The transmission system is a critical power component of helicopters, playing an indispensable role in power transmission. Among its key elements, the planetary gear system is an essential part of the helicopter trans...The transmission system is a critical power component of helicopters, playing an indispensable role in power transmission. Among its key elements, the planetary gear system is an essential part of the helicopter transmission architecture. Establishing a dynamic model of the helicopter transmission system and analyzing the dynamic response of the planetary gear system under varying flight conditions are crucial for enhancing the system’s performance and safety. In this study, the transmission system is modeled comprehensively using the lumped mass method and the finite element method, and the dynamic characteristics of the planetary gear system, as reflected on the main gearbox casing under different flight scenarios, are examined. The findings reveal that the resonance frequencies of the planetary gear system remain consistent across various flight conditions, indicating that these frequencies are governed by the inherent structural and dynamic properties of the system. However, the vibration amplitudes at resonance points differ depending on the flight condition. Specifically, the resonance amplitudes at 0.057 kHz and 0.093 kHz during Hovering are significantly lower than those in other conditions, demonstrating that operational scenarios directly influence vibration response.展开更多
PartⅠhas illustrated the procedures to apply the Linkage Learning Genetic Algorithm(LLGA)in Gas Turbine Engine(GTE)controller gains tuning and generated the optimization results for runway conditions from idle to tak...PartⅠhas illustrated the procedures to apply the Linkage Learning Genetic Algorithm(LLGA)in Gas Turbine Engine(GTE)controller gains tuning and generated the optimization results for runway conditions from idle to takeoff.However,the total pressure and temperature of the engine inlet vary as the changing of altitude and Mach number,which would lead to the variation in fuel flow supply regulation.As a result,the optimized gains in runway might not be suitable for other flight conditions.In order to maintain the optimal control performance,the GTE controller gains should be adjusted according to the flight conditions.This paper extends the application of the LLGA method to other flight conditions and then simulates a complete flight mission with different gains and weather condition configurations.For this purpose,the control parameters in the Simulink model of the GTE controller are first corrected by the weather condition in altitude.Then,a typical flight mission is defined and divided into different flight segments based on the altitude and Mach number configuration.One representative point is selected from each segment as the datum point for optimization process.After this step,the LLGA method is used to find the best gains combinations for different flight conditions and the differences in optimization effects for different flight conditions are analyzed subsequently.The simulation results show that the optimization effect of the control performance of each flight condition is dependent on the value of(θδ)~(1/2)and the optimal K_(pla)in some flight conditions is approximately equal to p hd times of the Kplavalue in sea level standard condition.Finally,the complete flight mission is simulated with different gains and weather condition configurations.The simulation results show that the engine performance has been greatly improved after optimization by LLGA in the transient state and the high altitude conditions.In other steady states,the optimization effect is not very obvious.展开更多
The seamless trailing edge morphing flap is investigated using a high-fidelity steady-state aerodynamic shape optimization to determine its optimum configuration for different flight conditions,including climb,cruise,...The seamless trailing edge morphing flap is investigated using a high-fidelity steady-state aerodynamic shape optimization to determine its optimum configuration for different flight conditions,including climb,cruise,and gliding descent.A comparative study is also conducted between a wing equipped with morphing flap and a wing with conventional hinged flap.The optimization is performed by specifying a certain objective function and the flight performance goal for each flight condition.Increasing the climb rate,extending the flight range and endurance in cruise,and decreasing the descend rate,are the flight performance goals covered in this study.Various optimum configurations were found for the morphing wing by determining the optimum morphing flap deflection for each flight condition,based on its objective function,each of which performed better than that of the baseline wing.It was shown that by using optimum configuration for the morphing wing in climb condition,the required power could be reduced by up to 3.8%and climb rate increases by 6.13%.The comparative study also revealed that the morphing wing enhances aerodynamic efficiency by up to 17.8%and extends the laminar flow.Finally,the optimum configuration for the gliding descent brought about a 43%reduction in the descent rate.展开更多
文摘The transmission system is a critical power component of helicopters, playing an indispensable role in power transmission. Among its key elements, the planetary gear system is an essential part of the helicopter transmission architecture. Establishing a dynamic model of the helicopter transmission system and analyzing the dynamic response of the planetary gear system under varying flight conditions are crucial for enhancing the system’s performance and safety. In this study, the transmission system is modeled comprehensively using the lumped mass method and the finite element method, and the dynamic characteristics of the planetary gear system, as reflected on the main gearbox casing under different flight scenarios, are examined. The findings reveal that the resonance frequencies of the planetary gear system remain consistent across various flight conditions, indicating that these frequencies are governed by the inherent structural and dynamic properties of the system. However, the vibration amplitudes at resonance points differ depending on the flight condition. Specifically, the resonance amplitudes at 0.057 kHz and 0.093 kHz during Hovering are significantly lower than those in other conditions, demonstrating that operational scenarios directly influence vibration response.
文摘PartⅠhas illustrated the procedures to apply the Linkage Learning Genetic Algorithm(LLGA)in Gas Turbine Engine(GTE)controller gains tuning and generated the optimization results for runway conditions from idle to takeoff.However,the total pressure and temperature of the engine inlet vary as the changing of altitude and Mach number,which would lead to the variation in fuel flow supply regulation.As a result,the optimized gains in runway might not be suitable for other flight conditions.In order to maintain the optimal control performance,the GTE controller gains should be adjusted according to the flight conditions.This paper extends the application of the LLGA method to other flight conditions and then simulates a complete flight mission with different gains and weather condition configurations.For this purpose,the control parameters in the Simulink model of the GTE controller are first corrected by the weather condition in altitude.Then,a typical flight mission is defined and divided into different flight segments based on the altitude and Mach number configuration.One representative point is selected from each segment as the datum point for optimization process.After this step,the LLGA method is used to find the best gains combinations for different flight conditions and the differences in optimization effects for different flight conditions are analyzed subsequently.The simulation results show that the optimization effect of the control performance of each flight condition is dependent on the value of(θδ)~(1/2)and the optimal K_(pla)in some flight conditions is approximately equal to p hd times of the Kplavalue in sea level standard condition.Finally,the complete flight mission is simulated with different gains and weather condition configurations.The simulation results show that the engine performance has been greatly improved after optimization by LLGA in the transient state and the high altitude conditions.In other steady states,the optimization effect is not very obvious.
基金the Hydra Technologies team in Mexicothe CREATEUTILI Program for their financial support。
文摘The seamless trailing edge morphing flap is investigated using a high-fidelity steady-state aerodynamic shape optimization to determine its optimum configuration for different flight conditions,including climb,cruise,and gliding descent.A comparative study is also conducted between a wing equipped with morphing flap and a wing with conventional hinged flap.The optimization is performed by specifying a certain objective function and the flight performance goal for each flight condition.Increasing the climb rate,extending the flight range and endurance in cruise,and decreasing the descend rate,are the flight performance goals covered in this study.Various optimum configurations were found for the morphing wing by determining the optimum morphing flap deflection for each flight condition,based on its objective function,each of which performed better than that of the baseline wing.It was shown that by using optimum configuration for the morphing wing in climb condition,the required power could be reduced by up to 3.8%and climb rate increases by 6.13%.The comparative study also revealed that the morphing wing enhances aerodynamic efficiency by up to 17.8%and extends the laminar flow.Finally,the optimum configuration for the gliding descent brought about a 43%reduction in the descent rate.