The proliferation of robot accounts on social media platforms has posed a significant negative impact,necessitating robust measures to counter network anomalies and safeguard content integrity.Social robot detection h...The proliferation of robot accounts on social media platforms has posed a significant negative impact,necessitating robust measures to counter network anomalies and safeguard content integrity.Social robot detection has emerged as a pivotal yet intricate task,aimed at mitigating the dissemination of misleading information.While graphbased approaches have attained remarkable performance in this realm,they grapple with a fundamental limitation:the homogeneity assumption in graph convolution allows social robots to stealthily evade detection by mingling with genuine human profiles.To unravel this challenge and thwart the camouflage tactics,this work proposed an innovative social robot detection framework based on enhanced HOmogeneity and Random Forest(HORFBot).At the core of HORFBot lies a homogeneous graph enhancement strategy,intricately woven with edge-removal techniques,tometiculously dissect the graph intomultiple revealing subgraphs.Subsequently,leveraging the power of contrastive learning,the proposed methodology meticulously trains multiple graph convolutional networks,each honed to discern nuances within these tailored subgraphs.The culminating stage involves the fusion of these feature-rich base classifiers,harmoniously aggregating their insights to produce a comprehensive detection outcome.Extensive experiments on three social robot detection datasets have shown that this method effectively improves the accuracy of social robot detection and outperforms comparative methods.展开更多
In a bustling street in Wenzhou,east China’s Zhejiang Province,a futuristic ball-shaped robot recently made waves online as it patrolled alongside uniformed police officers.Developed through a collaboration between W...In a bustling street in Wenzhou,east China’s Zhejiang Province,a futuristic ball-shaped robot recently made waves online as it patrolled alongside uniformed police officers.Developed through a collaboration between Wenzhou police and Zhejiang University,the RT-G is no ordinary robot.According to Huang Sufeng,deputy commander of a special patrol police brigade in Wenzhou,east China’s Zhejiang Province.展开更多
Wireless millirobots engineered to infiltrate intricate vascular networks within living organisms,particularly within constricted and confined spaces,hold immense promise for the future of medical treatments.However,w...Wireless millirobots engineered to infiltrate intricate vascular networks within living organisms,particularly within constricted and confined spaces,hold immense promise for the future of medical treatments.However,with their multifaceted and intricate designs,some robots often grapple with motion and functionality issues when confronted with tight spaces characterized by small cross-sectional dimensions.In this study,drawing inspiration from the high aspect ratio and undulating swimming patterns of snakes,a millimeter-scale,snake-like robot was designed and fabricated via a combination of extrusion-based four-dimensional(4D)printing and magnetic-responsive intelligent functional inks.A sophisticated motion control strategy was also developed,which enables the robots to perform various dynamic movements,such as undulating swimming,precise turns,graceful circular motions,and coordinated cluster movements,under diverse magnetic field variations.As a potential application,the snake robot can navigate and release drugs in a model coronary intervention vessel with tortuous channels and fluid filling.The novel design and promising applications of this snake robot are invaluable tools in future medical surgeries and interventions.展开更多
This paper endeavours to bridge the existing gap in muscular actuator design for ligament-skeletal-inspired robots,thereby fostering the evolution of these robotic systems.We introduce two novel compliant actuators,na...This paper endeavours to bridge the existing gap in muscular actuator design for ligament-skeletal-inspired robots,thereby fostering the evolution of these robotic systems.We introduce two novel compliant actuators,namely the Internal Torsion Spring Compliant Actuator(ICA)and the External Spring Compliant Actuator(ECA),and present a comparative analysis against the previously conceived Magnet Integrated Soft Actuator(MISA)through computational and experimental results.These actuators,employing a motor-tendon system,emulate biological muscle-like forms,enhancing artificial muscle technology.Then,applications of the proposed actuators in a robotic arm inspired by the human musculoskeletal system are presented.Experiments demonstrate satisfactory power in tasks like lifting dumbbells(peak power:36 W),playing table tennis(end-effector speed:3.2 m/s),and door opening,without compromising biomimetic aesthetics.Compared to other linear stiffness serial elastic actuators(SEAs),ECA and ICA exhibit high power-to-volume(361×10^(3)W/m^(3))and power-to-mass(111.6 W/kg)ratios respectively,endorsing the biomimetic design’s promise in robotic development.展开更多
To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for con...To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for constructing an industrial robot assembly system based on virtual reality technology.Focusing on the shaft hole assembly,the mechanical characteristics of the industrial robot shaft hole assembly process are analyzed and a dynamic model is established for shaft hole assembly operations.The key elements of virtual assembly operations for industrial robots are summarized and a five-dimensional model is proposed for industrial robot virtual operations.Utilizing the Unity3D engine based on the 5-D model for industrial robot virtual operations,an industrial robot shaft hole assembly system is developed.This system enables virtual assembly operations,displays physical attributes,and provides valuable references for the research of virtual systems.展开更多
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The...To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks.展开更多
Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet s...Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet static supporting stability and dynamic terrain adaptability through the utilization of the Rigid-Elastic Hybrid(REH)dynamics model.First,a bionic foot model,named the Hinge Tension Elastic Complex(HTEC)model,was developed by extracting key features from human feet.Furthermore,the kinematics and REH dynamics of the HTEC model were established.Based on the foot dynamics,a nonlinear optimization method for stiffness matching(NOSM)was designed.Finally,the HTEC-based foot was constructed and applied onto BHR-B2 humanoid robot.The foot static stability is achieved.The enhanced adaptability is observed as the robot traverses square steel,lawn,and cobblestone terrains.Through proposed design method and structure,the mobility of the humanoid robot is improved.展开更多
Background: Erythrodermic psoriasis (EP) is a rare, severe variant of psoriasis characterized by widespread erythema, scaling, and systemic complications. Despite advances in systemic treatments, the management of EP ...Background: Erythrodermic psoriasis (EP) is a rare, severe variant of psoriasis characterized by widespread erythema, scaling, and systemic complications. Despite advances in systemic treatments, the management of EP remains challenging, particularly in patients with comorbidities or contraindications to standard therapies. Objectives: To evaluate the effectiveness of ozonated water as an adjunctive treatment for EP, delivered using a patented robotic therapy system designed for hygiene and infection prevention in non-self-sufficient patients. Methods: We report the case of a 90-year-old male patient with acute EP who received daily skin treatments with ozonated water in conjunction with supportive care, including rehydration and antibiotics. The intervention was facilitated by the robotic system “COPERNICO Surveillance & Prevention,” which ensured standardized hygiene practices and clinical documentation. Results: Within one week of treatment, the patient showed complete desquamation of necrotic skin, resolution of erythema, and significant metabolic recovery. Fever subsided, renal function improved, and the patient was discharged in stable condition. Follow-up confirmed sustained clinical improvement, and no adverse events were reported. Conclusions: Ozonated water demonstrated efficacy in alleviating the dermatological and systemic manifestations of EP in a high-risk elderly patient. This case highlights the potential of ozone therapy as a safe, cost-effective adjunctive treatment for EP and underscores the utility of robotic systems in managing complex dermatological conditions. Further research is warranted to validate these findings in larger cohorts.展开更多
This article describes a pilot study aiming at generating social interactions between a humanoid robot and adolescents with autism spectrum disorder (ASD), through the practice of a gesture imitation game. The partici...This article describes a pilot study aiming at generating social interactions between a humanoid robot and adolescents with autism spectrum disorder (ASD), through the practice of a gesture imitation game. The participants were a 17-year-old young lady with ASD and intellectual deficit, and a control participant: a preadolescent with ASD but no intellectual deficit (Asperger syndrome). The game is comprised of four phases: greetings, pairing, imitation, and closing. Field educators were involved, playing specific roles: visual or physical inciter. The use of a robot allows for catching the participants’ attention, playing the imitation game for a longer period of time than with a human partner, and preventing the game partner’s negative facial expressions resulting from tiredness, impatience, or boredom. The participants’ behavior was observed in terms of initial approach towards the robot, positioning relative to the robot in terms of distance and orientation, reactions to the robot’s voice or moves, signs of happiness, and imitation attempts. Results suggest a more and more natural approach towards the robot during the sessions, as well as a higher level of social interaction, based on the variations of the parameters listed above. We use these preliminary results to draw the next steps of our research work as well as identify further perspectives, with this aim in mind: improving social interactions with adolescents with ASD and intellectual deficit, allowing for better integration of these people into our societies.展开更多
The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,rob...The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,robotic-assisted surgery has shown numerous advantages,including more precision,efficiency,minimal invasiveness,and safety than is possible with conventional techniques,which are research hotspots and cutting-edge trends.This article reviewed the history of medical robot development and seminal research papers about current research progress.Taking the autonomous dental implant robotic system as an example,the advantages and prospects of medical robotic systems would be discussed which would provide a reference for future research.展开更多
The current gait planning for legged robots is mostly based on human presets,which cannot match the flexible characteristics of natural mammals.This paper proposes a gait optimization framework for hexapod robots call...The current gait planning for legged robots is mostly based on human presets,which cannot match the flexible characteristics of natural mammals.This paper proposes a gait optimization framework for hexapod robots called Smart Gait.Smart Gait contains three modules:swing leg trajectory optimization,gait period&duty optimization,and gait sequence optimization.The full dynamics of a single leg,and the centroid dynamics of the overall robot are considered in the respective modules.The Smart Gait not only helps the robot to decrease the energy consumption when in locomotion,mostly,it enables the hexapod robot to determine its gait pattern transitions based on its current state,instead of repeating the formalistic clock-set step cycles.Our Smart Gait framework allows the hexapod robot to behave nimbly as a living animal when in 3D movements for the first time.The Smart Gait framework combines offline and online optimizations without any fussy data-driven training procedures,and it can run efficiently on board in real-time after deployment.Various experiments are carried out on the hexapod robot LittleStrong.The results show that the energy consumption is reduced by 15.9%when in locomotion.Adaptive gait patterns can be generated spontaneously both in regular and challenge environments,and when facing external interferences.展开更多
Background:Minimally invasive surgery is the optimal treatment for insulinoma.The present study aimed to compare short-and long-term outcomes of laparoscopic and robotic surgery for sporadic benign insulinoma.Methods:...Background:Minimally invasive surgery is the optimal treatment for insulinoma.The present study aimed to compare short-and long-term outcomes of laparoscopic and robotic surgery for sporadic benign insulinoma.Methods:A retrospective analysis of patients who underwent laparoscopic or robotic surgery for insulinoma at our center between September 2007 and December 2019 was conducted.The demographic,perioperative and postoperative follow-up results were compared between the laparoscopic and robotic groups.Results:A total of 85 patients were enrolled,including 36 with laparoscopic approach and 49 with robotic approach.Enucleation was the preferred surgical procedure.Fifty-nine patients(69.4%)underwent enucleation;among them,26 and 33 patients underwent laparoscopic and robotic surgery,respectively.Robotic enucleation had a lower conversion rate to laparotomy(0 vs.19.2%,P=0.013),shorter operative time(102.0 vs.145.5 min,P=0.008)and shorter postoperative hospital stay(6.0 vs.8.5 d,P=0.002)than laparoscopic enucleation.There were no differences between the groups in terms of intraoperative blood loss,the rates of postoperative pancreatic fistula and complications.After a median follow-up of 65 months,two patients in the laparoscopic group developed a functional recurrence and none of the patients in the robotic group had a recurrence.Conclusions:Robotic enucleation can reduce the conversion rate to laparotomy and shorten operative time,which might lead to a reduction in postoperative hospital stay.展开更多
Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadr...Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadruped robots show great potential in unstructured environments due to their discrete landing positions and large payloads.As the most critical movement unit of a quadruped robot,the limb leg unit(LLU)directly affects movement speed and reliability,and requires a compact and lightweight design.Inspired by the dexterous skeleton–muscle systems of cheetahs and humans,this paper proposes a highly integrated bionic actuator system for a better dynamic performance of an LLU.We propose that a cylinder barrel with multiple element interfaces and internal smooth channels is realized using metal additive manufacturing,and hybrid lattice structures are introduced into the lightweight design of the piston rod.In addition,additive manufacturing and topology optimization are incorporated to reduce the redundant material of the structural parts of the LLU.The mechanical properties of the actuator system are verified by numerical simulation and experiments,and the power density of the actuators is far greater than that of cheetah muscle.The mass of the optimized LLU is reduced by 24.5%,and the optimized LLU shows better response time performance when given a step signal,and presents a good trajectory tracking ability with the increase in motion frequency.展开更多
Robots are widely used,providing significant convenience in daily life and production.With the rapid development of artificial intelligence and neuromorphic computing in recent years,the realization of more intelligen...Robots are widely used,providing significant convenience in daily life and production.With the rapid development of artificial intelligence and neuromorphic computing in recent years,the realization of more intelligent robots through a pro-found intersection of neuroscience and robotics has received much attention.Neuromorphic circuits based on memristors used to construct hardware neural networks have proved to be a promising solution of shattering traditional control limita-tions in the field of robot control,showcasing characteristics that enhance robot intelligence,speed,and energy efficiency.Start-ing with introducing the working mechanism of memristors and peripheral circuit design,this review gives a comprehensive analysis on the biomimetic information processing and biomimetic driving operations achieved through the utilization of neuro-morphic circuits in brain-like control.Four hardware neural network approaches,including digital-analog hybrid circuit design,novel device structure design,multi-regulation mechanism,and crossbar array,are summarized,which can well simulate the motor decision-making mechanism,multi-information integration and parallel control of brain at the hardware level.It will be definitely conductive to promote the application of memristor-based neuromorphic circuits in areas such as intelligent robotics,artificial intelligence,and neural computing.Finally,a conclusion and future prospects are discussed.展开更多
Research of autonomous manufacturing systems is motivated both by the new technical possibilities of cyber-physical systems and by the practical needs of the industry.Autonomous operation in semi-structured industrial...Research of autonomous manufacturing systems is motivated both by the new technical possibilities of cyber-physical systems and by the practical needs of the industry.Autonomous operation in semi-structured industrial environments can now be supported by advanced sensor technologies,digital twins,artificial intelligence and novel communication techniques.These enable real-time monitoring of production processes,situation recognition and prediction,automated and adaptive(re)planning,teamwork and performance improvement by learning.This paper summarizes the main requirements towards autonomous industrial robotics and suggests a generic workflow for realizing such systems.Application case studies will be presented from recent practice at HUN-REN SZTAKI in a broad range of domains such as assembly,welding,grinding,picking and placing,and machining.The various solutions have in common that they use a generic digital twin concept as their core.After making general recommendations for realizing autonomous robotic solutions in the industry,open issues for future research will be discussed.展开更多
基金Funds for the Central Universities(grant number CUC24SG018).
文摘The proliferation of robot accounts on social media platforms has posed a significant negative impact,necessitating robust measures to counter network anomalies and safeguard content integrity.Social robot detection has emerged as a pivotal yet intricate task,aimed at mitigating the dissemination of misleading information.While graphbased approaches have attained remarkable performance in this realm,they grapple with a fundamental limitation:the homogeneity assumption in graph convolution allows social robots to stealthily evade detection by mingling with genuine human profiles.To unravel this challenge and thwart the camouflage tactics,this work proposed an innovative social robot detection framework based on enhanced HOmogeneity and Random Forest(HORFBot).At the core of HORFBot lies a homogeneous graph enhancement strategy,intricately woven with edge-removal techniques,tometiculously dissect the graph intomultiple revealing subgraphs.Subsequently,leveraging the power of contrastive learning,the proposed methodology meticulously trains multiple graph convolutional networks,each honed to discern nuances within these tailored subgraphs.The culminating stage involves the fusion of these feature-rich base classifiers,harmoniously aggregating their insights to produce a comprehensive detection outcome.Extensive experiments on three social robot detection datasets have shown that this method effectively improves the accuracy of social robot detection and outperforms comparative methods.
文摘In a bustling street in Wenzhou,east China’s Zhejiang Province,a futuristic ball-shaped robot recently made waves online as it patrolled alongside uniformed police officers.Developed through a collaboration between Wenzhou police and Zhejiang University,the RT-G is no ordinary robot.According to Huang Sufeng,deputy commander of a special patrol police brigade in Wenzhou,east China’s Zhejiang Province.
基金the National Natural Science Foundation of China(Nos.52105421 and 52373050)the Guangdong Provincial Natural Science Foundation,China(No.2022A1515011621)+1 种基金the Science and Technology Projects in Guangzhou,China(Nos.202102080330 and 2024A04J6446)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.22qntd0101).
文摘Wireless millirobots engineered to infiltrate intricate vascular networks within living organisms,particularly within constricted and confined spaces,hold immense promise for the future of medical treatments.However,with their multifaceted and intricate designs,some robots often grapple with motion and functionality issues when confronted with tight spaces characterized by small cross-sectional dimensions.In this study,drawing inspiration from the high aspect ratio and undulating swimming patterns of snakes,a millimeter-scale,snake-like robot was designed and fabricated via a combination of extrusion-based four-dimensional(4D)printing and magnetic-responsive intelligent functional inks.A sophisticated motion control strategy was also developed,which enables the robots to perform various dynamic movements,such as undulating swimming,precise turns,graceful circular motions,and coordinated cluster movements,under diverse magnetic field variations.As a potential application,the snake robot can navigate and release drugs in a model coronary intervention vessel with tortuous channels and fluid filling.The novel design and promising applications of this snake robot are invaluable tools in future medical surgeries and interventions.
基金research project funded by the National Natural Science Foundation of China(NSFC)under Grant 91948302 and Grant 52021003Research England fund at NERIC.
文摘This paper endeavours to bridge the existing gap in muscular actuator design for ligament-skeletal-inspired robots,thereby fostering the evolution of these robotic systems.We introduce two novel compliant actuators,namely the Internal Torsion Spring Compliant Actuator(ICA)and the External Spring Compliant Actuator(ECA),and present a comparative analysis against the previously conceived Magnet Integrated Soft Actuator(MISA)through computational and experimental results.These actuators,employing a motor-tendon system,emulate biological muscle-like forms,enhancing artificial muscle technology.Then,applications of the proposed actuators in a robotic arm inspired by the human musculoskeletal system are presented.Experiments demonstrate satisfactory power in tasks like lifting dumbbells(peak power:36 W),playing table tennis(end-effector speed:3.2 m/s),and door opening,without compromising biomimetic aesthetics.Compared to other linear stiffness serial elastic actuators(SEAs),ECA and ICA exhibit high power-to-volume(361×10^(3)W/m^(3))and power-to-mass(111.6 W/kg)ratios respectively,endorsing the biomimetic design’s promise in robotic development.
基金Sponsored by the National Natural Science Foundation of China(Grant No.52005003)the Science and Technology Planning Project of Wuhu City(Grant No.2022jc41)。
文摘To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for constructing an industrial robot assembly system based on virtual reality technology.Focusing on the shaft hole assembly,the mechanical characteristics of the industrial robot shaft hole assembly process are analyzed and a dynamic model is established for shaft hole assembly operations.The key elements of virtual assembly operations for industrial robots are summarized and a five-dimensional model is proposed for industrial robot virtual operations.Utilizing the Unity3D engine based on the 5-D model for industrial robot virtual operations,an industrial robot shaft hole assembly system is developed.This system enables virtual assembly operations,displays physical attributes,and provides valuable references for the research of virtual systems.
文摘To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks.
基金supported by the National Natural Science Foundation of China(Grant No.62073041)the Open Fund of Laboratory of Aerospace Servo Actuation and Transmission(Grant No.LASAT-2023A04)the Fundamental Research Funds for the Central Universities(Grant Nos.2024CX06011,2024CX06079)。
文摘Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet static supporting stability and dynamic terrain adaptability through the utilization of the Rigid-Elastic Hybrid(REH)dynamics model.First,a bionic foot model,named the Hinge Tension Elastic Complex(HTEC)model,was developed by extracting key features from human feet.Furthermore,the kinematics and REH dynamics of the HTEC model were established.Based on the foot dynamics,a nonlinear optimization method for stiffness matching(NOSM)was designed.Finally,the HTEC-based foot was constructed and applied onto BHR-B2 humanoid robot.The foot static stability is achieved.The enhanced adaptability is observed as the robot traverses square steel,lawn,and cobblestone terrains.Through proposed design method and structure,the mobility of the humanoid robot is improved.
文摘Background: Erythrodermic psoriasis (EP) is a rare, severe variant of psoriasis characterized by widespread erythema, scaling, and systemic complications. Despite advances in systemic treatments, the management of EP remains challenging, particularly in patients with comorbidities or contraindications to standard therapies. Objectives: To evaluate the effectiveness of ozonated water as an adjunctive treatment for EP, delivered using a patented robotic therapy system designed for hygiene and infection prevention in non-self-sufficient patients. Methods: We report the case of a 90-year-old male patient with acute EP who received daily skin treatments with ozonated water in conjunction with supportive care, including rehydration and antibiotics. The intervention was facilitated by the robotic system “COPERNICO Surveillance & Prevention,” which ensured standardized hygiene practices and clinical documentation. Results: Within one week of treatment, the patient showed complete desquamation of necrotic skin, resolution of erythema, and significant metabolic recovery. Fever subsided, renal function improved, and the patient was discharged in stable condition. Follow-up confirmed sustained clinical improvement, and no adverse events were reported. Conclusions: Ozonated water demonstrated efficacy in alleviating the dermatological and systemic manifestations of EP in a high-risk elderly patient. This case highlights the potential of ozone therapy as a safe, cost-effective adjunctive treatment for EP and underscores the utility of robotic systems in managing complex dermatological conditions. Further research is warranted to validate these findings in larger cohorts.
文摘This article describes a pilot study aiming at generating social interactions between a humanoid robot and adolescents with autism spectrum disorder (ASD), through the practice of a gesture imitation game. The participants were a 17-year-old young lady with ASD and intellectual deficit, and a control participant: a preadolescent with ASD but no intellectual deficit (Asperger syndrome). The game is comprised of four phases: greetings, pairing, imitation, and closing. Field educators were involved, playing specific roles: visual or physical inciter. The use of a robot allows for catching the participants’ attention, playing the imitation game for a longer period of time than with a human partner, and preventing the game partner’s negative facial expressions resulting from tiredness, impatience, or boredom. The participants’ behavior was observed in terms of initial approach towards the robot, positioning relative to the robot in terms of distance and orientation, reactions to the robot’s voice or moves, signs of happiness, and imitation attempts. Results suggest a more and more natural approach towards the robot during the sessions, as well as a higher level of social interaction, based on the variations of the parameters listed above. We use these preliminary results to draw the next steps of our research work as well as identify further perspectives, with this aim in mind: improving social interactions with adolescents with ASD and intellectual deficit, allowing for better integration of these people into our societies.
基金supported by the National Natural Science Foundation of China[grant number 81970987].
文摘The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,robotic-assisted surgery has shown numerous advantages,including more precision,efficiency,minimal invasiveness,and safety than is possible with conventional techniques,which are research hotspots and cutting-edge trends.This article reviewed the history of medical robot development and seminal research papers about current research progress.Taking the autonomous dental implant robotic system as an example,the advantages and prospects of medical robotic systems would be discussed which would provide a reference for future research.
基金Supported by National Key Research and Development Program of China(Grant No.2021YFF0306202).
文摘The current gait planning for legged robots is mostly based on human presets,which cannot match the flexible characteristics of natural mammals.This paper proposes a gait optimization framework for hexapod robots called Smart Gait.Smart Gait contains three modules:swing leg trajectory optimization,gait period&duty optimization,and gait sequence optimization.The full dynamics of a single leg,and the centroid dynamics of the overall robot are considered in the respective modules.The Smart Gait not only helps the robot to decrease the energy consumption when in locomotion,mostly,it enables the hexapod robot to determine its gait pattern transitions based on its current state,instead of repeating the formalistic clock-set step cycles.Our Smart Gait framework allows the hexapod robot to behave nimbly as a living animal when in 3D movements for the first time.The Smart Gait framework combines offline and online optimizations without any fussy data-driven training procedures,and it can run efficiently on board in real-time after deployment.Various experiments are carried out on the hexapod robot LittleStrong.The results show that the energy consumption is reduced by 15.9%when in locomotion.Adaptive gait patterns can be generated spontaneously both in regular and challenge environments,and when facing external interferences.
文摘Background:Minimally invasive surgery is the optimal treatment for insulinoma.The present study aimed to compare short-and long-term outcomes of laparoscopic and robotic surgery for sporadic benign insulinoma.Methods:A retrospective analysis of patients who underwent laparoscopic or robotic surgery for insulinoma at our center between September 2007 and December 2019 was conducted.The demographic,perioperative and postoperative follow-up results were compared between the laparoscopic and robotic groups.Results:A total of 85 patients were enrolled,including 36 with laparoscopic approach and 49 with robotic approach.Enucleation was the preferred surgical procedure.Fifty-nine patients(69.4%)underwent enucleation;among them,26 and 33 patients underwent laparoscopic and robotic surgery,respectively.Robotic enucleation had a lower conversion rate to laparotomy(0 vs.19.2%,P=0.013),shorter operative time(102.0 vs.145.5 min,P=0.008)and shorter postoperative hospital stay(6.0 vs.8.5 d,P=0.002)than laparoscopic enucleation.There were no differences between the groups in terms of intraoperative blood loss,the rates of postoperative pancreatic fistula and complications.After a median follow-up of 65 months,two patients in the laparoscopic group developed a functional recurrence and none of the patients in the robotic group had a recurrence.Conclusions:Robotic enucleation can reduce the conversion rate to laparotomy and shorten operative time,which might lead to a reduction in postoperative hospital stay.
基金The work is supported by the National Natural Science Foundation of China(Nos.U21A20124 and 52205059)the Key Research and Development Program of Zhejiang Province(No.2022C01039)。
文摘Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadruped robots show great potential in unstructured environments due to their discrete landing positions and large payloads.As the most critical movement unit of a quadruped robot,the limb leg unit(LLU)directly affects movement speed and reliability,and requires a compact and lightweight design.Inspired by the dexterous skeleton–muscle systems of cheetahs and humans,this paper proposes a highly integrated bionic actuator system for a better dynamic performance of an LLU.We propose that a cylinder barrel with multiple element interfaces and internal smooth channels is realized using metal additive manufacturing,and hybrid lattice structures are introduced into the lightweight design of the piston rod.In addition,additive manufacturing and topology optimization are incorporated to reduce the redundant material of the structural parts of the LLU.The mechanical properties of the actuator system are verified by numerical simulation and experiments,and the power density of the actuators is far greater than that of cheetah muscle.The mass of the optimized LLU is reduced by 24.5%,and the optimized LLU shows better response time performance when given a step signal,and presents a good trajectory tracking ability with the increase in motion frequency.
文摘Robots are widely used,providing significant convenience in daily life and production.With the rapid development of artificial intelligence and neuromorphic computing in recent years,the realization of more intelligent robots through a pro-found intersection of neuroscience and robotics has received much attention.Neuromorphic circuits based on memristors used to construct hardware neural networks have proved to be a promising solution of shattering traditional control limita-tions in the field of robot control,showcasing characteristics that enhance robot intelligence,speed,and energy efficiency.Start-ing with introducing the working mechanism of memristors and peripheral circuit design,this review gives a comprehensive analysis on the biomimetic information processing and biomimetic driving operations achieved through the utilization of neuro-morphic circuits in brain-like control.Four hardware neural network approaches,including digital-analog hybrid circuit design,novel device structure design,multi-regulation mechanism,and crossbar array,are summarized,which can well simulate the motor decision-making mechanism,multi-information integration and parallel control of brain at the hardware level.It will be definitely conductive to promote the application of memristor-based neuromorphic circuits in areas such as intelligent robotics,artificial intelligence,and neural computing.Finally,a conclusion and future prospects are discussed.
基金supported by the European Union within the framework of the“National Laboratory for Autonomous Systems”(No.RRF-2.3.1-212022-00002)the Hungarian“Research on prime exploitation of the potential provided by the industrial digitalisation(No.ED-18-2-2018-0006)”the“Research on cooperative production and logistics systems to support a competitive and sustainable economy(No.TKP2021-NKTA-01)”。
文摘Research of autonomous manufacturing systems is motivated both by the new technical possibilities of cyber-physical systems and by the practical needs of the industry.Autonomous operation in semi-structured industrial environments can now be supported by advanced sensor technologies,digital twins,artificial intelligence and novel communication techniques.These enable real-time monitoring of production processes,situation recognition and prediction,automated and adaptive(re)planning,teamwork and performance improvement by learning.This paper summarizes the main requirements towards autonomous industrial robotics and suggests a generic workflow for realizing such systems.Application case studies will be presented from recent practice at HUN-REN SZTAKI in a broad range of domains such as assembly,welding,grinding,picking and placing,and machining.The various solutions have in common that they use a generic digital twin concept as their core.After making general recommendations for realizing autonomous robotic solutions in the industry,open issues for future research will be discussed.