In present work,the volatile constituents of Curcuma longa L.,A.lancea (Thunb.) DC.,Foeniculum vulgare Mill,and Cinnamomun cassia Presl.have been analyzed by flash distillation/capillary gas chro-matography/mass spect...In present work,the volatile constituents of Curcuma longa L.,A.lancea (Thunb.) DC.,Foeniculum vulgare Mill,and Cinnamomun cassia Presl.have been analyzed by flash distillation/capillary gas chro-matography/mass spectrometry.The results are consistent with those obtained by conventional steam distillation extraction method.The optimum condition of flash distillation has been studied.The experimental results showed that this new technique proved to be a simple,rapid and efficient tool for microanalysis of volatile constituents of Chinese medicinal herbs.展开更多
The variation among Chinese genotypes of Brassica napus L. for seed tocopherols content and their analysis using gas chromatography has not been comprehensively reported till to date. In the present study, the tocophe...The variation among Chinese genotypes of Brassica napus L. for seed tocopherols content and their analysis using gas chromatography has not been comprehensively reported till to date. In the present study, the tocopherol contents of four Chinese genotypes of Brassica napus L., namely, Gaoyou 605, Zhejiang 619, Zheshuang 758, and Zheshuang 72, were evaluated using three modified sample preparation protocols (P1, P2, and P3) for tocopherol extraction. These methods were distinguished as follows. Protocol one (P1) included the evaporation of solvent after extraction without silylation. Protocol two (P2) followed the direct supernatant collection after overnight extraction without drying and silylation. Protocol three (P3) included trimethylsilylation with N,O-bis(trimethylsilyl) trifluoroacetamide. Genotypic comparison of tocopherol and its isoforms revealed that Gaoyou 605 was dominant over the other genotypes with (140.5+ 10.5), (316.2+ 9.2), and (559.1+ 24.3) ~tg g-~ of seed meal ct-, 7-, and total (T-) tocopherol, respectively, and a 0.44+0.04 ^- to 7-tocopherol ratio. The comparison of the sample preparation protocols, on the other hand, suggests that P3 is the most suitable method for the tocopherol extraction from Brassica oilseeds and for the analysis of tocopherols using gas chromatography flame ionization detector (GC-FID). Trimethylsilylation is the key step differentiating P3 from P1 and P2. Variations detected in tocopherol contents among the Chinese rapeseed (B. napus) genotypes signify the need to quantify a wide range of rapeseed germplasm for seed tocopherol dynamics in short and crop improvement in long.展开更多
Via multi-dimensional gas chromatography, configured with parallel dual-channel, double detectors, valves switching and back flushing, rapid analysis of the gas compositions consisting of C1-C5 hydrocarbons and perman...Via multi-dimensional gas chromatography, configured with parallel dual-channel, double detectors, valves switching and back flushing, rapid analysis of the gas compositions consisting of C1-C5 hydrocarbons and permanent gases, such as CO2, H2S, H2, and CO, for direct coal liquefaction has been realized. With four packed chromatographic columns, which are Hayesep-Q pre-column, Hayesep-Q column, molecular sieve 5A column and one PLOT A1203 S capillary column, the gas compositions for direct coal liquefaction are analyzed qualitatively and quantitatively by the external standard method. The determination method has such advantages as excellent separation, simple operation, rapid analysis and accurate results.展开更多
Gas chromatography (GC) analysis of sulfer dioxide is challenging because SO2 is a highly mobile and chemically active molecule. For the conventional GC method with flame photometric detector (FPD) and direct-inje...Gas chromatography (GC) analysis of sulfer dioxide is challenging because SO2 is a highly mobile and chemically active molecule. For the conventional GC method with flame photometric detector (FPD) and direct-injection, it is often ineffective particularly when the SO2 level is as low as on the trace level. In this paper, a modified GC system integrated with an adsorption-desorption device was developed to detect the trace SO2 impurity in H2 fuel. Adsorbent GDX-502 is used in the adsorber to adsorb/collect SO2 from the sample gas and desorb/release it in a concentrated flow so that the conventional GC at downstream could detect it with an acceptable accuracy.展开更多
The chlorination process is one of the water treatment method used for the disinfection of water. The disinfection by products are trihalomethanes such as chloroform, dichloromethane, dibromochloromethane and bromofor...The chlorination process is one of the water treatment method used for the disinfection of water. The disinfection by products are trihalomethanes such as chloroform, dichloromethane, dibromochloromethane and bromoform. A headspace solid-phase microextraction method has been developed for determination oftrihalomethanes in water samples. The experimental parameters such as the stirring rate, extraction time, extraction temperature and desorption time were investigated. The linearity, detection limits and percentage recovery were evaluated. The optimum conditions were stirring rate 800 rpm/min, extraction time 6 min, extraction temperature 20 ~C, desorption time 2.5 min and desorption temperature 220 ~C. The detection limits were 0.01 ~g/L and the recoveries were in the range of 86-110 %, The proposed method was successfully applied to determination of THM4 in tap water samples. The THM4 contents were varied depending on the sample sites and the season. The total THM4 contents in cool, summer and rainy season were in the range of 27.58-41.89, 32.06-60.73 and 46.26-69.87 p.g/L, respectively. Confirmation of the detected compounds in water samples were performed by gas chromatograph-mass spectrometer. The mass spectra of the target compounds in water samples is in good agreement with trihalomethanes standard spectra.展开更多
This paper briefly expounds the basic principle and classification of headspace gas chromatography,summarizes its application in food analysis,environmental analysis and medical analysis,and forecasts the application ...This paper briefly expounds the basic principle and classification of headspace gas chromatography,summarizes its application in food analysis,environmental analysis and medical analysis,and forecasts the application prospect of headspace gas chromatography in analytical chemistry in the future.展开更多
Although the eminent threat of a terrorist group detonating an improvised nuclear device (IND) in an urban environment is low, it is crucial that countries develop modern nuclear forensic capabilities to expedite resp...Although the eminent threat of a terrorist group detonating an improvised nuclear device (IND) in an urban environment is low, it is crucial that countries develop modern nuclear forensic capabilities to expedite response in a post-detonation scenario. In particular, new instruments need to be created to shorten dissolution time, expedite chemical separation, and improve forensic analysis of the nuclear melt glass that is created during the detonation of the device. To expedite this process, an instrument was designed to thermally couple a gas chromatograph (GC) to a time-of-flight inductively coupled plasma time-of-flight mass spectrometer (ICPTOFMS) In order to couple these two instruments, another instrument was designed to provide an isothermal atmosphere between the GC and TOFICPMS to expedite rapid gas separations processes. By using gas separations instead of the current wet chemistry processes, the required separation and analysis time of the melt glass significantly decreases. The new instrument would also provide a more detailed analysis of the elemental and isotopic composition of the melt glass. By completing these tasks simultaneously, this significantly decreases the required time to conduct these separations and improves the elemental and isotopic analysis.展开更多
During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and...During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and accumulation of hydrates further contribute to the obstruction of natural gas pipelines,resulting in production reduction,shutdowns,and pressure build-ups.Consequently,a cascade of risks is prone to occur.To address this issue,this study focuses on the operational process of natural gas gathering and transmission pipelines,where a comprehensive framework is established.This framework includes theoretical models for pipeline temperature distribution,pipeline pressure distribution,multiphase flow within the pipeline,hydrate blockage,and numerical solution methods.By analyzing the influence of inlet temperature,inlet pressure,and terminal pressure on hydrate formation within the pipeline,the sensitivity patterns of hydrate blockage risks are derived.The research indicates that reducing inlet pressure and terminal pressure could lead to a decreased maximum hydrate formation rate,potentially mitigating pipeline blockage during natural gas transportation.Furthermore,an increase in inlet temperature and terminal pressure,and a decrease in inlet pressure,results in a displacement of the most probable location for hydrate blockage towards the terminal station.However,it is crucial to note that operating under low-pressure conditions significantly elevates energy consumption within the gathering system,contradicting the operational goal of energy efficiency and reduction of energy consumption.Consequently,for high-pressure gathering pipelines,measures such as raising the inlet temperature or employing inhibitors,electrical heat tracing,and thermal insulation should be adopted to prevent hydrate formation during natural gas transportation.Moreover,considering abnormal conditions such as gas well production and pipeline network shutdowns,which could potentially trigger hydrate formation,the installation of methanol injection connectors remains necessary to ensure production safety.展开更多
A method in combination with derivatization-supercritical fluid extraction(SFE) and gas chromatography(GC) for the speciation and quantitative determination of dimethylarsinate(DMA), monomethylarsonate(MMA) an...A method in combination with derivatization-supercritical fluid extraction(SFE) and gas chromatography(GC) for the speciation and quantitative determination of dimethylarsinate(DMA), monomethylarsonate(MMA) and inorganic arsenic in solid matrices was investigated. Thioglycolic acid methyl ester(TGM) and thioglycolic acid ethyl ester(TGE) were evaluated as derivatization reagents. The effects of pressure, temperature, flow rate of supercritical CO_2, extraction time, modifier and microemulsion on the efficiency of extraction were systematically investigated. The procedure was applied to the analysis of real soil and sediment samples. Results showed that TGE was more effective for arsenic speciation as a derivatization reagent. Modifying supercritical CO_2 with methanol can greatly improve the extraction efficiency. Further, the addition of microemulsion containing surfactant Triton X-100 can further enhance recoveries of arsenic species. The optimum extraction conditions were 100 ℃, 30 MPa, 10 min static and 25 min dynamic extraction with 5%(v/v) methanol, and surfactant modified supercritical CO_2. Detection limits in solid matrices were 0.15, 0.3 and 1.2 mg/kg for DMA, MMA and inorganic arsenic,respectively. The method was validated by the recovery data. The resulting method was fast, easy to perform and selective in the extraction and detection of various arsenic species in solid matrices.展开更多
Objectives:A rapid and sensitive gas chromatography–mass spectrometry(GC–MS)method for quantitative and qualitative analysis of essential oil from Curcuma wenyujin rhizomes was established.Methods:The essential oil ...Objectives:A rapid and sensitive gas chromatography–mass spectrometry(GC–MS)method for quantitative and qualitative analysis of essential oil from Curcuma wenyujin rhizomes was established.Methods:The essential oil of C.wenyujin rhizomes was extracted by supercritical CO2 extraction(SFE).Six main bioactive compounds(eucalyptol,β-elemene,curzerene,germacrone,curdione,and curcumol)were analyzed in selected ion monitoring mode(SIM).Results:Curzerene is not originally present in C.wenyujin rhizomes,but is a product of the transformation of furanodiene at high temperature.The six target components demonstrated good linearity(R2>0.9979)over a relatively wide concentration range.The interday and intraday variations had relative standard deviation values less than 5%and the average recovery ranged from 96.95%to 100.04%.The limit of quantitation ranged from 0.032 to 0.235μg/mL.The developed method was successfully used to analyze the six compounds in 17 samples collected from different origins.Significant variation was observed for the concentrations of the six compounds.In addition,51 constituents were identified in C.wenyujin rhizome essential oil,consisting of 87.66%of the total essential oil,including curdione,curzerene,dehydrocurdione,germacrone,1,4-bis(2-benzimidazoyl)benzene,neocurdione,curcumenone,andβ-elemene.Conclusions:The proposed method will be useful in the quality control of C.wenyujin rhizome essential oil production.展开更多
This article presents an acetylene production process by partial oxidation/combustion of natural gas. The thermodynamic performance and exergy analysis in the process are investigated using the flow-sheeting program A...This article presents an acetylene production process by partial oxidation/combustion of natural gas. The thermodynamic performance and exergy analysis in the process are investigated using the flow-sheeting program Aspen Plus. The results indicate that the most important destruction of exergy is found to occur in the reactor and water quenching scrubber, amounting to 8.23% and 10.39%, respectively, of the entire system. Based on the results of thermodynamic and exergy analysis, the acetylene reactor has been retrofitted. The improvement ratios of molar 02 to CH4 and molar CO to CN4 are 0.65 and 0.20, respectively. An improvement of the acetylene production system is proposed. Adopting the improvement operation conditions and using oil to realize the reaction heat recovery, the feedstock of natural gas is reduced by 9.88% and the exergy loss in the retrofitting process is decreased by 19.71% compared to the original process.展开更多
Urban natural gas is becoming the main sector driving China’s natural gas consumption growth in recent years.This study explores the impacts of urban natural gas price,wage,socioeconomic determinants,and meteorologic...Urban natural gas is becoming the main sector driving China’s natural gas consumption growth in recent years.This study explores the impacts of urban natural gas price,wage,socioeconomic determinants,and meteorological conditions on urban natural gas demand in China over 2006-2017.Furthermore,this study also analyzes the potential regional heterogeneity and asymmetry in the impacts of gas price and income on China’s urban gas demand.Empirical results reveal that:(1)The increased gas price can significantly reduce the urban gas demand,and the average income level may effectively promote the gas demand,also,a strong switching effect exists between electricity and natural gas in urban China;(2)these impacts are heterogeneous in regions among China,urban natural gas demand is largely affected by the gas price in regions with high-gas-price and by income in regions with low-gas-price;and(3)the impact of gas price on urban gas consumption is consistent in regions with different urban natural gas consumption,while the impact of income is asymmetric.This study further provides several policy implications for improving the urban natural gas industry in China.展开更多
Current research and ways of capturing mechanical energy are discussed in this paper. By the aid of the comprehensive thermodynamic analysis and Aspen simulation tool, the amount of a vailable work that can be produc...Current research and ways of capturing mechanical energy are discussed in this paper. By the aid of the comprehensive thermodynamic analysis and Aspen simulation tool, the amount of a vailable work that can be produced from capturing the pressure energy has been calculated. Based on the comprehensive thermodynamic analysis, two systems have been proposed to capture pressure energy of natural gas to generate electricity. In this study, the expression of exergy is given which can be used in evaluating purposes. A problem with this multidisciplinary study is the complicated boundary condition. In conclusion, a technical prospect on recoverable natural gas pressure energy has been presented based on total energy system theory.展开更多
Buried natural gas pipelines are vulnerable to external corrosion because they are encased in a soil environment for a long time.Identifying the causes of external corrosion and taking specific maintenance measures is...Buried natural gas pipelines are vulnerable to external corrosion because they are encased in a soil environment for a long time.Identifying the causes of external corrosion and taking specific maintenance measures is essential.In this work,a risk analysis and maintenance decision-making model for natural gas pipelines with external corrosion is proposed based on a Bayesian network.A fault tree model is first employed to identify the causes of external corrosion.The Bayesian network for risk analysis is determined accordingly.The maintenance strategies are then inserted into the Bayesian network to show a reduction of the risk.The costs of maintenance strategies and the reduced risk after maintenance are combined in an optimization function to build a decision-making model.Because of the limitations of historical data,some of the parameters in the Bayesian network are obtained from a probabilistic estimation model,which combines expert experience and fuzzy set theory.Finally,a case study is carried out to verify the feasibility of the maintenance decision model.This indicates that the method proposed in this work can be used to provide effective maintenance schemes for different pipeline external corrosion scenarios and to reduce the possible losses caused by external corrosion.展开更多
Henry Hub as an important transaction hub for natural gas sets the gas price standard in the USA. In this paper, the factors influencing Henry Hub natural gas prices are analyzed, and the major factors determining the...Henry Hub as an important transaction hub for natural gas sets the gas price standard in the USA. In this paper, the factors influencing Henry Hub natural gas prices are analyzed, and the major factors determining the price levels in the period between January 1997 and December 2016 are studied. It is found that economic conditions, total energy demand, US dollar exchange rate and gas consumption are the major factors. The mechanism of each factor influencing the Henry Hub natural gas price is also explored in the paper.展开更多
TFA-Ala-OMe, TFA-Ala-Ala-OMe, and TFA-Ala-Ala-Ala-OMe can be separated into 1, 2, and 4 enantiomeric pairs, respectively, by GC on the chiral stationary phase Chirasil-Val. The selectivity of the chiral stationary pha...TFA-Ala-OMe, TFA-Ala-Ala-OMe, and TFA-Ala-Ala-Ala-OMe can be separated into 1, 2, and 4 enantiomeric pairs, respectively, by GC on the chiral stationary phase Chirasil-Val. The selectivity of the chiral stationary phase for the different stereoisomers is controlled by both interaction enthalpy and interaction entropy. The interaction enthalpy is approximately proportional to the number of Ala units. Although the whole molecule is involved in the interaction, the C-terminus plays an important role. The elution order of DDD- and LLL-TFA-Ala-Ala-Ala-OMe is opposite to the order of the enhalpy values, and the ratio of net retention data t’r(DDD)/t’r(LLL) is increased with increasing temperature. By lowering the temperature, peak crossing of the enantiomeric pair has been observed. Below the isoselective temperature Tiso’ the order of elution is ruled by the enthalpy of interaction, above Tiso by the entropy of interaction.展开更多
Aiming at the change in intake air flow caused by the injection of natural gas in intake manifold if one simply replaces the gasoline injector with natural gas injector with the installing position of injector in inta...Aiming at the change in intake air flow caused by the injection of natural gas in intake manifold if one simply replaces the gasoline injector with natural gas injector with the installing position of injector in intake manifold unchanged, and also the reflection of gas toward intake manifold inlet resulted from the impingement between the injected large volumetric natural gas jet and intake valve, an impulsively started natural gas jet injected from a gas injector is characterized as a three-dimensional unsteady compressible viscous turbulent flow, based on which its transient development process is numerically analyzed using general-purpose CFD codes. The predicted velocity vector maps show a vortex, which indicates the occurrence of an unsteady state jet region, is formed downstream of the jet. A schlieren apparatus is utilized to get several groups of visible schlieren photographs of natural gas jets. In the experiment, photographs of natural gas jets taken by a CCD camera are laid in a portrait processor where the shapes, tip penetration distance and injection angles of the gas jets are investigated. Comparisons between predicted results and measurements indicate an excellent agreement between simulations and experimental results.展开更多
The statistics of the China natural gas industry prosperity index show that:China natural gas industry prosperity index reached 65.77 in the third quarter of 2018,a relatively prosperous state;the prosperity index of ...The statistics of the China natural gas industry prosperity index show that:China natural gas industry prosperity index reached 65.77 in the third quarter of 2018,a relatively prosperous state;the prosperity index of natural gas production enterprises reached 67.37,also a relatively prosperous state.Natural gas sales companies' prosperity index reached 65.29,a relatively prosperous state;the prosperity trend index of the natural gas industry in the coming year was set at 85.33,and the natural gas industry in the coming year will be in a very prosperous state.展开更多
文摘In present work,the volatile constituents of Curcuma longa L.,A.lancea (Thunb.) DC.,Foeniculum vulgare Mill,and Cinnamomun cassia Presl.have been analyzed by flash distillation/capillary gas chro-matography/mass spectrometry.The results are consistent with those obtained by conventional steam distillation extraction method.The optimum condition of flash distillation has been studied.The experimental results showed that this new technique proved to be a simple,rapid and efficient tool for microanalysis of volatile constituents of Chinese medicinal herbs.
基金supported by the National Natural Science Foundation of China (30971700 and 31171463)Natural Science Foundation of Zhejiang Province (Z3100130)
文摘The variation among Chinese genotypes of Brassica napus L. for seed tocopherols content and their analysis using gas chromatography has not been comprehensively reported till to date. In the present study, the tocopherol contents of four Chinese genotypes of Brassica napus L., namely, Gaoyou 605, Zhejiang 619, Zheshuang 758, and Zheshuang 72, were evaluated using three modified sample preparation protocols (P1, P2, and P3) for tocopherol extraction. These methods were distinguished as follows. Protocol one (P1) included the evaporation of solvent after extraction without silylation. Protocol two (P2) followed the direct supernatant collection after overnight extraction without drying and silylation. Protocol three (P3) included trimethylsilylation with N,O-bis(trimethylsilyl) trifluoroacetamide. Genotypic comparison of tocopherol and its isoforms revealed that Gaoyou 605 was dominant over the other genotypes with (140.5+ 10.5), (316.2+ 9.2), and (559.1+ 24.3) ~tg g-~ of seed meal ct-, 7-, and total (T-) tocopherol, respectively, and a 0.44+0.04 ^- to 7-tocopherol ratio. The comparison of the sample preparation protocols, on the other hand, suggests that P3 is the most suitable method for the tocopherol extraction from Brassica oilseeds and for the analysis of tocopherols using gas chromatography flame ionization detector (GC-FID). Trimethylsilylation is the key step differentiating P3 from P1 and P2. Variations detected in tocopherol contents among the Chinese rapeseed (B. napus) genotypes signify the need to quantify a wide range of rapeseed germplasm for seed tocopherol dynamics in short and crop improvement in long.
文摘Via multi-dimensional gas chromatography, configured with parallel dual-channel, double detectors, valves switching and back flushing, rapid analysis of the gas compositions consisting of C1-C5 hydrocarbons and permanent gases, such as CO2, H2S, H2, and CO, for direct coal liquefaction has been realized. With four packed chromatographic columns, which are Hayesep-Q pre-column, Hayesep-Q column, molecular sieve 5A column and one PLOT A1203 S capillary column, the gas compositions for direct coal liquefaction are analyzed qualitatively and quantitatively by the external standard method. The determination method has such advantages as excellent separation, simple operation, rapid analysis and accurate results.
基金Project supported by the National Natural Science Foundation of China (Grant No.21007038)
文摘Gas chromatography (GC) analysis of sulfer dioxide is challenging because SO2 is a highly mobile and chemically active molecule. For the conventional GC method with flame photometric detector (FPD) and direct-injection, it is often ineffective particularly when the SO2 level is as low as on the trace level. In this paper, a modified GC system integrated with an adsorption-desorption device was developed to detect the trace SO2 impurity in H2 fuel. Adsorbent GDX-502 is used in the adsorber to adsorb/collect SO2 from the sample gas and desorb/release it in a concentrated flow so that the conventional GC at downstream could detect it with an acceptable accuracy.
文摘The chlorination process is one of the water treatment method used for the disinfection of water. The disinfection by products are trihalomethanes such as chloroform, dichloromethane, dibromochloromethane and bromoform. A headspace solid-phase microextraction method has been developed for determination oftrihalomethanes in water samples. The experimental parameters such as the stirring rate, extraction time, extraction temperature and desorption time were investigated. The linearity, detection limits and percentage recovery were evaluated. The optimum conditions were stirring rate 800 rpm/min, extraction time 6 min, extraction temperature 20 ~C, desorption time 2.5 min and desorption temperature 220 ~C. The detection limits were 0.01 ~g/L and the recoveries were in the range of 86-110 %, The proposed method was successfully applied to determination of THM4 in tap water samples. The THM4 contents were varied depending on the sample sites and the season. The total THM4 contents in cool, summer and rainy season were in the range of 27.58-41.89, 32.06-60.73 and 46.26-69.87 p.g/L, respectively. Confirmation of the detected compounds in water samples were performed by gas chromatograph-mass spectrometer. The mass spectra of the target compounds in water samples is in good agreement with trihalomethanes standard spectra.
基金Supported by Special Fund for Scientific Research Project from the Education Department of Shaanxi Province(16JK1275)National Science and Technology Innovation Support Fund Project for College Students(16XK046)
文摘This paper briefly expounds the basic principle and classification of headspace gas chromatography,summarizes its application in food analysis,environmental analysis and medical analysis,and forecasts the application prospect of headspace gas chromatography in analytical chemistry in the future.
文摘Although the eminent threat of a terrorist group detonating an improvised nuclear device (IND) in an urban environment is low, it is crucial that countries develop modern nuclear forensic capabilities to expedite response in a post-detonation scenario. In particular, new instruments need to be created to shorten dissolution time, expedite chemical separation, and improve forensic analysis of the nuclear melt glass that is created during the detonation of the device. To expedite this process, an instrument was designed to thermally couple a gas chromatograph (GC) to a time-of-flight inductively coupled plasma time-of-flight mass spectrometer (ICPTOFMS) In order to couple these two instruments, another instrument was designed to provide an isothermal atmosphere between the GC and TOFICPMS to expedite rapid gas separations processes. By using gas separations instead of the current wet chemistry processes, the required separation and analysis time of the melt glass significantly decreases. The new instrument would also provide a more detailed analysis of the elemental and isotopic composition of the melt glass. By completing these tasks simultaneously, this significantly decreases the required time to conduct these separations and improves the elemental and isotopic analysis.
基金supported by 111 Project (No.D21025)Open Fund Project of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Nos.PLN2021-01,PLN2021-02,PLN2021-03)+2 种基金High-end Foreign Expert Introduction Program (No.G2021036005L)National Key Research and Development Program (No.2021YFC2800903)National Natural Science Foundation of China (No.U20B6005-05)。
文摘During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and accumulation of hydrates further contribute to the obstruction of natural gas pipelines,resulting in production reduction,shutdowns,and pressure build-ups.Consequently,a cascade of risks is prone to occur.To address this issue,this study focuses on the operational process of natural gas gathering and transmission pipelines,where a comprehensive framework is established.This framework includes theoretical models for pipeline temperature distribution,pipeline pressure distribution,multiphase flow within the pipeline,hydrate blockage,and numerical solution methods.By analyzing the influence of inlet temperature,inlet pressure,and terminal pressure on hydrate formation within the pipeline,the sensitivity patterns of hydrate blockage risks are derived.The research indicates that reducing inlet pressure and terminal pressure could lead to a decreased maximum hydrate formation rate,potentially mitigating pipeline blockage during natural gas transportation.Furthermore,an increase in inlet temperature and terminal pressure,and a decrease in inlet pressure,results in a displacement of the most probable location for hydrate blockage towards the terminal station.However,it is crucial to note that operating under low-pressure conditions significantly elevates energy consumption within the gathering system,contradicting the operational goal of energy efficiency and reduction of energy consumption.Consequently,for high-pressure gathering pipelines,measures such as raising the inlet temperature or employing inhibitors,electrical heat tracing,and thermal insulation should be adopted to prevent hydrate formation during natural gas transportation.Moreover,considering abnormal conditions such as gas well production and pipeline network shutdowns,which could potentially trigger hydrate formation,the installation of methanol injection connectors remains necessary to ensure production safety.
基金financially supported by Environmental Protection and Public Welfare Industry Research Special: the remediation technologies and demonstration for the combined pollution of the oil-heavy metals in the saline soil (No. 201109022)support by National High-tech Research and Development Projects (National 863 Projects): the key technology of efficient exploiting deep brine in the Yellow River delta (No. 2012AA061705)
文摘A method in combination with derivatization-supercritical fluid extraction(SFE) and gas chromatography(GC) for the speciation and quantitative determination of dimethylarsinate(DMA), monomethylarsonate(MMA) and inorganic arsenic in solid matrices was investigated. Thioglycolic acid methyl ester(TGM) and thioglycolic acid ethyl ester(TGE) were evaluated as derivatization reagents. The effects of pressure, temperature, flow rate of supercritical CO_2, extraction time, modifier and microemulsion on the efficiency of extraction were systematically investigated. The procedure was applied to the analysis of real soil and sediment samples. Results showed that TGE was more effective for arsenic speciation as a derivatization reagent. Modifying supercritical CO_2 with methanol can greatly improve the extraction efficiency. Further, the addition of microemulsion containing surfactant Triton X-100 can further enhance recoveries of arsenic species. The optimum extraction conditions were 100 ℃, 30 MPa, 10 min static and 25 min dynamic extraction with 5%(v/v) methanol, and surfactant modified supercritical CO_2. Detection limits in solid matrices were 0.15, 0.3 and 1.2 mg/kg for DMA, MMA and inorganic arsenic,respectively. The method was validated by the recovery data. The resulting method was fast, easy to perform and selective in the extraction and detection of various arsenic species in solid matrices.
基金supported by National Natural Science Foundation of China(82074130)the Key Research Project of Hainan Province,China(ZDYF2020183)+1 种基金CAMS Innovation Fund for Medical Sciences(CIFMS)(2017-I2M-1-013)Natural Science Foundation of Hainan Province,China(Grant No.2019RC342)。
文摘Objectives:A rapid and sensitive gas chromatography–mass spectrometry(GC–MS)method for quantitative and qualitative analysis of essential oil from Curcuma wenyujin rhizomes was established.Methods:The essential oil of C.wenyujin rhizomes was extracted by supercritical CO2 extraction(SFE).Six main bioactive compounds(eucalyptol,β-elemene,curzerene,germacrone,curdione,and curcumol)were analyzed in selected ion monitoring mode(SIM).Results:Curzerene is not originally present in C.wenyujin rhizomes,but is a product of the transformation of furanodiene at high temperature.The six target components demonstrated good linearity(R2>0.9979)over a relatively wide concentration range.The interday and intraday variations had relative standard deviation values less than 5%and the average recovery ranged from 96.95%to 100.04%.The limit of quantitation ranged from 0.032 to 0.235μg/mL.The developed method was successfully used to analyze the six compounds in 17 samples collected from different origins.Significant variation was observed for the concentrations of the six compounds.In addition,51 constituents were identified in C.wenyujin rhizome essential oil,consisting of 87.66%of the total essential oil,including curdione,curzerene,dehydrocurdione,germacrone,1,4-bis(2-benzimidazoyl)benzene,neocurdione,curcumenone,andβ-elemene.Conclusions:The proposed method will be useful in the quality control of C.wenyujin rhizome essential oil production.
基金Supported by the National Natural Science Foundation of China (90210032, 50576001).
文摘This article presents an acetylene production process by partial oxidation/combustion of natural gas. The thermodynamic performance and exergy analysis in the process are investigated using the flow-sheeting program Aspen Plus. The results indicate that the most important destruction of exergy is found to occur in the reactor and water quenching scrubber, amounting to 8.23% and 10.39%, respectively, of the entire system. Based on the results of thermodynamic and exergy analysis, the acetylene reactor has been retrofitted. The improvement ratios of molar 02 to CH4 and molar CO to CN4 are 0.65 and 0.20, respectively. An improvement of the acetylene production system is proposed. Adopting the improvement operation conditions and using oil to realize the reaction heat recovery, the feedstock of natural gas is reduced by 9.88% and the exergy loss in the retrofitting process is decreased by 19.71% compared to the original process.
基金supported by the National Social Science Foundation of China(Grant No.20VGQ003)。
文摘Urban natural gas is becoming the main sector driving China’s natural gas consumption growth in recent years.This study explores the impacts of urban natural gas price,wage,socioeconomic determinants,and meteorological conditions on urban natural gas demand in China over 2006-2017.Furthermore,this study also analyzes the potential regional heterogeneity and asymmetry in the impacts of gas price and income on China’s urban gas demand.Empirical results reveal that:(1)The increased gas price can significantly reduce the urban gas demand,and the average income level may effectively promote the gas demand,also,a strong switching effect exists between electricity and natural gas in urban China;(2)these impacts are heterogeneous in regions among China,urban natural gas demand is largely affected by the gas price in regions with high-gas-price and by income in regions with low-gas-price;and(3)the impact of gas price on urban gas consumption is consistent in regions with different urban natural gas consumption,while the impact of income is asymmetric.This study further provides several policy implications for improving the urban natural gas industry in China.
基金Supported by Tianjin Institute of Urban Construction(03046)
文摘Current research and ways of capturing mechanical energy are discussed in this paper. By the aid of the comprehensive thermodynamic analysis and Aspen simulation tool, the amount of a vailable work that can be produced from capturing the pressure energy has been calculated. Based on the comprehensive thermodynamic analysis, two systems have been proposed to capture pressure energy of natural gas to generate electricity. In this study, the expression of exergy is given which can be used in evaluating purposes. A problem with this multidisciplinary study is the complicated boundary condition. In conclusion, a technical prospect on recoverable natural gas pressure energy has been presented based on total energy system theory.
基金supported by the National Key R&D Program of China(Grant No.2018YFC0809300)the National Natural Science Foundation of China(Grant No.51806247)+2 种基金the Key Technology Project of Petro China Co Ltd.(Grant No.ZLZX2020-05)the Foundation of Sinopec(Grant No.320034)the Science Foundation of China University of Petroleum,Beijing(Grant No.2462020YXZZ052)
文摘Buried natural gas pipelines are vulnerable to external corrosion because they are encased in a soil environment for a long time.Identifying the causes of external corrosion and taking specific maintenance measures is essential.In this work,a risk analysis and maintenance decision-making model for natural gas pipelines with external corrosion is proposed based on a Bayesian network.A fault tree model is first employed to identify the causes of external corrosion.The Bayesian network for risk analysis is determined accordingly.The maintenance strategies are then inserted into the Bayesian network to show a reduction of the risk.The costs of maintenance strategies and the reduced risk after maintenance are combined in an optimization function to build a decision-making model.Because of the limitations of historical data,some of the parameters in the Bayesian network are obtained from a probabilistic estimation model,which combines expert experience and fuzzy set theory.Finally,a case study is carried out to verify the feasibility of the maintenance decision model.This indicates that the method proposed in this work can be used to provide effective maintenance schemes for different pipeline external corrosion scenarios and to reduce the possible losses caused by external corrosion.
基金supported by the National Social Science Foundation of China,2015(Grant No.ZDA059)the National Science Foundation of China,2013(Grant Nos.71373014 and 71303045)+3 种基金the Energy Foundation(USA)Projects,2012(Grant No.12YJAZH056)the special fund of the Research on the Generalized Virtual Economy,2011(Grant No.G-1111-15134)the Philosophy Social Planning project of the Ministry of Education of the People’s Republic of China,2011(Grant No.GX2011-1017Y)‘‘the Fundamental Research Funds for the Central Universities’’in UIBE(No.15YQ09)
文摘Henry Hub as an important transaction hub for natural gas sets the gas price standard in the USA. In this paper, the factors influencing Henry Hub natural gas prices are analyzed, and the major factors determining the price levels in the period between January 1997 and December 2016 are studied. It is found that economic conditions, total energy demand, US dollar exchange rate and gas consumption are the major factors. The mechanism of each factor influencing the Henry Hub natural gas price is also explored in the paper.
文摘TFA-Ala-OMe, TFA-Ala-Ala-OMe, and TFA-Ala-Ala-Ala-OMe can be separated into 1, 2, and 4 enantiomeric pairs, respectively, by GC on the chiral stationary phase Chirasil-Val. The selectivity of the chiral stationary phase for the different stereoisomers is controlled by both interaction enthalpy and interaction entropy. The interaction enthalpy is approximately proportional to the number of Ala units. Although the whole molecule is involved in the interaction, the C-terminus plays an important role. The elution order of DDD- and LLL-TFA-Ala-Ala-Ala-OMe is opposite to the order of the enhalpy values, and the ratio of net retention data t’r(DDD)/t’r(LLL) is increased with increasing temperature. By lowering the temperature, peak crossing of the enantiomeric pair has been observed. Below the isoselective temperature Tiso’ the order of elution is ruled by the enthalpy of interaction, above Tiso by the entropy of interaction.
基金This project is supported by Provincial Natural Science Foundation of Shandong (No.Y2000F07)Scientific Research Foundation for Returned Overseas Chinese Scholars, Education Ministry of China.
文摘Aiming at the change in intake air flow caused by the injection of natural gas in intake manifold if one simply replaces the gasoline injector with natural gas injector with the installing position of injector in intake manifold unchanged, and also the reflection of gas toward intake manifold inlet resulted from the impingement between the injected large volumetric natural gas jet and intake valve, an impulsively started natural gas jet injected from a gas injector is characterized as a three-dimensional unsteady compressible viscous turbulent flow, based on which its transient development process is numerically analyzed using general-purpose CFD codes. The predicted velocity vector maps show a vortex, which indicates the occurrence of an unsteady state jet region, is formed downstream of the jet. A schlieren apparatus is utilized to get several groups of visible schlieren photographs of natural gas jets. In the experiment, photographs of natural gas jets taken by a CCD camera are laid in a portrait processor where the shapes, tip penetration distance and injection angles of the gas jets are investigated. Comparisons between predicted results and measurements indicate an excellent agreement between simulations and experimental results.
文摘The statistics of the China natural gas industry prosperity index show that:China natural gas industry prosperity index reached 65.77 in the third quarter of 2018,a relatively prosperous state;the prosperity index of natural gas production enterprises reached 67.37,also a relatively prosperous state.Natural gas sales companies' prosperity index reached 65.29,a relatively prosperous state;the prosperity trend index of the natural gas industry in the coming year was set at 85.33,and the natural gas industry in the coming year will be in a very prosperous state.