分优化项消失,损失函数退化为IOU。为了解决以上问题,提出了一种重新定义的广义交并比损失函数(RGIOU),将非重叠部分面积定义为两框之并减去两框之交,再除以两框形成的最小闭包面积作为第一部分,除以最小闭包面积的平方作为第二部分,利用权重阈值进行加和形成新的损失函数。避免了两框是包含关系时存在的问题,提升了目标检测算法的精度。上述算法在PASCAL VOC 2007以及MS COCO 2014数据集上加以验证。 展开更多
关键词 目标检测 框回归 交并比(IOU) 广义的交并比(giou)
在线阅读 下载PDF
基于DeepSORT的单假设多目标追踪方法的问题研究 被引量:4
20
作者 吴梦琪 刘军清 《信息通信》 2020年第11期40-42,共3页
随着科技时代的发展,目标跟踪已经广泛应用于我们的日常生活中,而由于遮挡或匹配混乱的现象常常会影响跟踪轨迹的准确性及完整度。为解决由于目标间遮挡而产生的轨迹匹配混乱问题,文章提出了以下解决方案。文章主要采用由卡尔曼滤波及... 随着科技时代的发展,目标跟踪已经广泛应用于我们的日常生活中,而由于遮挡或匹配混乱的现象常常会影响跟踪轨迹的准确性及完整度。为解决由于目标间遮挡而产生的轨迹匹配混乱问题,文章提出了以下解决方案。文章主要采用由卡尔曼滤波及匈牙利算法组成的DeepSORT单假设跟踪匹配框架来进行目标轨迹的预测及初步匹配。引用广义交并比的衡量尺度去匹配已经经过初步筛选的未确认目标轨迹,提高了级联匹配时目标匹配的准确度。在基础的级联匹配阶段中增加了目标遮挡的判断阶段,去对抗因遮挡产生的身份编号转换问题,有效地降低了因遮挡而产生的身份编号转换的次数,提高了跟踪的准确性。跟踪实验结果表明:通过在同一数据集的测试结果比较,身份编号转换次数得到了大幅度的减少,多目标跟踪准确度也得到了3%的提升。 展开更多
关键词 卡尔曼滤波 目标跟踪 广义交并比 级联匹配 身份标号
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部