The non-uniformity of gas–liquid mixture is a critical issue which leads to the heat transfer deterioration of spiralwound heat exchangers(SWHEs).Two-phase mass flow rate and the content of gas are important paramete...The non-uniformity of gas–liquid mixture is a critical issue which leads to the heat transfer deterioration of spiralwound heat exchangers(SWHEs).Two-phase mass flow rate and the content of gas are important parameters as well as structural parameters which have prominent influences on flow distribution uniformity of SWHE shell side.In order to investigate the influences of these parameters,an experimental test system was built using water and air as mediums and a novel distributor named"tubes distributor"was designed.The effects of mass flow rate and the content of gas on two-phase distribution performance were analyzed,where the mass flow rate ranged from 28.4 to 171.9 kg·h-1 and the content of gas changed from 0.2 to 0.8,respectively.The results showed that the mixture mass flow rate considerably influenced the liquid distribution than that of gas phase and the larger mass flow rate exhibited the better distribution uniformity of two-phase flow.It was also found that the tubes distributor had the better two-phase uniformity when the content of gas was around 0.4.Tube diameter played an important role in the distribution of gas phase and slit width was more significant for the uniformity of liquid phase.展开更多
Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this s...Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this study to recognize gas–liquid flow patterns by inducing fluid oscillation that enlarged differences between each flow pattern. Experiments with air–water mixtures were carried out in horizontal pipelines at ambient temperature and atmospheric pressure. Differential pressure signals from the bluff-body wake were obtained in bubble, bubble/plug transitional, plug, slug, and annular flows. Utilizing the adaptive ensemble empirical mode decomposition method and the Hilbert transform, the time–frequency entropy S of the differential pressure signals was obtained. By combining S and other flow parameters, such as the volumetric void fraction β, the dryness x, the ratio of density φ and the modified fluid coefficient ψ, a new flow pattern map was constructed which adopted S(1–x)φ and (1–β)ψ as the vertical and horizontal coordinates, respectively. The overall rate of classification of the map was verified to be 92.9% by the experimental data. It provides an effective and simple solution to the gas–liquid flow pattern identification problems.展开更多
This paper describes the application of ultrasound waves on hydrodynamics and mass transfer characteristics in the gas–liquid flow in a T-shape microreactor with a diameter of 800 μm. A 1.7 MHz piezoelectric transdu...This paper describes the application of ultrasound waves on hydrodynamics and mass transfer characteristics in the gas–liquid flow in a T-shape microreactor with a diameter of 800 μm. A 1.7 MHz piezoelectric transducer(PZT) was employed to induce the vibration in this microreactor. Liquid side volumetric mass transfer coefficients were measured by physical and chemical methods of CO_2 absorption into water and Na OH solution. The approach of absorption of CO_2 into a 1 mol·L^(-1) Na OH solution was used for analysis of interfacial areas. With the help of a photography system, the fluid flow patterns inside the microreactor were analyzed. The effects of superficial liquid velocity, initial concentration of Na OH, superficial CO_2 gas velocity and length of microreactor on the mass transfer rate were investigated. The comparison between sonicated and plain microreactors(microreactor with and without ultrasound) shows that the ultrasound wave irradiation has a significant effect on kLa and interfacial area at various operational conditions. For the microreactor length of 12 cm, ultrasound waves improved kLa and interfacial area about 21% and 22%, respectively. From this study, it can be concluded that ultrasound wave irradiation in microreactor has a great effect on the mass transfer rate. This study suggests a new enhancement technique to establish high interfacial area and kLa in microreactors.展开更多
Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterize...Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterized by intermittent motion of film region and slug region.This work aims to develop the ultrasonic Doppler method to realize the simultaneous measurement of the velocity profile and liquid film thickness of slug flow.A single-frequency single-channel transducer is adopted in the design of the field-programmable gate array based ultrasonic Doppler system.A multiple echo repetition technology is used to improve the temporal-spatial resolution for the velocity profile.An experiment of horizontal gas-liquid two-phase flow is implemented in an acrylic pipe with an inner diameter of 20 mm.Considering the aerated characteristics of the liquid slug,slug flow is divided into low-aerated slug flow,high-aerated slug flow and pseudo slug flow.The temporal-spatial velocity distributions of the three kinds of slug flows are reconstructed by using the ultrasonic velocity profile measurement.The evolution characteristics of the average velocity profile in slug flows are investigated.A novel method is proposed to derive the liquid film thickness based on the instantaneous velocity profile.The liquid film thickness can be effectively measured by detecting the position and the size of the bubbles nearly below the elongated gas bubble.Compared with the time of flight method,the film thickness measured by the Doppler system shows a higher accuracy as a bubble layer occurs in the film region.The effect of the gas distribution on the film thickness is uncovered in three kinds of slug flows.展开更多
Computational fluid dynamics(CFD) has recently emerged as an effective tool for the investigation of the hydraulic parameters and efficiency of tray towers.The computation domain was established for two types of orien...Computational fluid dynamics(CFD) has recently emerged as an effective tool for the investigation of the hydraulic parameters and efficiency of tray towers.The computation domain was established for two types of oriented valves within a tray and meshed into two parts with different grid types and sizes.The volume fraction correlation concerning inter-phase momentum transfer source was fitted based on experimental data,and built in UDF for simulation.The flow pattern of oriented valve tray under different operating conditions was simulated under Eulerian-Eulerian framework with realizable k-ε model.The predicted liquid height from CFD simulation was in good agreement with the results of pressure drop and volume fraction correlations.Meanwhile,the velocity distribution and volume fraction of the two phases were demonstrated and analyzed,which are useful in design and analysis of the column trays.展开更多
In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM)...In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM).Through 18 orthogonal test cases,the optimal combination of interfacial force models,including drag force,lift force,turbulent dispersion force.The modified wall lubrication force model was proposed to improve the predictive ability for hydrodynamic behavior near the wall of the bubble column.The values simulated by optimized CFD model were in agreement with experimental data,and the errors were within±20%.In addition,the axial velocity,turbulent kinetic energy,bubble size distribution,and the dynamic characteristic of bubble plume were analyzed at different superficial gas velocities.This research work could provide a theoretical basis for the extension of the CFD-PBM coupled model to other multiphase reactors..展开更多
Antibiotic contamination adversely affects human health and ecological balance.In this study,gasliquid underwater discharge plasma was employed to simultaneously degrade three antibiotics,sulfadiazine(SDZ),tetracyclin...Antibiotic contamination adversely affects human health and ecological balance.In this study,gasliquid underwater discharge plasma was employed to simultaneously degrade three antibiotics,sulfadiazine(SDZ),tetracycline(TC),and norfloxacin(NOR),to address the growing problem of antibiotic contaminants in water.The effects of various parameters on the antibiotic degradation efficiency were evaluated,including the discharge gas type and flow rate,the initial concentration and pH of the solution,and the discharge voltage.Under the optimum parameter configuration,the average removal rate of the three antibiotics was 54.0% and the energy yield was 8.9 g(kW·h)-1after 5 min treatment;the removal efficiency was 96.5% and the corresponding energy yield was4.0 g(kW·h)-1 after 20 min treatment.Reactive substance capture and determination experiments indicated that ·OH and O3 played a vital role in the decomposition of SDZ and NOR,but the role of reactive substances in TC degradation was relatively less significant.展开更多
In this article, a theoretical model for predicting the equilibrium morphology of gas–liquid Janus droplets was built. Based on this model, the effects of bubble radius and volume ratio on morphology change was syste...In this article, a theoretical model for predicting the equilibrium morphology of gas–liquid Janus droplets was built. Based on this model, the effects of bubble radius and volume ratio on morphology change was systematically studied. The increase of bubble radius causes the two parts(bubble and oil drop) in Janus droplets tend to merge while the impact of volume ratio is complicated. When volume ratio increases, these two parts firstly tend to merge, then gradually separate. The accuracy of this model was verified by experimental results.展开更多
Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction a...Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces(EMFs) play the second role.展开更多
The torque and bending moment acting on a flexible overhung shaft in a gas–liquid stirred vessel agitated by a Rushton turbine and three different curved-blade disk turbines(half circular blades disk turbine, half el...The torque and bending moment acting on a flexible overhung shaft in a gas–liquid stirred vessel agitated by a Rushton turbine and three different curved-blade disk turbines(half circular blades disk turbine, half elliptical blades disk turbine, and parabolic blades disk turbine) were experimentally measured by a customized moment sensor. The results show that the amplitude distribution of torque can be fitted by a symmetric bimodal distribution for disk turbines, and generally the distribution is more dispersive as the blade curvature or the gas flow rate increases. The amplitude distribution of shaft bending moment can be fitted by an asymmetric Weibull distribution for disk turbines. The relative shaft bending moment manifests a "rising-falling-rising" trend over the gas flow number, which is a corporate contribution of the unstable gas–liquid flow around the impeller, the gas cavities behind the blades, and the direct impact of gas on the impeller. And the "falling" stage is greater and lasts wider over the gas flow number for Rushton turbine than for the curved-blade disk turbines.展开更多
In the present work,the turbulent mixing process of a polydisperse quartz particle flow with a plasma stream generated by a radio-frequency(RF)inductively coupled plasma torch was numerically studied.The thermobaric s...In the present work,the turbulent mixing process of a polydisperse quartz particle flow with a plasma stream generated by a radio-frequency(RF)inductively coupled plasma torch was numerically studied.The thermobaric stress in the quartz particles under dynamic heating in a heterogeneous plasma flow was determined by a two-stage approximation approach.The effect of the presence of vacuoles in natural quartz on the particle thermobaric destruction conditions was studied.It was found that the equivalent thermal and baric stresses in quartz particles may significantly increase in the presence of vacuoles within a small gas volume fraction.The influence of the regime and energetic working conditions of an RF inductively coupled plasma torch system on the particle thermobaric destruction conditions was examined,and a recommendation was given to promote the degree of thermobaric destruction of quartz particles,which is of substantial importance for improving the overall enrichment efficiency of quartz concentrates.展开更多
A discharge ignited by an AC power source in contact with deionized water as one of the electrodes is investigated.Immediately after initiation,the discharge exhibits a unique phenomenon:the gas-phase discharge is ext...A discharge ignited by an AC power source in contact with deionized water as one of the electrodes is investigated.Immediately after initiation,the discharge exhibits a unique phenomenon:the gas-phase discharge is extended into the liquid.Later,a cone-like structure is observed at the liquid surface.Synchronous monitoring of current–voltage characteristics and liquid properties versus time suggests that the discharge shapes are functions of the liquid properties.The spatio-temporal profiles indicate the potential effects of water,ambient air impurities,and metastable argon on the discharge chemistry.This becomes more obvious near the liquid surface due to increasing production of various transient reactive species such as centerdot OH and NO centerdot.Moreover,it is revealed that thermalization of the rotational population distributions of the rotational states(N′⩽6,J′⩽13/2)in the Q1 branch of the OH(A2Σ+,υ′=0→X2Π3/2,υ′′=0)band ro-vibrational system is influenced by the humid environment near the liquid surface.In addition,the transient behaviors of instantaneous concentrations of long-lived reactive species(LRS)such as H2O2,NO−2,and NO−3 are observed with lengthening the discharge time.The production of multiple transient and LRS proposes AC excited gas–liquid argon discharge as a potential applicant in industrial wastewater cleaning,clinical medicine,and agriculture.展开更多
The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow co...The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.展开更多
A simulation method for slug flow based on the VOF multiphase flow model was implemented in ANSYS?Fluent via a user-defined function(UDF)and applied to the dissipation of liquid slugs in the inlet pipe of a gas–liqui...A simulation method for slug flow based on the VOF multiphase flow model was implemented in ANSYS?Fluent via a user-defined function(UDF)and applied to the dissipation of liquid slugs in the inlet pipe of a gas–liquid cylindrical cyclone(GLCC)separator while varying the expanding diameter ratio and angle of inclination.The dissipation of liquid slug in inlet pipe is analyzed under different expanding diameter ratios and inclination angles.In the inlet pipe,it is found that increasing expanding diameter ratio and inclination angle can reduce the liquid slug stability and enhancing the effect of gravity,which is beneficial to slug flow dissipation.In the cylinder,increasing the expanding diameter ratio can significantly reduce the liquid carrying depth of the gas phase but result in a slightly increase of the gas content in the liquid phase space.Moreover,increasing the inclination angle results in a decrease in the carrying depth of liquid in the vapor phase,but enhances gas–liquid mixing and increases the gas-carrying depth in the liquid phase.Taking into consideration the dual effects of slug dissipation in the inlet pipe and carrying capacity of gas/liquid spaces in the cylinder,the optimal expanding diameter ratio and inclination angle values can be determined.展开更多
Study on gas–liquid flow in stirred tank with two combinations of dual-impeller(six-bent-bladed turbine(6BT)+six-inclined-blade down-pumping turbine(6 ITD),the six-bent-bladed turbine(6BT)+six-inclinedblade up-pumpin...Study on gas–liquid flow in stirred tank with two combinations of dual-impeller(six-bent-bladed turbine(6BT)+six-inclined-blade down-pumping turbine(6 ITD),the six-bent-bladed turbine(6BT)+six-inclinedblade up-pumping turbine(6ITU))was conducted using computational fluid dynamics(CFD)and population balance model(PBM)(CFD-PBM)coupled model.The local bubble size was captured by particle image velocimetry(PIV)measurement.The gas holdup,bubble size distribution and gas–liquid interfacial area were explored at different conditions through numerical simulation.The results showed that the 4 mm bubbles accounted for the largest proportion of 33%at the gas flow rates Q=0.76 m^(3)·h^(-1) and 22%at Q=1.52 m^(3)·h^(-1) for combined impeller of 6BT+6ITU,while the bubbles of 4.7 mm and 5.5 mm were the largest proportion for 6BT+6ITD combination,i.e.25%at Q=0.76 m^(3)·h^(-1) and 22%at Q=1.52 m^(3)·h^(-1),respectively,which indicated that 6BT+6ITU could reduce bubble size effectively and promote gas dispersion.In addition,the gas holdup around impellers was increased obviously with the speed compared with gas flow rate.So it was concluded that 6ITU impeller could be more conductive to the bubble dispersion with more uniform bubble size,which embodied the advantages of 6BT+6ITU combination in gas–liquid mixing.展开更多
The effects of impeller type, stirring power, gas flow rate, and liquid concentration on the gas–liquid mixing in a shear-thinning system with a coaxial mixer were investigated by experiment, and the overall gas hold...The effects of impeller type, stirring power, gas flow rate, and liquid concentration on the gas–liquid mixing in a shear-thinning system with a coaxial mixer were investigated by experiment, and the overall gas holdup, relative power demand, and volumetric mass transfer coefficient under different conditions were compared. The results show that, the increasing stirring power or gas flow rate is beneficial in promoting the overall gas holdup and volumetric mass transfer coefficient, while the increasing system viscosity weakens the mass transfer in a shearing–thinning system. Among the three turbines, the six curved-blade disc turbine(BDT-6) exhibits the best gas pumping capacity; the six 45° pitched-blade disc turbine(PBDT-6) has the highest volumetric mass transfer coefficient at the same unit volume power.展开更多
A typical quinolones antibiotic ciprofloxacin(CIP) in aqueous solution was degraded by a gas–liquid discharge non-thermal plasma system. The discharge plasma power and the emission intensity of the excited reactive s...A typical quinolones antibiotic ciprofloxacin(CIP) in aqueous solution was degraded by a gas–liquid discharge non-thermal plasma system. The discharge plasma power and the emission intensity of the excited reactive species(RS) generated in the gas phase were detected by the oscilloscope and the optical emission spectroscopy. The effects of various parameters on CIP degradation, i.e. input powers, initial concentrations addition of radical scavengers and p H values were investigated. With the increase of discharge power, the degradation efficiency increased but the energy efficiency significantly reduced. The degradation efficiency also reduced under high concentration of initial CIP conditions due to the competitive reactions between the plasma-induced RS with the degradation intermediates of CIP. Different radical scavengers(isopropanol and CCl_4) on ·OH and H· were added into the reaction system and the oxidation effects of ·OH radicals have been proved with high degradation capacity on CIP.Moreover, the long-term degradation effect on CIP in the plasma-treated aqueous solution proved that the long-lived RS(H_2O_2 and O_3, etc) might play key roles on the stay effect through multiple aqueous reactions leading to production of ·OH. The degradation intermediates were determined by the method of electrospray ionization(+)-mass spectroscopy, and the possible degradation mechanism were presented.展开更多
In this paper, the power consumption, the vertical local void fraction and the local gas–liquid interfacial area are investigated in the aerated stirred tank reactors(STRs) equipped with a rigid-flexible impeller. Me...In this paper, the power consumption, the vertical local void fraction and the local gas–liquid interfacial area are investigated in the aerated stirred tank reactors(STRs) equipped with a rigid-flexible impeller. Meanwhile, the regressive correlation based on power consumption and interfacial area is proposed. Then a novel homogenization energy(HE = RSDPtm) expression based on power consumption and local interfacial area is redefined and used to indicate the mixing efficiency. The optimal operating mode is selected based on the change of the HE value. This paper can provide research ideas for structural optimization of stirred reactors.展开更多
In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-p...In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-pressure core displacement experiments.Fine quantitative characterization of the cores in three steady states(original,after sulfur injection,and after gas flooding)was carried out using the nuclear magnetic resonance(NMR)transverse relaxation time spectrum and imaging,X-ray computer tomography(CT)of full-diameter cores,basic physical property testing,and field emission scanning electron microscopy imaging.The loss of pore volume caused by sulfur deposition and adsorption mainly comes from the medium and large pores with sizes bigger than 1000μm.Liquid sulfur has a stronger adsorption and deposition ability in smaller pore spaces,and causes greater damage to reservoirs with poor original pore structures.The pore structure of the three types of carbonate reservoirs shows multiple fractal characteristics.The worse the pore structure,the greater the change of internal pore distribution caused by liquid sulfur deposition and adsorption,and the stronger the heterogeneity.Liquid sulfur deposition and adsorption change the pore size distribution,pore connectivity,and heterogeneity of the rock,which further changes the physical properties of the reservoir.After sulfur injection and gas flooding,the permeability of TypeⅠreservoirs with good physical properties decreased by 16%,and that of TypesⅡandⅢreservoirs with poor physical properties decreased by 90%or more,suggesting an extremely high damage.This indicates that the worse the initial physical properties,the greater the damage of liquid sulfur deposition and adsorption.Liquid sulfur is adsorbed and deposited in different types of pore space in the forms of flocculence,cobweb,or retinitis,causing different changes in the pore structure and physical property of the reservoir.展开更多
基金Supported by the research funds from MIIT program on High Technology Research Program of Ship(2013K4181).
文摘The non-uniformity of gas–liquid mixture is a critical issue which leads to the heat transfer deterioration of spiralwound heat exchangers(SWHEs).Two-phase mass flow rate and the content of gas are important parameters as well as structural parameters which have prominent influences on flow distribution uniformity of SWHE shell side.In order to investigate the influences of these parameters,an experimental test system was built using water and air as mediums and a novel distributor named"tubes distributor"was designed.The effects of mass flow rate and the content of gas on two-phase distribution performance were analyzed,where the mass flow rate ranged from 28.4 to 171.9 kg·h-1 and the content of gas changed from 0.2 to 0.8,respectively.The results showed that the mixture mass flow rate considerably influenced the liquid distribution than that of gas phase and the larger mass flow rate exhibited the better distribution uniformity of two-phase flow.It was also found that the tubes distributor had the better two-phase uniformity when the content of gas was around 0.4.Tube diameter played an important role in the distribution of gas phase and slit width was more significant for the uniformity of liquid phase.
基金Project(51576213)supported by the National Natural Science Foundation of ChinaProject(2015RS4015)supported by the Hunan Scientific Program,ChinaProject(2016zzts323)supported by the Innovation Project of Central South University,China
文摘Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this study to recognize gas–liquid flow patterns by inducing fluid oscillation that enlarged differences between each flow pattern. Experiments with air–water mixtures were carried out in horizontal pipelines at ambient temperature and atmospheric pressure. Differential pressure signals from the bluff-body wake were obtained in bubble, bubble/plug transitional, plug, slug, and annular flows. Utilizing the adaptive ensemble empirical mode decomposition method and the Hilbert transform, the time–frequency entropy S of the differential pressure signals was obtained. By combining S and other flow parameters, such as the volumetric void fraction β, the dryness x, the ratio of density φ and the modified fluid coefficient ψ, a new flow pattern map was constructed which adopted S(1–x)φ and (1–β)ψ as the vertical and horizontal coordinates, respectively. The overall rate of classification of the map was verified to be 92.9% by the experimental data. It provides an effective and simple solution to the gas–liquid flow pattern identification problems.
文摘This paper describes the application of ultrasound waves on hydrodynamics and mass transfer characteristics in the gas–liquid flow in a T-shape microreactor with a diameter of 800 μm. A 1.7 MHz piezoelectric transducer(PZT) was employed to induce the vibration in this microreactor. Liquid side volumetric mass transfer coefficients were measured by physical and chemical methods of CO_2 absorption into water and Na OH solution. The approach of absorption of CO_2 into a 1 mol·L^(-1) Na OH solution was used for analysis of interfacial areas. With the help of a photography system, the fluid flow patterns inside the microreactor were analyzed. The effects of superficial liquid velocity, initial concentration of Na OH, superficial CO_2 gas velocity and length of microreactor on the mass transfer rate were investigated. The comparison between sonicated and plain microreactors(microreactor with and without ultrasound) shows that the ultrasound wave irradiation has a significant effect on kLa and interfacial area at various operational conditions. For the microreactor length of 12 cm, ultrasound waves improved kLa and interfacial area about 21% and 22%, respectively. From this study, it can be concluded that ultrasound wave irradiation in microreactor has a great effect on the mass transfer rate. This study suggests a new enhancement technique to establish high interfacial area and kLa in microreactors.
基金supported by the National Natural Science Foundation of China(41974139,42274148,42074142)。
文摘Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterized by intermittent motion of film region and slug region.This work aims to develop the ultrasonic Doppler method to realize the simultaneous measurement of the velocity profile and liquid film thickness of slug flow.A single-frequency single-channel transducer is adopted in the design of the field-programmable gate array based ultrasonic Doppler system.A multiple echo repetition technology is used to improve the temporal-spatial resolution for the velocity profile.An experiment of horizontal gas-liquid two-phase flow is implemented in an acrylic pipe with an inner diameter of 20 mm.Considering the aerated characteristics of the liquid slug,slug flow is divided into low-aerated slug flow,high-aerated slug flow and pseudo slug flow.The temporal-spatial velocity distributions of the three kinds of slug flows are reconstructed by using the ultrasonic velocity profile measurement.The evolution characteristics of the average velocity profile in slug flows are investigated.A novel method is proposed to derive the liquid film thickness based on the instantaneous velocity profile.The liquid film thickness can be effectively measured by detecting the position and the size of the bubbles nearly below the elongated gas bubble.Compared with the time of flight method,the film thickness measured by the Doppler system shows a higher accuracy as a bubble layer occurs in the film region.The effect of the gas distribution on the film thickness is uncovered in three kinds of slug flows.
文摘Computational fluid dynamics(CFD) has recently emerged as an effective tool for the investigation of the hydraulic parameters and efficiency of tray towers.The computation domain was established for two types of oriented valves within a tray and meshed into two parts with different grid types and sizes.The volume fraction correlation concerning inter-phase momentum transfer source was fitted based on experimental data,and built in UDF for simulation.The flow pattern of oriented valve tray under different operating conditions was simulated under Eulerian-Eulerian framework with realizable k-ε model.The predicted liquid height from CFD simulation was in good agreement with the results of pressure drop and volume fraction correlations.Meanwhile,the velocity distribution and volume fraction of the two phases were demonstrated and analyzed,which are useful in design and analysis of the column trays.
基金supported by the National Natural Science Foundation of China(22078009)National Key Research and Development Program of China(2021YFC3001102,2021YFC3001100)。
文摘In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM).Through 18 orthogonal test cases,the optimal combination of interfacial force models,including drag force,lift force,turbulent dispersion force.The modified wall lubrication force model was proposed to improve the predictive ability for hydrodynamic behavior near the wall of the bubble column.The values simulated by optimized CFD model were in agreement with experimental data,and the errors were within±20%.In addition,the axial velocity,turbulent kinetic energy,bubble size distribution,and the dynamic characteristic of bubble plume were analyzed at different superficial gas velocities.This research work could provide a theoretical basis for the extension of the CFD-PBM coupled model to other multiphase reactors..
基金supported by the Key R&D Plan of Anhui Province(No.201904a07020013)Collaborative Innovation Program of Hefei Science Center,CAS(No.CX2140000018)the Funding for Joint Lab of Applied Plasma Technology(No.JL06120001H)。
文摘Antibiotic contamination adversely affects human health and ecological balance.In this study,gasliquid underwater discharge plasma was employed to simultaneously degrade three antibiotics,sulfadiazine(SDZ),tetracycline(TC),and norfloxacin(NOR),to address the growing problem of antibiotic contaminants in water.The effects of various parameters on the antibiotic degradation efficiency were evaluated,including the discharge gas type and flow rate,the initial concentration and pH of the solution,and the discharge voltage.Under the optimum parameter configuration,the average removal rate of the three antibiotics was 54.0% and the energy yield was 8.9 g(kW·h)-1after 5 min treatment;the removal efficiency was 96.5% and the corresponding energy yield was4.0 g(kW·h)-1 after 20 min treatment.Reactive substance capture and determination experiments indicated that ·OH and O3 played a vital role in the decomposition of SDZ and NOR,but the role of reactive substances in TC degradation was relatively less significant.
基金Supported by the National Natural Science Foundation of China(21476121,21322604)Beijing Natural Science Foundation(2162020)a Foundation for Tsinghua Independent Research Projects(2014z21026)
文摘In this article, a theoretical model for predicting the equilibrium morphology of gas–liquid Janus droplets was built. Based on this model, the effects of bubble radius and volume ratio on morphology change was systematically studied. The increase of bubble radius causes the two parts(bubble and oil drop) in Janus droplets tend to merge while the impact of volume ratio is complicated. When volume ratio increases, these two parts firstly tend to merge, then gradually separate. The accuracy of this model was verified by experimental results.
基金Project(2010AA065201)supported by the High Technology Research and Development Program of ChinaProject(2013zzts038)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(ZB2011CBBCe1)supported by the Major Program for Aluminum Corporation of China Limited,China
文摘Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces(EMFs) play the second role.
基金Supported by the National Key R&D Program of China(2017YFB0306704)the National Natural Science Foundation of China(21676007)
文摘The torque and bending moment acting on a flexible overhung shaft in a gas–liquid stirred vessel agitated by a Rushton turbine and three different curved-blade disk turbines(half circular blades disk turbine, half elliptical blades disk turbine, and parabolic blades disk turbine) were experimentally measured by a customized moment sensor. The results show that the amplitude distribution of torque can be fitted by a symmetric bimodal distribution for disk turbines, and generally the distribution is more dispersive as the blade curvature or the gas flow rate increases. The amplitude distribution of shaft bending moment can be fitted by an asymmetric Weibull distribution for disk turbines. The relative shaft bending moment manifests a "rising-falling-rising" trend over the gas flow number, which is a corporate contribution of the unstable gas–liquid flow around the impeller, the gas cavities behind the blades, and the direct impact of gas on the impeller. And the "falling" stage is greater and lasts wider over the gas flow number for Rushton turbine than for the curved-blade disk turbines.
基金supported by National Natural Science Foundation of China(Nos.52202460,52177128)National Key R&D Program of China(Nos.2020YFC2201100,2021YFC2202804)+2 种基金China Postdoctoral Science Foundation(Nos.2021M690392,2021TQ0036)Science Foundation for Youth Scholars of the Beijing Institute of TechnologyAdvanced Space Propulsion Laboratory of BICE and the Beijing Engineering Research Centre of Efficient and Green Aerospace Propulsion Technology(No.LabASP-2021-04)。
文摘In the present work,the turbulent mixing process of a polydisperse quartz particle flow with a plasma stream generated by a radio-frequency(RF)inductively coupled plasma torch was numerically studied.The thermobaric stress in the quartz particles under dynamic heating in a heterogeneous plasma flow was determined by a two-stage approximation approach.The effect of the presence of vacuoles in natural quartz on the particle thermobaric destruction conditions was studied.It was found that the equivalent thermal and baric stresses in quartz particles may significantly increase in the presence of vacuoles within a small gas volume fraction.The influence of the regime and energetic working conditions of an RF inductively coupled plasma torch system on the particle thermobaric destruction conditions was examined,and a recommendation was given to promote the degree of thermobaric destruction of quartz particles,which is of substantial importance for improving the overall enrichment efficiency of quartz concentrates.
基金by National Natural Science Foundation of China(No.51578309)。
文摘A discharge ignited by an AC power source in contact with deionized water as one of the electrodes is investigated.Immediately after initiation,the discharge exhibits a unique phenomenon:the gas-phase discharge is extended into the liquid.Later,a cone-like structure is observed at the liquid surface.Synchronous monitoring of current–voltage characteristics and liquid properties versus time suggests that the discharge shapes are functions of the liquid properties.The spatio-temporal profiles indicate the potential effects of water,ambient air impurities,and metastable argon on the discharge chemistry.This becomes more obvious near the liquid surface due to increasing production of various transient reactive species such as centerdot OH and NO centerdot.Moreover,it is revealed that thermalization of the rotational population distributions of the rotational states(N′⩽6,J′⩽13/2)in the Q1 branch of the OH(A2Σ+,υ′=0→X2Π3/2,υ′′=0)band ro-vibrational system is influenced by the humid environment near the liquid surface.In addition,the transient behaviors of instantaneous concentrations of long-lived reactive species(LRS)such as H2O2,NO−2,and NO−3 are observed with lengthening the discharge time.The production of multiple transient and LRS proposes AC excited gas–liquid argon discharge as a potential applicant in industrial wastewater cleaning,clinical medicine,and agriculture.
基金sponsored by the National Natural Science Foundation of China (Grant No. 51504279)Shandong Provincial Natural Science Foundation, China (ZR2014EEQ021)+2 种基金Qingdao Science and Technology (15-9-1-96-jch)the Fundamental Research Funds for the Central Universities (17CX02073, 17CX02011A and R1502039A)973 Project (2015CB251206)
文摘The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.
基金financially supported by the National Science Foundation of China(Nos.51274233,51574273)the Province Natural Science Foundation(Grant No.ZR2014EEM045)。
文摘A simulation method for slug flow based on the VOF multiphase flow model was implemented in ANSYS?Fluent via a user-defined function(UDF)and applied to the dissipation of liquid slugs in the inlet pipe of a gas–liquid cylindrical cyclone(GLCC)separator while varying the expanding diameter ratio and angle of inclination.The dissipation of liquid slug in inlet pipe is analyzed under different expanding diameter ratios and inclination angles.In the inlet pipe,it is found that increasing expanding diameter ratio and inclination angle can reduce the liquid slug stability and enhancing the effect of gravity,which is beneficial to slug flow dissipation.In the cylinder,increasing the expanding diameter ratio can significantly reduce the liquid carrying depth of the gas phase but result in a slightly increase of the gas content in the liquid phase space.Moreover,increasing the inclination angle results in a decrease in the carrying depth of liquid in the vapor phase,but enhances gas–liquid mixing and increases the gas-carrying depth in the liquid phase.Taking into consideration the dual effects of slug dissipation in the inlet pipe and carrying capacity of gas/liquid spaces in the cylinder,the optimal expanding diameter ratio and inclination angle values can be determined.
基金supported by the National Natural Science Foundation of China(52176040)Shandong Provincial Natural Science Foundation of China(ZR2018LE015)。
文摘Study on gas–liquid flow in stirred tank with two combinations of dual-impeller(six-bent-bladed turbine(6BT)+six-inclined-blade down-pumping turbine(6 ITD),the six-bent-bladed turbine(6BT)+six-inclinedblade up-pumping turbine(6ITU))was conducted using computational fluid dynamics(CFD)and population balance model(PBM)(CFD-PBM)coupled model.The local bubble size was captured by particle image velocimetry(PIV)measurement.The gas holdup,bubble size distribution and gas–liquid interfacial area were explored at different conditions through numerical simulation.The results showed that the 4 mm bubbles accounted for the largest proportion of 33%at the gas flow rates Q=0.76 m^(3)·h^(-1) and 22%at Q=1.52 m^(3)·h^(-1) for combined impeller of 6BT+6ITU,while the bubbles of 4.7 mm and 5.5 mm were the largest proportion for 6BT+6ITD combination,i.e.25%at Q=0.76 m^(3)·h^(-1) and 22%at Q=1.52 m^(3)·h^(-1),respectively,which indicated that 6BT+6ITU could reduce bubble size effectively and promote gas dispersion.In addition,the gas holdup around impellers was increased obviously with the speed compared with gas flow rate.So it was concluded that 6ITU impeller could be more conductive to the bubble dispersion with more uniform bubble size,which embodied the advantages of 6BT+6ITU combination in gas–liquid mixing.
基金Supported by the Zhejiang Provincial Natural Science Foundation of China(LY16B060003)the National Natural Science Foundation of China(21776246)
文摘The effects of impeller type, stirring power, gas flow rate, and liquid concentration on the gas–liquid mixing in a shear-thinning system with a coaxial mixer were investigated by experiment, and the overall gas holdup, relative power demand, and volumetric mass transfer coefficient under different conditions were compared. The results show that, the increasing stirring power or gas flow rate is beneficial in promoting the overall gas holdup and volumetric mass transfer coefficient, while the increasing system viscosity weakens the mass transfer in a shearing–thinning system. Among the three turbines, the six curved-blade disc turbine(BDT-6) exhibits the best gas pumping capacity; the six 45° pitched-blade disc turbine(PBDT-6) has the highest volumetric mass transfer coefficient at the same unit volume power.
基金financially supported by National Natural Science Foundation of China (Nos. 51777206 and 51541807)Natural Science Foundation of Anhui Province (Nos. 1708085MB47 and 1708085MA13)+2 种基金Foundation of Anhui Province Key Laboratory of Medical Physics and Technology (No. LMPT2017Y7BP0U1581)Doctoral Fund of Ministry of Education of China (No. 2017M612058)Specialized Research Fund for the Doctoral Program of Hefei University of Technology (Nos. JZ2016HGBZ0768, JZ2016HGBZ0769, and JZ2017HGBZ0944)
文摘A typical quinolones antibiotic ciprofloxacin(CIP) in aqueous solution was degraded by a gas–liquid discharge non-thermal plasma system. The discharge plasma power and the emission intensity of the excited reactive species(RS) generated in the gas phase were detected by the oscilloscope and the optical emission spectroscopy. The effects of various parameters on CIP degradation, i.e. input powers, initial concentrations addition of radical scavengers and p H values were investigated. With the increase of discharge power, the degradation efficiency increased but the energy efficiency significantly reduced. The degradation efficiency also reduced under high concentration of initial CIP conditions due to the competitive reactions between the plasma-induced RS with the degradation intermediates of CIP. Different radical scavengers(isopropanol and CCl_4) on ·OH and H· were added into the reaction system and the oxidation effects of ·OH radicals have been proved with high degradation capacity on CIP.Moreover, the long-term degradation effect on CIP in the plasma-treated aqueous solution proved that the long-lived RS(H_2O_2 and O_3, etc) might play key roles on the stay effect through multiple aqueous reactions leading to production of ·OH. The degradation intermediates were determined by the method of electrospray ionization(+)-mass spectroscopy, and the possible degradation mechanism were presented.
基金Supported by the National Natural Science Foundation of China(21576033,21636004)Central University of Basic Scientific Research Special Project(106112017CDJQJ228808)+2 种基金Chongqing Special Social Undertakings and People's Livelihood Security Science and Technology Innovation(cstc2017shmsA90016)National Key Research and Development Project(2017YFB0603105)National Sci-Tech Support Plan(2015BAB17B01)
文摘In this paper, the power consumption, the vertical local void fraction and the local gas–liquid interfacial area are investigated in the aerated stirred tank reactors(STRs) equipped with a rigid-flexible impeller. Meanwhile, the regressive correlation based on power consumption and interfacial area is proposed. Then a novel homogenization energy(HE = RSDPtm) expression based on power consumption and local interfacial area is redefined and used to indicate the mixing efficiency. The optimal operating mode is selected based on the change of the HE value. This paper can provide research ideas for structural optimization of stirred reactors.
基金Supported by the National Natural Science Foundation of China(U19B6003)Sinopec Technology Research Project(P20077kxjgz)。
文摘In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-pressure core displacement experiments.Fine quantitative characterization of the cores in three steady states(original,after sulfur injection,and after gas flooding)was carried out using the nuclear magnetic resonance(NMR)transverse relaxation time spectrum and imaging,X-ray computer tomography(CT)of full-diameter cores,basic physical property testing,and field emission scanning electron microscopy imaging.The loss of pore volume caused by sulfur deposition and adsorption mainly comes from the medium and large pores with sizes bigger than 1000μm.Liquid sulfur has a stronger adsorption and deposition ability in smaller pore spaces,and causes greater damage to reservoirs with poor original pore structures.The pore structure of the three types of carbonate reservoirs shows multiple fractal characteristics.The worse the pore structure,the greater the change of internal pore distribution caused by liquid sulfur deposition and adsorption,and the stronger the heterogeneity.Liquid sulfur deposition and adsorption change the pore size distribution,pore connectivity,and heterogeneity of the rock,which further changes the physical properties of the reservoir.After sulfur injection and gas flooding,the permeability of TypeⅠreservoirs with good physical properties decreased by 16%,and that of TypesⅡandⅢreservoirs with poor physical properties decreased by 90%or more,suggesting an extremely high damage.This indicates that the worse the initial physical properties,the greater the damage of liquid sulfur deposition and adsorption.Liquid sulfur is adsorbed and deposited in different types of pore space in the forms of flocculence,cobweb,or retinitis,causing different changes in the pore structure and physical property of the reservoir.