Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing po...Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters.展开更多
Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid ...Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid route and the solid-solid route.However,the formation of DCN structures in steel requires long processes and complex steps.So far,obtaining steel with coherent particle enhancement in a short time remains a bottleneck,and some necessary steps remain unavoidable.Here,we show a high-efficiency liquid-phase refining process reinforced by a dynamic magnetic field.Ti-Y-Mn-O particles had an average size of around(3.53±1.21)nm and can be obtained in just around 180 s.These small nanoparticles were coherent with the matrix,implying no accumulated dislocations between the particles and the steel matrix.Our findings have a potential application for improving material machining capacity,creep resistance,and radiation resistance.展开更多
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition...The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.展开更多
Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively r...Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively researched for both aerial and underwater navigation applications.However,many TAN systems that rely on recursive Unmanned Aerial Vehicle(UAV)position estimation methods,such as Extended Kalman Filters(EKF),often face challenges with divergence and instability,particularly in highly non-linear systems.To address these issues,this paper proposes and investigates a hybrid two-stage TAN positioning system for UAVs that utilizes Particle Filter.To enhance the system’s robustness against uncertainties caused by noise and to estimate additional system states,a Fuzzy Particle Filter(FPF)is employed in the first stage.This approach introduces a novel terrain composite feature that enables a fuzzy expert system to analyze terrain non-linearities and dynamically adjust the number of particles in real-time.This design allows the UAV to be efficiently localized in GPS-denied environments while also reducing the computational complexity of the particle filter in real-time applications.In the second stage,an Error State Kalman Filter(ESKF)is implemented to estimate the UAV’s altitude.The ESKF is chosen over the conventional EKF method because it is more suitable for non-linear systems.Simulation results demonstrate that the proposed fuzzy-based terrain composite method achieves high positional accuracy while reducing computational time and memory usage.展开更多
The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(I...The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(IoT)relies on the support of base stations,which provide a solid foundation for achieving a more intelligent way of living.In a specific area,achieving higher signal coverage with fewer base stations has become an urgent problem.Therefore,this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle Swarm Optimization(EPSO)algorithm based on collective prediction,referred to herein as ECPPSO.Introducing a new strategy called neighbor-based evolution prediction(NEP)addresses the issue of premature convergence often encountered by PSO.ECPPSO also employs a strengthening evolution(SE)strategy to enhance the algorithm’s global search capability and efficiency,ensuring enhanced robustness and a faster convergence speed when solving complex optimization problems.To better adapt to the actual communication needs of base stations,this article conducts simulation experiments by changing the number of base stations.The experimental results demonstrate thatunder the conditionof 50 ormore base stations,ECPPSOconsistently achieves the best coverage rate exceeding 95%,peaking at 99.4400%when the number of base stations reaches 80.These results validate the optimization capability of the ECPPSO algorithm,proving its feasibility and effectiveness.Further ablative experiments and comparisons with other algorithms highlight the advantages of ECPPSO.展开更多
This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and...This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles.展开更多
We review a 3d quantum gravity model, which incorporates massive spinning fields into the Euclidean path integral in a Chern-Simons formulation. Fundamental matter as defined in our previous preon model is recapped. B...We review a 3d quantum gravity model, which incorporates massive spinning fields into the Euclidean path integral in a Chern-Simons formulation. Fundamental matter as defined in our previous preon model is recapped. Both quantum gravity and the particle model are shown to be derivable from the supersymmetric 3d Chern-Simons action. Forces-Matter unification is achieved.展开更多
The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of...The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of packed spheres under an alternating electric field is simulated,and the movement mechanism of catalyst particles is analysed.An"effective contact point"model is derived to predict the adsorption of filler contact points on catalyst particles under the alternating electric field,and the model is validated by simulations and experiments.The numerical calculation and experimental results indicate that the electrical properties of the filler spheres,the filler angleθ,and the frequency f of the alternating electric field affect the adsorption of catalyst particles.As the frequency of the electric field increases,the particle removal efficiency of the high-conductivity filler(silicon carbide)increases and then settles,and the separation efficiency of the low-conductivity filler(glass,zirconia)is not sensitive to the change in electric field frequency.展开更多
Restructuring of power market not only introduces competition but also brings complexity which increases overloading of Transmission Lines(TL).To obviate this complexity,this paper aims to mitigate the overloading and...Restructuring of power market not only introduces competition but also brings complexity which increases overloading of Transmission Lines(TL).To obviate this complexity,this paper aims to mitigate the overloading and estimate the optimal location of Static Synchronous Compensator(STATCOM) by reducing congestion for a deregulated power system.The proposed method is based on the use of Locational Marginal Price(LMP) difference technique and congestion cost.LMPs are obtained as a by-product of Optimal Power Flow(OPF),whereas Congestion Cost(CC) is a function of difference in LMP and power flows.The effiectiveness of this approach is demonstrated by reducing the CC and solution space which can identify the TLs more suitable for placement of STATCOM.Importantly,total real power loss,reactive power loss and total CC are the three main objective functions in this optimization process.The process is implemented by developing an IEEE-69 bus test system which verifies and validates the effectiveness of proposed optimization technique.Additionally,a comparative analysis is enumerated by implementing two optimization techniques:Flower Pollination Algorithm(FPA) and Particle Swarm Optimization(PSO).The comparative analysis is sufficient to demonstrate the superiority of FPA technique over PSO technique in estimating an optimal placement of a STATCOM.The results from the load-flow analysis illustrate the reduction in CC,total real and reactive power loss using FPA technique compared to PSO technique.Overall,satisfactory results are obtained without using complex calculations which verify the effectiveness of optimization techniques.展开更多
The insufficient damping capabilities of aluminum alloy under low temperatures(<120℃)were addressed by developing high-damping laminated composites of NiTip/5052Al.This is achieved through the incorporation of var...The insufficient damping capabilities of aluminum alloy under low temperatures(<120℃)were addressed by developing high-damping laminated composites of NiTip/5052Al.This is achieved through the incorporation of varied pre-aging states of NiTi particles into the 5052Al matrix using a rolling composite technique.The aim is to enhance the application scope of aluminum alloy for vibration and noise reduction.The results demonstrated a distinct and integrated interface between the particle layer and the 5052Al alloy,with numerous interparticle interfaces within the particle layer.Increasing the aging temperature of the NiTi particles from 450 to 550℃ shifted the phase transition peaks of the composites to lower temperatures.The damping capacity of the laminated NiTip/5052Al composites notably surpasses that of the 5052Al alloy.At 28 and 66℃,the phase transformation damping peaks of the pre-aged NiTi particle layer reinforced 5052Al matrix composites are 1.93 and 2 times those of the 5052Al alloy at the corresponding temperatures,respectively.The collaborative impact of interparticle interface damping mechanism and the phase transformation damping mechanism of NiTi-reinforced particles significantly amplify the low-temperature damping performance of the laminated NiTip/5052Al composites.展开更多
The characterization of a particle ensemble(rather than a single particle) is of paramount significance to various particle technologies and has long been a fundamental subject in the fluidization realm. However, many...The characterization of a particle ensemble(rather than a single particle) is of paramount significance to various particle technologies and has long been a fundamental subject in the fluidization realm. However, many of such bulk characterizations as loosely-packed density(ρbl), minimum fluidization velocity(Umf), sphericity(φ), discharge rate through orifice(q), angle of repose(β), and segregation index(S),were found to be poorly reproducible, making the reported results seldom comparable. Since these bulk characterizations started from the packed state of particles, such poor reproducibility was ascribed to the polymorphism of packed particles in this work. We observed that in the fluidized bed, the settled/packed state of particles varied monotonously with the settling rate(a) from complete fluidization to zero. This phenomenon confirmed the polymorphic characteristic of packed particles and further enabled us to systematically disclose/clarify its influences on the aforementioned bulk characterizations. Such influences could be comprehensively and intuitively reflected by the impacts induced by a. With the decrease of a, ρbl, φ and q first increased, then decreased, and finally leveled off while Umfand β showed an opposite trend. On the other hand, S first increased and then remained invariant. As per these findings and definitions of these bulk characterizations, benchmarks were indicated to unify the selection of settled state among future scholars and further make their outcomes become fairly comparable. Additionally, most packed states of the particle ensemble were proved to be metastable with their formation and behavior being identical to those of the amorphous state.展开更多
Acoustic streaming enabled by a Lamb wave resonator(LWR)is efficient for particle trapping and enrichment in microfluidic channels.However,because Lamb waves combine the features of bulk acoustic waves and surface aco...Acoustic streaming enabled by a Lamb wave resonator(LWR)is efficient for particle trapping and enrichment in microfluidic channels.However,because Lamb waves combine the features of bulk acoustic waves and surface acoustic waves,the resulting acoustic streaming in the LWR occurs in multiple planes,and the particle flow behavior in this acoustofluidic system is largely unknown.Reported here are numerical simulations and laboratory experiments conducted to investigate the boundary conditions for particle motion inside a microvortex induced by an LWR.Upon dynamic capture,the particles’trajectories become orbital paths within an acoustic vortex.The suspended particles encounter two distinct acoustic phenomena,i.e.,the drag force resulting from acoustic streaming and the acoustic radiation force,which exert forces in various directions on the particles.When the acoustic radiation force and the fluid drag force are dominant for large and small particles in a mixed solution,respectively,the large particles reside within the vortex while the small particles remain at its periphery.Conversely,when the acoustic radiation force is dominant for both types of particles,the distribution pattern is reversed.展开更多
The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regi...The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regime of Geldart-A particles by exerting the axial uniform and steady magnetic field.Under the action of the magnetic field,the overall homogeneous fluidization regime of Geldart-A magnetizable particles became composed of two parts:inherent homogeneous fluidization and newly-created magnetic stabilization.Since the former remained almost unchanged whereas the latter became broader as the magnetic field intensity increased,the overall homogeneous fluidization regime could be extended remarkably.As for Geldart-A nonmagnetizable particles,certain amount of magnetizable particles had to be premixed to transmit the magnetic stabilization.Among others,the mere addition of magnetizable particles could broaden the homogeneous fluidization regime.The added content of magnetizable particles had an optimal value with smaller/lighter ones working better.The added magnetizable particles might raise the ratio between the interparticle force and the particle gravity.After the magnetic field was exerted,the homogeneous fluidization regime was further expanded due to the formation of magnetic stabilization flow regime.The more the added magnetizable particles,the better the magnetic performance and the broader the overall homogeneous fluidization regime.Smaller/lighter magnetizable particles were preferred to maximize the magnetic performance and extend the overall homogeneous fluidization regime.This phenomenon could be ascribed to that the added magnetizable particles themselves became more Geldart-A than-B type as their density or size decreased.展开更多
In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal ...In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal expansion coefficientβand the viscosityμof the simulated system containing nanoparticles are calculated and found to be in close alignment with the previous simulation results.The single-particle hydrodynamics in e DPD enables simulations of nanofluid natural convection with higher Rayleigh numbers and greater nanoparticle volume fractions.Additionally,this approach is utilized to simulate the nanoparticle distribution during the enhanced heat transfer process in the nanofluid natural convection.The localized aggregation of nanoparticles enhances the heat transfer performance of the nanofluid under specific Rayleigh numbers and nanoparticles volume fractions.展开更多
A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction pro...A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid.In the coupled framework,the NOSB-PD theory describes the deformation and fracture of the solid material structure.ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy.The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid problems,with good computational stability and robustness.A fluidstructure coupling algorithm using pressure as the transmission medium is established to deal with the fluidstructure interface.The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model involving large deformation are verified by numerical simulations.The results agree with the analytical solution,the available experimental data,and other numerical results.Thus,the accuracy and effectiveness of the proposed method in solving the fluid-structure interaction problem are demonstrated.The fluid-structure interactionmodel based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluidstructure interaction and a promising approach for engineering design and experimental prediction.展开更多
High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality c...High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives.展开更多
The present study examines the thermal distribution of ternary nanofluid flow amid two spinning disks influenced by electric and magnetic fields. Keeping in view the shape of the particles, the electrically conducting...The present study examines the thermal distribution of ternary nanofluid flow amid two spinning disks influenced by electric and magnetic fields. Keeping in view the shape of the particles, the electrically conducting ternary nanofluid is analyzed with variable thermophysical features. Three types of nanoparticles namely Copper, Aluminum Oxide, and Graphene with spherical, cylindrical, and platelet shapes are taken respectively and are immersed in a (50-50)% ratio of water and ethylene glycol mixture which acts as a base fluid. The anticipated problem is addressed by employing a reliable and user-friendly numerical bvp4c built-in collocation scheme. This solution is then showcased through illustrations and tables. Strengthening the radiation results in an enhanced heat transfer rate. Radial and azimuthal velocities once rotation of disks is enhanced. The key findings provide a strong theoretical background in photovoltaic cells, solar collectors, radiators, solar water heaters, and many other applications.展开更多
To improve the magneto-rheological (MR) properties of magneto-rheological fluids, self-made amorphous alloy particles, the composition of which was Fe76Cr2Mo2Sn2P10B2C2Si4, were used as the disperse phase to replace t...To improve the magneto-rheological (MR) properties of magneto-rheological fluids, self-made amorphous alloy particles, the composition of which was Fe76Cr2Mo2Sn2P10B2C2Si4, were used as the disperse phase to replace traditional carbonyl iron (CI) particles to prepare amorphous based magneto-rheological fluid (AMRF). Soft magnetic properties and densities of the amorphous particles and the CI particles were tested and compared. The results indicate the amorphous particles present a lower density but larger magnetization intensity and larger permeability at lower field levels. Properties of the AMRF with 20% particles in volume fraction were tested and compared with the CI based MR fluid (CMRF). The AMRF presents a saturation yield stress of 41 kPa at ~227 kA/m and a sedimentation ratio of 80%. The results indicate the magneto-rheological fluid based on amorphous micro-particles has better MR properties and sedimentation stability than that based on CI particles at lower field levels (0-200 kA/m).展开更多
Aim To obtain a kind of electrorheological (ER) flind with high comprehensive properties in order to satisfy the needs of engineering application. Methods A new type of dispersed phase── composite ultrafine particle...Aim To obtain a kind of electrorheological (ER) flind with high comprehensive properties in order to satisfy the needs of engineering application. Methods A new type of dispersed phase── composite ultrafine particles (UFP) was obtained by the method of microemulsion, which was used to mix with silicon oil. aam electroinduced stress and apparent viscosity of the ER fluids with three different volume fractions were tested under the conditions of different temperatures, electric fields and shear rates. Results A series of systematic tests show that the new type of ER fluids with volume fraction of 30% possesses obvious ER effect. Conclusion The double layers polarization plays an important role in ER effect.展开更多
The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on th...The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction.展开更多
文摘Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters.
基金financially supported by the National Natural Science Foundation of China(No.51771125)the Sichuan Province Science and Technology Support Program(No.2020YFG0102)。
文摘Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid route and the solid-solid route.However,the formation of DCN structures in steel requires long processes and complex steps.So far,obtaining steel with coherent particle enhancement in a short time remains a bottleneck,and some necessary steps remain unavoidable.Here,we show a high-efficiency liquid-phase refining process reinforced by a dynamic magnetic field.Ti-Y-Mn-O particles had an average size of around(3.53±1.21)nm and can be obtained in just around 180 s.These small nanoparticles were coherent with the matrix,implying no accumulated dislocations between the particles and the steel matrix.Our findings have a potential application for improving material machining capacity,creep resistance,and radiation resistance.
基金supported by National Natural Science Foundations of China(nos.12271326,62102304,61806120,61502290,61672334,61673251)China Postdoctoral Science Foundation(no.2015M582606)+2 种基金Industrial Research Project of Science and Technology in Shaanxi Province(nos.2015GY016,2017JQ6063)Fundamental Research Fund for the Central Universities(no.GK202003071)Natural Science Basic Research Plan in Shaanxi Province of China(no.2022JM-354).
文摘The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.
文摘Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively researched for both aerial and underwater navigation applications.However,many TAN systems that rely on recursive Unmanned Aerial Vehicle(UAV)position estimation methods,such as Extended Kalman Filters(EKF),often face challenges with divergence and instability,particularly in highly non-linear systems.To address these issues,this paper proposes and investigates a hybrid two-stage TAN positioning system for UAVs that utilizes Particle Filter.To enhance the system’s robustness against uncertainties caused by noise and to estimate additional system states,a Fuzzy Particle Filter(FPF)is employed in the first stage.This approach introduces a novel terrain composite feature that enables a fuzzy expert system to analyze terrain non-linearities and dynamically adjust the number of particles in real-time.This design allows the UAV to be efficiently localized in GPS-denied environments while also reducing the computational complexity of the particle filter in real-time applications.In the second stage,an Error State Kalman Filter(ESKF)is implemented to estimate the UAV’s altitude.The ESKF is chosen over the conventional EKF method because it is more suitable for non-linear systems.Simulation results demonstrate that the proposed fuzzy-based terrain composite method achieves high positional accuracy while reducing computational time and memory usage.
基金supported by the National Natural Science Foundation of China(Nos.62272418,62102058)Basic Public Welfare Research Program of Zhejiang Province(No.LGG18E050011)the Major Open Project of Key Laboratory for Advanced Design and Intelligent Computing of the Ministry of Education under Grant ADIC2023ZD001,National Undergraduate Training Program on Innovation and Entrepreneurship(No.202410345054).
文摘The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(IoT)relies on the support of base stations,which provide a solid foundation for achieving a more intelligent way of living.In a specific area,achieving higher signal coverage with fewer base stations has become an urgent problem.Therefore,this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle Swarm Optimization(EPSO)algorithm based on collective prediction,referred to herein as ECPPSO.Introducing a new strategy called neighbor-based evolution prediction(NEP)addresses the issue of premature convergence often encountered by PSO.ECPPSO also employs a strengthening evolution(SE)strategy to enhance the algorithm’s global search capability and efficiency,ensuring enhanced robustness and a faster convergence speed when solving complex optimization problems.To better adapt to the actual communication needs of base stations,this article conducts simulation experiments by changing the number of base stations.The experimental results demonstrate thatunder the conditionof 50 ormore base stations,ECPPSOconsistently achieves the best coverage rate exceeding 95%,peaking at 99.4400%when the number of base stations reaches 80.These results validate the optimization capability of the ECPPSO algorithm,proving its feasibility and effectiveness.Further ablative experiments and comparisons with other algorithms highlight the advantages of ECPPSO.
基金support and encouragement of the Joint Funds of the National Natural Science Foundation of China(No.U21B2095)the Major Research Project of National Natural Science Foundation of China(No.91834303).
文摘This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles.
文摘We review a 3d quantum gravity model, which incorporates massive spinning fields into the Euclidean path integral in a Chern-Simons formulation. Fundamental matter as defined in our previous preon model is recapped. Both quantum gravity and the particle model are shown to be derivable from the supersymmetric 3d Chern-Simons action. Forces-Matter unification is achieved.
基金supported by the Natural Scienceof Shandong Province,China(ZR2019MEE033)。
文摘The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of packed spheres under an alternating electric field is simulated,and the movement mechanism of catalyst particles is analysed.An"effective contact point"model is derived to predict the adsorption of filler contact points on catalyst particles under the alternating electric field,and the model is validated by simulations and experiments.The numerical calculation and experimental results indicate that the electrical properties of the filler spheres,the filler angleθ,and the frequency f of the alternating electric field affect the adsorption of catalyst particles.As the frequency of the electric field increases,the particle removal efficiency of the high-conductivity filler(silicon carbide)increases and then settles,and the separation efficiency of the low-conductivity filler(glass,zirconia)is not sensitive to the change in electric field frequency.
文摘Restructuring of power market not only introduces competition but also brings complexity which increases overloading of Transmission Lines(TL).To obviate this complexity,this paper aims to mitigate the overloading and estimate the optimal location of Static Synchronous Compensator(STATCOM) by reducing congestion for a deregulated power system.The proposed method is based on the use of Locational Marginal Price(LMP) difference technique and congestion cost.LMPs are obtained as a by-product of Optimal Power Flow(OPF),whereas Congestion Cost(CC) is a function of difference in LMP and power flows.The effiectiveness of this approach is demonstrated by reducing the CC and solution space which can identify the TLs more suitable for placement of STATCOM.Importantly,total real power loss,reactive power loss and total CC are the three main objective functions in this optimization process.The process is implemented by developing an IEEE-69 bus test system which verifies and validates the effectiveness of proposed optimization technique.Additionally,a comparative analysis is enumerated by implementing two optimization techniques:Flower Pollination Algorithm(FPA) and Particle Swarm Optimization(PSO).The comparative analysis is sufficient to demonstrate the superiority of FPA technique over PSO technique in estimating an optimal placement of a STATCOM.The results from the load-flow analysis illustrate the reduction in CC,total real and reactive power loss using FPA technique compared to PSO technique.Overall,satisfactory results are obtained without using complex calculations which verify the effectiveness of optimization techniques.
基金National Natural Science Foundation of China (No. 52061011)Guangxi Natural Science Foundation,China (No. 2022GXNSFAA035574)Innovation Project of Guangxi Graduate Education,China (No. YCSW2023361)。
文摘The insufficient damping capabilities of aluminum alloy under low temperatures(<120℃)were addressed by developing high-damping laminated composites of NiTip/5052Al.This is achieved through the incorporation of varied pre-aging states of NiTi particles into the 5052Al matrix using a rolling composite technique.The aim is to enhance the application scope of aluminum alloy for vibration and noise reduction.The results demonstrated a distinct and integrated interface between the particle layer and the 5052Al alloy,with numerous interparticle interfaces within the particle layer.Increasing the aging temperature of the NiTi particles from 450 to 550℃ shifted the phase transition peaks of the composites to lower temperatures.The damping capacity of the laminated NiTip/5052Al composites notably surpasses that of the 5052Al alloy.At 28 and 66℃,the phase transformation damping peaks of the pre-aged NiTi particle layer reinforced 5052Al matrix composites are 1.93 and 2 times those of the 5052Al alloy at the corresponding temperatures,respectively.The collaborative impact of interparticle interface damping mechanism and the phase transformation damping mechanism of NiTi-reinforced particles significantly amplify the low-temperature damping performance of the laminated NiTip/5052Al composites.
基金supported by Shandong Provincial Natural Science Foundation(Project ZR2023MB038)Youth Innovation Team Program of Shandong Higher Education Institution(2022KJ156).
文摘The characterization of a particle ensemble(rather than a single particle) is of paramount significance to various particle technologies and has long been a fundamental subject in the fluidization realm. However, many of such bulk characterizations as loosely-packed density(ρbl), minimum fluidization velocity(Umf), sphericity(φ), discharge rate through orifice(q), angle of repose(β), and segregation index(S),were found to be poorly reproducible, making the reported results seldom comparable. Since these bulk characterizations started from the packed state of particles, such poor reproducibility was ascribed to the polymorphism of packed particles in this work. We observed that in the fluidized bed, the settled/packed state of particles varied monotonously with the settling rate(a) from complete fluidization to zero. This phenomenon confirmed the polymorphic characteristic of packed particles and further enabled us to systematically disclose/clarify its influences on the aforementioned bulk characterizations. Such influences could be comprehensively and intuitively reflected by the impacts induced by a. With the decrease of a, ρbl, φ and q first increased, then decreased, and finally leveled off while Umfand β showed an opposite trend. On the other hand, S first increased and then remained invariant. As per these findings and definitions of these bulk characterizations, benchmarks were indicated to unify the selection of settled state among future scholars and further make their outcomes become fairly comparable. Additionally, most packed states of the particle ensemble were proved to be metastable with their formation and behavior being identical to those of the amorphous state.
基金support of the National Natural Science Foundation of China (Grant No.62174119)the 111 Project (Grant No.B07014)the Foundation for Talent Scientists of Nanchang Institute for Microtechnology of Tianjin University.
文摘Acoustic streaming enabled by a Lamb wave resonator(LWR)is efficient for particle trapping and enrichment in microfluidic channels.However,because Lamb waves combine the features of bulk acoustic waves and surface acoustic waves,the resulting acoustic streaming in the LWR occurs in multiple planes,and the particle flow behavior in this acoustofluidic system is largely unknown.Reported here are numerical simulations and laboratory experiments conducted to investigate the boundary conditions for particle motion inside a microvortex induced by an LWR.Upon dynamic capture,the particles’trajectories become orbital paths within an acoustic vortex.The suspended particles encounter two distinct acoustic phenomena,i.e.,the drag force resulting from acoustic streaming and the acoustic radiation force,which exert forces in various directions on the particles.When the acoustic radiation force and the fluid drag force are dominant for large and small particles in a mixed solution,respectively,the large particles reside within the vortex while the small particles remain at its periphery.Conversely,when the acoustic radiation force is dominant for both types of particles,the distribution pattern is reversed.
基金supported by Shandong Provincial Natural Science Foundation (ZR2023MB038)National Natural Science Foundation of China (21808232 and 21978143)Financial support from the Qingdao University of Science and Technology
文摘The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regime of Geldart-A particles by exerting the axial uniform and steady magnetic field.Under the action of the magnetic field,the overall homogeneous fluidization regime of Geldart-A magnetizable particles became composed of two parts:inherent homogeneous fluidization and newly-created magnetic stabilization.Since the former remained almost unchanged whereas the latter became broader as the magnetic field intensity increased,the overall homogeneous fluidization regime could be extended remarkably.As for Geldart-A nonmagnetizable particles,certain amount of magnetizable particles had to be premixed to transmit the magnetic stabilization.Among others,the mere addition of magnetizable particles could broaden the homogeneous fluidization regime.The added content of magnetizable particles had an optimal value with smaller/lighter ones working better.The added magnetizable particles might raise the ratio between the interparticle force and the particle gravity.After the magnetic field was exerted,the homogeneous fluidization regime was further expanded due to the formation of magnetic stabilization flow regime.The more the added magnetizable particles,the better the magnetic performance and the broader the overall homogeneous fluidization regime.Smaller/lighter magnetizable particles were preferred to maximize the magnetic performance and extend the overall homogeneous fluidization regime.This phenomenon could be ascribed to that the added magnetizable particles themselves became more Geldart-A than-B type as their density or size decreased.
基金Project supported by the National Natural Science Foundation of China(Nos.11872283 and 2002212)the Sailing Program of Shanghai,China(No.20YF1432800)。
文摘In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal expansion coefficientβand the viscosityμof the simulated system containing nanoparticles are calculated and found to be in close alignment with the previous simulation results.The single-particle hydrodynamics in e DPD enables simulations of nanofluid natural convection with higher Rayleigh numbers and greater nanoparticle volume fractions.Additionally,this approach is utilized to simulate the nanoparticle distribution during the enhanced heat transfer process in the nanofluid natural convection.The localized aggregation of nanoparticles enhances the heat transfer performance of the nanofluid under specific Rayleigh numbers and nanoparticles volume fractions.
基金open foundation of the Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanicsthe Open Foundation of Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment.
文摘A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid.In the coupled framework,the NOSB-PD theory describes the deformation and fracture of the solid material structure.ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy.The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid problems,with good computational stability and robustness.A fluidstructure coupling algorithm using pressure as the transmission medium is established to deal with the fluidstructure interface.The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model involving large deformation are verified by numerical simulations.The results agree with the analytical solution,the available experimental data,and other numerical results.Thus,the accuracy and effectiveness of the proposed method in solving the fluid-structure interaction problem are demonstrated.The fluid-structure interactionmodel based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluidstructure interaction and a promising approach for engineering design and experimental prediction.
基金the National Natural Science Foundation of China (Grant No.22105184)Research Fund of SWUST for PhD (Grant No.22zx7175)+1 种基金Sichuan Science and Technology Program (Grant No.2019ZDZX0013)Institute of Chemical Materials Program (Grant No.SXK-2022-03)for financial support。
文摘High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives.
文摘The present study examines the thermal distribution of ternary nanofluid flow amid two spinning disks influenced by electric and magnetic fields. Keeping in view the shape of the particles, the electrically conducting ternary nanofluid is analyzed with variable thermophysical features. Three types of nanoparticles namely Copper, Aluminum Oxide, and Graphene with spherical, cylindrical, and platelet shapes are taken respectively and are immersed in a (50-50)% ratio of water and ethylene glycol mixture which acts as a base fluid. The anticipated problem is addressed by employing a reliable and user-friendly numerical bvp4c built-in collocation scheme. This solution is then showcased through illustrations and tables. Strengthening the radiation results in an enhanced heat transfer rate. Radial and azimuthal velocities once rotation of disks is enhanced. The key findings provide a strong theoretical background in photovoltaic cells, solar collectors, radiators, solar water heaters, and many other applications.
基金Project (51108062) supported by the National Natural Science Foundation of ChinaProject(20100471446) supported by the China Postdoctoral Science Foundation
文摘To improve the magneto-rheological (MR) properties of magneto-rheological fluids, self-made amorphous alloy particles, the composition of which was Fe76Cr2Mo2Sn2P10B2C2Si4, were used as the disperse phase to replace traditional carbonyl iron (CI) particles to prepare amorphous based magneto-rheological fluid (AMRF). Soft magnetic properties and densities of the amorphous particles and the CI particles were tested and compared. The results indicate the amorphous particles present a lower density but larger magnetization intensity and larger permeability at lower field levels. Properties of the AMRF with 20% particles in volume fraction were tested and compared with the CI based MR fluid (CMRF). The AMRF presents a saturation yield stress of 41 kPa at ~227 kA/m and a sedimentation ratio of 80%. The results indicate the magneto-rheological fluid based on amorphous micro-particles has better MR properties and sedimentation stability than that based on CI particles at lower field levels (0-200 kA/m).
文摘Aim To obtain a kind of electrorheological (ER) flind with high comprehensive properties in order to satisfy the needs of engineering application. Methods A new type of dispersed phase── composite ultrafine particles (UFP) was obtained by the method of microemulsion, which was used to mix with silicon oil. aam electroinduced stress and apparent viscosity of the ER fluids with three different volume fractions were tested under the conditions of different temperatures, electric fields and shear rates. Results A series of systematic tests show that the new type of ER fluids with volume fraction of 30% possesses obvious ER effect. Conclusion The double layers polarization plays an important role in ER effect.
基金This work was supported by the National Key R&D Program‘Transportation Infrastructure’project(No.2022YFB2603400).
文摘The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction.