To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this st...To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this study.This approach is based on an improved double-loop recursive fuzzy neural network(DRFNN)sliding mode,which is intended to stably achieve multiterminal power interaction and adaptive arc suppression for single-phase ground faults.First,an improved DRFNN sliding mode control(SMC)method is proposed to overcome the chattering and transient overshoot inherent in the classical SMC and reduce the reliance on a precise mathematical model of the control system.To improve the robustness of the system,an adaptive parameter-adjustment strategy for the DRFNN is designed,where its dynamic mapping capabilities are leveraged to improve the transient compensation control.Additionally,a quasi-continuous second-order sliding mode controller with a calculus-driven sliding mode surface is developed to improve the current monitoring accuracy and enhance the system stability.The stability of the proposed method and the convergence of the network parameters are verified using the Lyapunov theorem.A simulation model of the three-port FMS with its control system is constructed in MATLAB/Simulink.The simulation result confirms the feasibility and effectiveness of the proposed control strategy based on a comparative analysis.展开更多
The length of fexible manipulators with a telescopic arm alters during movement.The dynamic parameters of telescopic fexible manipulators exhibit signifcant time-varying characteristics owing to variations in length.W...The length of fexible manipulators with a telescopic arm alters during movement.The dynamic parameters of telescopic fexible manipulators exhibit signifcant time-varying characteristics owing to variations in length.With an increase in the manipulators’length,the nonlinear terms caused by fexibility in the manipulators’dynamic equations cannot be ignored.The time-varying characteristics and nonlinear terms of telescopic fexible manipulators cause fuctuations in rotation angles,which afect the operation accuracy of end-efectors.In this study,a control strategy based on a combination of fuzzy adjustment and an RBF neural network is utilized to improve the control accuracy of fexible telescopic manipulators.First,the dynamic equation of the manipulators is established using the assumed mode method and Lagrange’s principle,and the infuence of nonlinear terms is analyzed.Subsequently,a combined control strategy is proposed to suppress the fuctuation of the rotation angle in telescopic fexible manipulators.The variation ranges of the feedforward PD controller parameters are determined by the pole placement strategy and length of the manipulators.Fuzzy rules are utilized to adjust the controller parameters in real-time.The RBF neural network is utilized to identify and compensate the uncertain part of the dynamic model of the fexible manipulators.The uncertain part comprises time-varying parameters and nonlinear terms.Finally,numerical simulations and prototype experiments prove the efectiveness of the combined control strategy.The results prove that the proposed control strategy has a smaller standard deviation of errors.Therefore,the combined control strategy is more suitable for telescopic fexible manipulators,which can efectively improve the control accuracy of rotation angles.展开更多
Wearable flexible sensors attached on the neck have been developed to measure the vibration of vocal cords during speech.However,highfrequency attenuation caused by the frequency response of the flexible sensors and a...Wearable flexible sensors attached on the neck have been developed to measure the vibration of vocal cords during speech.However,highfrequency attenuation caused by the frequency response of the flexible sensors and absorption of high-frequency sound by the skin are obstacles to the practical application of these sensors in speech capture based on bone conduction.In this paper,speech enhancement techniques for enhancing the intelligibility of sensor signals are developed and compared.Four kinds of speech enhancement algorithms based on a fully connected neural network(FCNN),a long short-term memory(LSTM),a bidirectional long short-term memory(BLSTM),and a convolutional-recurrent neural network(CRNN)are adopted to enhance the sensor signals,and their performance after deployment on four kinds of edge and cloud platforms is also investigated.Experimental results show that the BLSTM performs best in improving speech quality,but is poorest with regard to hardware deployment.It improves short-time objective intelligibility(STOI)by 0.18 to nearly 0.80,which corresponds to a good intelligibility level,but it introduces latency as well as being a large model.The CRNN,which improves STOI to about 0.75,ranks second among the four neural networks.It is also the only model that is able to achieves real-time processing with all four hardware platforms,demonstrating its great potential for deployment on mobile platforms.To the best of our knowledge,this is one of the first trials to systematically and specifically develop processing techniques for bone-conduction speed signals captured by flexible sensors.The results demonstrate the possibility of realizing a wearable lightweight speech collection system based on flexible vibration sensors and real-time speech enhancement to compensate for high-frequency attenuation.展开更多
An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attach...An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attached piezoceramic actuators and strain gauge sensors. A nonlinear adaptive control strategy named neural networks based indirect adaptive control (NNIAC) was employed to improve the dynamic performance of the manipulator. The mathematical model of the 4-layered dynamic recurrent neural networks (DRNN) was introduced. The neuro-identifier and the neuro-controller featuring the DRNN topology were designed off line so as to enhance the initial robustness of the NNIAC. By adjusting the neuro-identifier and the neuro-controller alternatively, the manipulator was controlled on line for achieving the desired dynamic performance. Finally, a planar 3R redundant manipulator with one smart link was utilized as an illustrative example. The simulation results proved the validity of the control strategy.展开更多
The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of t...The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of the carcass layer, an equivalent simplified model is used to study the mechanical properties of the carcass layer. However, the current equivalent carcass model only considers the elastic deformation, and this simplification leads to huge errors in the calculation results. In this study, radial compression experiments were carried out to make the carcasses to undergo plastic deformation. Subsequently, a residual neural network based on the experimental data was established to predict the load-displacement curves of carcasses with different inner diameter in plastic states under radial compression.The established neural network model’s high precision was verified by experimental data, and the influence of the number of input variables on the accuracy of the neural network was discussed. The conclusion shows that the residual neural network model established based on the experimental data of the small-diameter carcass layer can predict the load-displacement curve of the large-diameter carcass layer in the plastic stage. With the decrease of input data, the prediction accuracy of residual network model in plasticity stage will decrease.展开更多
Interval type-2 fuzzy neural networks(IT2FNNs)can be seen as the hybridization of interval type-2 fuzzy systems(IT2FSs) and neural networks(NNs). Thus, they naturally inherit the merits of both IT2 FSs and NNs. Althou...Interval type-2 fuzzy neural networks(IT2FNNs)can be seen as the hybridization of interval type-2 fuzzy systems(IT2FSs) and neural networks(NNs). Thus, they naturally inherit the merits of both IT2 FSs and NNs. Although IT2 FNNs have more advantages in processing uncertain, incomplete, or imprecise information compared to their type-1 counterparts, a large number of parameters need to be tuned in the IT2 FNNs,which increases the difficulties of their design. In this paper,big bang-big crunch(BBBC) optimization and particle swarm optimization(PSO) are applied in the parameter optimization for Takagi-Sugeno-Kang(TSK) type IT2 FNNs. The employment of the BBBC and PSO strategies can eliminate the need of backpropagation computation. The computing problem is converted to a simple feed-forward IT2 FNNs learning. The adoption of the BBBC or the PSO will not only simplify the design of the IT2 FNNs, but will also increase identification accuracy when compared with present methods. The proposed optimization based strategies are tested with three types of interval type-2 fuzzy membership functions(IT2FMFs) and deployed on three typical identification models. Simulation results certify the effectiveness of the proposed parameter optimization methods for the IT2 FNNs.展开更多
In this paper, a four-layer fuzzy neural network using the Back Propagation (BP) Algorithm and the fuzzy logic was built to study the nonlinear relationships between different physical -chemical factors and the dens...In this paper, a four-layer fuzzy neural network using the Back Propagation (BP) Algorithm and the fuzzy logic was built to study the nonlinear relationships between different physical -chemical factors and the denseness of red tide algae, and to anticipate the denseness of the red tide algae. For the first time, the fuzzy neural network technology was applied to research the prediction of red tide. Compared with BP network and RBF network, the outcome of this method is better.展开更多
Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,...Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,there are limited regression models capable of predicting the PD under multistress levels,and these models have regression limitations and generally fail to cover the complexity of UGM behaviour.Recent researches are focused on using new methods of computational intelligence systems to address the problems,such as artificial neural network(ANN).In this context,we aim to develop an artificial neural model to predict the PD of UGMs exposed to repeated loads.Extensive repeated load triaxial tests(RLTTs)were conducted on base and subbase materials locally available in Victoria,Australia to investigate the PD properties of the tested materials and to prepare the database of the neural networks.Specimens were prepared over different moisture contents and gradations to cover a wide testing matrix.The ANN model consists of one input layer with five neurons,one hidden layer with twelve neurons,and one output layer with one neuron.The five inputs were the number of load cycles,deviatoric stress,moisture content,coefficient of uniformity,and coefficient of curvature.The sensitivity analysis showed that the most important indicator that impacts PD is the number of load cycles with influence factor of 41%.It shows that the ANN method is rapid and efficient to predict the PD,which could be implemented in the Austroads pavement design method.展开更多
Protein Secondary Structure Prediction (PSSP) is considered as one of the major challenging tasks in bioinformatics, so many solutions have been proposed to solve that problem via trying to achieve more accurate predi...Protein Secondary Structure Prediction (PSSP) is considered as one of the major challenging tasks in bioinformatics, so many solutions have been proposed to solve that problem via trying to achieve more accurate prediction results. The goal of this paper is to develop and implement an intelligent based system to predict secondary structure of a protein from its primary amino acid sequence by using five models of Neural Network (NN). These models are Feed Forward Neural Network (FNN), Learning Vector Quantization (LVQ), Probabilistic Neural Network (PNN), Convolutional Neural Network (CNN), and CNN Fine Tuning for PSSP. To evaluate our approaches two datasets have been used. The first one contains 114 protein samples, and the second one contains 1845 protein samples.展开更多
Artificial Neural Networks(ANNs)are used in numerous engineering and scientific disciplines as an automated approach to resolve a number of problems.However,to build an artificial neural network that is prudent enough...Artificial Neural Networks(ANNs)are used in numerous engineering and scientific disciplines as an automated approach to resolve a number of problems.However,to build an artificial neural network that is prudent enough to rely on,vast quantities of relevant data have to be fed.In this study,we analysed the scope of artificial neural networks in geothermal reservoir architecture.In particular,we attempted to solve joint inversion problem through Feedforward Neural Network(FNN)technique.In order to identify geothermal sweet spots in the subsurface,an extensive geophysical studies were conducted in Gandhar area of Gujarat,India.The data were acquired along six profile lines for gravity,magnetics and magnetotellurics.Initially low velocity zone was identified using refraction seismic technique in order to set a common datum level for other potential data.The depth of low velocity zone in Gandhar was identified at 11 m.The FNN backpropagation method was applied to gain the global minima of the data space and model space as desired.The input dataset fed to the inversion algorithm in the form of gravity,magnetic susceptibility and resistivity helped to predict the suitable model after network training in multiple steps.The joint inversion of data is conducive to understanding the subsurface geological and lithological features along with probable geothermal sweet spots.The results of this study show the geothermal sweet spots at depth ranging from 200 m to 300 m.The results from our study can be used for targeted zones for geothermal water exploitation.展开更多
In this paper,a neural network adaptive controller is proposed for attitude tracking of flexible spacecraft in presence of unknown inertial matrix and external disturbance.In this approach,neural network technique is ...In this paper,a neural network adaptive controller is proposed for attitude tracking of flexible spacecraft in presence of unknown inertial matrix and external disturbance.In this approach,neural network technique is employed to approximate the unknown system dynamics with finite combinations of some basis functions,and a robust controller is also designed to attenuate the effect of approximation error,more specially,the knowledge of angular velocity is not required.In the closed-loop system,Lyapunov stability analysis shows that the attitude trajectories asymptotically follow the reference output trajectories.Finally,simulation results are presented for the attitude tracking of a flexible spacecraft to show the excellent performance of the proposed controller and illustrate its robustness in face of external disturbances and unknown dynamics.展开更多
The fuzzy logic and neural networks are combined in this paper, setting upthe fuzzy neural network (FNN ) ; meanwhile, the distinct differences and connections between thefuzzy logic and neural network are compared. F...The fuzzy logic and neural networks are combined in this paper, setting upthe fuzzy neural network (FNN ) ; meanwhile, the distinct differences and connections between thefuzzy logic and neural network are compared. Furthermore, the algorithm and structure of the FNN areintroduced. In order to diagnose the faults of nuclear power plant, the FNN is applied to thenuclear power planl, and the intelligence fault diagnostic system of the nuclear power plant isbuilt based on the FNN . The fault symptoms and the possibility of the inverted U-tube breakaccident of steam generator are discussed. In order to test the system' s validity, the invertedU-tube break accident of steam generator is used as an example and many simulation experiments areperformed. The test result shows that the FNN can identify the fault.展开更多
Artificial intelligence techniques have been used to predict basic oxygen furnace(BOF) end-points. However,the main challenge is to effectively reduce the input nodes as too many input nodes in neural network increase...Artificial intelligence techniques have been used to predict basic oxygen furnace(BOF) end-points. However,the main challenge is to effectively reduce the input nodes as too many input nodes in neural network increase complexity,decrease accuracy and slow down the training speed of the network.Simply picking-up variables as input usually influence validity of model.It is quite necessary to develop an effective method to reduce the number of input nodes whereby to simplify the network and improve model performance.In this study,a variable-filtrating technique combining both metallurgical mechanism model and partial least-squares(PLS ) regression method has been proposed by taking the advantages of both of them,i.e.qualitive and quantative relationships between variables respectively.Accordingly,a fuzzy-reasoning neural network(FNN) prediction model for basic oxygen furnace(BOF) end-point carbon content based on this technique has been developed.The prediction results showed that this model can effectively improve the hit rate of end-point carbon content and increase network training speed.The successful hit rate of the model can reach up to 94.12%with about 0.02% error range.展开更多
By modeling the decision-making process of garment coordination of fashion designers, a kind of computer-aid garment coordination using fuzzy neural network was propesed. The Takagi Sugeno Fuzzy Neural Network (TSFNN...By modeling the decision-making process of garment coordination of fashion designers, a kind of computer-aid garment coordination using fuzzy neural network was propesed. The Takagi Sugeno Fuzzy Neural Network (TSFNN) is used to learn the knowledge and rules of fashion designers on garment coordination and calculate the garment coordination satisfaction index (GCSI). The implementation of the computer-aid garment coordination tool is divided into two stages. The first stage is to acquire the knowledge of garment coordination. The second stage is to train and use the fuzzy neural network to conduct garment coordination. Three layers structure were also discussed for developing the system. By applying the computer-aid garment coordination tool into a real fushionretailing store, the experimental results show the system pexforms well with choosing a suitable value for screening out the satisfaction coordination pairs.展开更多
Linguistic dynamic systems(LDS)are dynamic processes involving computing with words(CW)for modeling and analysis of complex systems.In this paper,a fuzzy neural network(FNN)structure of LDS was proposed.In addition,an...Linguistic dynamic systems(LDS)are dynamic processes involving computing with words(CW)for modeling and analysis of complex systems.In this paper,a fuzzy neural network(FNN)structure of LDS was proposed.In addition,an improved nonlinear particle swarm optimization was employed for training FNN.The experiment results on logistics formulation demonstrates the feasibility and the efficiency of this FNN model.展开更多
This paper presents a novel approach that simultaneously enables photovoltaic(PV)inversion and flexible arc suppression during single-phase grounding faults.Inverters compensate for ground currents through an arc-elim...This paper presents a novel approach that simultaneously enables photovoltaic(PV)inversion and flexible arc suppression during single-phase grounding faults.Inverters compensate for ground currents through an arc-elimination function,while outputting a PV direct current(DC)power supply.This method effectively reduces the residual grounding current.To reduce the dependence of the arc-suppression performance on accurate compensation current-injection models,an adaptive fuzzy neural network imitating a sliding mode controller was designed.An online adaptive adjustment law for network parameters was developed,based on the Lyapunov stability theorem,to improve the robustness of the inverter to fault and connection locations.Furthermore,a new arc-suppression control exit strategy is proposed to allow a zerosequence voltage amplitude to quickly and smoothly track a target value by controlling the nonlinear decrease in current and reducing the regulation time.Simulation results showed that the proposed method can effectively achieve fast arc suppression and reduce the fault impact current in single-phase grounding faults.Compared to other methods,the proposed method can generate a lower residual grounding current and maintain good arc-suppression performance under different transition resistances and fault locations.展开更多
基金the Natural Science Foundation of Fujian,China(No.2021J01633).
文摘To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this study.This approach is based on an improved double-loop recursive fuzzy neural network(DRFNN)sliding mode,which is intended to stably achieve multiterminal power interaction and adaptive arc suppression for single-phase ground faults.First,an improved DRFNN sliding mode control(SMC)method is proposed to overcome the chattering and transient overshoot inherent in the classical SMC and reduce the reliance on a precise mathematical model of the control system.To improve the robustness of the system,an adaptive parameter-adjustment strategy for the DRFNN is designed,where its dynamic mapping capabilities are leveraged to improve the transient compensation control.Additionally,a quasi-continuous second-order sliding mode controller with a calculus-driven sliding mode surface is developed to improve the current monitoring accuracy and enhance the system stability.The stability of the proposed method and the convergence of the network parameters are verified using the Lyapunov theorem.A simulation model of the three-port FMS with its control system is constructed in MATLAB/Simulink.The simulation result confirms the feasibility and effectiveness of the proposed control strategy based on a comparative analysis.
基金Supported by National Natural Science Foundation of China(Grant No.51875092)National Key Research and Development Project of China(Grant No.2020YFB2007802)+1 种基金Natural Science Foundation of Ningxia Province(Grant No.2020AAC03279)Fundamental Research Funds for the Central Universities(Grant No.N2103025).
文摘The length of fexible manipulators with a telescopic arm alters during movement.The dynamic parameters of telescopic fexible manipulators exhibit signifcant time-varying characteristics owing to variations in length.With an increase in the manipulators’length,the nonlinear terms caused by fexibility in the manipulators’dynamic equations cannot be ignored.The time-varying characteristics and nonlinear terms of telescopic fexible manipulators cause fuctuations in rotation angles,which afect the operation accuracy of end-efectors.In this study,a control strategy based on a combination of fuzzy adjustment and an RBF neural network is utilized to improve the control accuracy of fexible telescopic manipulators.First,the dynamic equation of the manipulators is established using the assumed mode method and Lagrange’s principle,and the infuence of nonlinear terms is analyzed.Subsequently,a combined control strategy is proposed to suppress the fuctuation of the rotation angle in telescopic fexible manipulators.The variation ranges of the feedforward PD controller parameters are determined by the pole placement strategy and length of the manipulators.Fuzzy rules are utilized to adjust the controller parameters in real-time.The RBF neural network is utilized to identify and compensate the uncertain part of the dynamic model of the fexible manipulators.The uncertain part comprises time-varying parameters and nonlinear terms.Finally,numerical simulations and prototype experiments prove the efectiveness of the combined control strategy.The results prove that the proposed control strategy has a smaller standard deviation of errors.Therefore,the combined control strategy is more suitable for telescopic fexible manipulators,which can efectively improve the control accuracy of rotation angles.
基金This work was supported in part by the Key Research and Development Program of Zhejiang Province,China(Grant No.2021C05005)the National Natural Science Foundation of China(Grant No.81771880)the Tianjin Municipal Government of China(Grant No.19JCQNJC12800).
文摘Wearable flexible sensors attached on the neck have been developed to measure the vibration of vocal cords during speech.However,highfrequency attenuation caused by the frequency response of the flexible sensors and absorption of high-frequency sound by the skin are obstacles to the practical application of these sensors in speech capture based on bone conduction.In this paper,speech enhancement techniques for enhancing the intelligibility of sensor signals are developed and compared.Four kinds of speech enhancement algorithms based on a fully connected neural network(FCNN),a long short-term memory(LSTM),a bidirectional long short-term memory(BLSTM),and a convolutional-recurrent neural network(CRNN)are adopted to enhance the sensor signals,and their performance after deployment on four kinds of edge and cloud platforms is also investigated.Experimental results show that the BLSTM performs best in improving speech quality,but is poorest with regard to hardware deployment.It improves short-time objective intelligibility(STOI)by 0.18 to nearly 0.80,which corresponds to a good intelligibility level,but it introduces latency as well as being a large model.The CRNN,which improves STOI to about 0.75,ranks second among the four neural networks.It is also the only model that is able to achieves real-time processing with all four hardware platforms,demonstrating its great potential for deployment on mobile platforms.To the best of our knowledge,this is one of the first trials to systematically and specifically develop processing techniques for bone-conduction speed signals captured by flexible sensors.The results demonstrate the possibility of realizing a wearable lightweight speech collection system based on flexible vibration sensors and real-time speech enhancement to compensate for high-frequency attenuation.
基金Supported by National Natural Science Foundation of China(No.59975001 and 50205019).
文摘An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attached piezoceramic actuators and strain gauge sensors. A nonlinear adaptive control strategy named neural networks based indirect adaptive control (NNIAC) was employed to improve the dynamic performance of the manipulator. The mathematical model of the 4-layered dynamic recurrent neural networks (DRNN) was introduced. The neuro-identifier and the neuro-controller featuring the DRNN topology were designed off line so as to enhance the initial robustness of the NNIAC. By adjusting the neuro-identifier and the neuro-controller alternatively, the manipulator was controlled on line for achieving the desired dynamic performance. Finally, a planar 3R redundant manipulator with one smart link was utilized as an illustrative example. The simulation results proved the validity of the control strategy.
基金financially supported by the National Key R&D Program of China (2021YFA1003501)the National Natural Science Foundation of China (No.U1906233,11732004)the Fundamental Research Funds for the Central Universities (DUT20ZD213,DUT20LAB308)。
文摘The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of the carcass layer, an equivalent simplified model is used to study the mechanical properties of the carcass layer. However, the current equivalent carcass model only considers the elastic deformation, and this simplification leads to huge errors in the calculation results. In this study, radial compression experiments were carried out to make the carcasses to undergo plastic deformation. Subsequently, a residual neural network based on the experimental data was established to predict the load-displacement curves of carcasses with different inner diameter in plastic states under radial compression.The established neural network model’s high precision was verified by experimental data, and the influence of the number of input variables on the accuracy of the neural network was discussed. The conclusion shows that the residual neural network model established based on the experimental data of the small-diameter carcass layer can predict the load-displacement curve of the large-diameter carcass layer in the plastic stage. With the decrease of input data, the prediction accuracy of residual network model in plasticity stage will decrease.
基金supported by the National Natural Science Foundation of China (61873079,51707050)
文摘Interval type-2 fuzzy neural networks(IT2FNNs)can be seen as the hybridization of interval type-2 fuzzy systems(IT2FSs) and neural networks(NNs). Thus, they naturally inherit the merits of both IT2 FSs and NNs. Although IT2 FNNs have more advantages in processing uncertain, incomplete, or imprecise information compared to their type-1 counterparts, a large number of parameters need to be tuned in the IT2 FNNs,which increases the difficulties of their design. In this paper,big bang-big crunch(BBBC) optimization and particle swarm optimization(PSO) are applied in the parameter optimization for Takagi-Sugeno-Kang(TSK) type IT2 FNNs. The employment of the BBBC and PSO strategies can eliminate the need of backpropagation computation. The computing problem is converted to a simple feed-forward IT2 FNNs learning. The adoption of the BBBC or the PSO will not only simplify the design of the IT2 FNNs, but will also increase identification accuracy when compared with present methods. The proposed optimization based strategies are tested with three types of interval type-2 fuzzy membership functions(IT2FMFs) and deployed on three typical identification models. Simulation results certify the effectiveness of the proposed parameter optimization methods for the IT2 FNNs.
文摘In this paper, a four-layer fuzzy neural network using the Back Propagation (BP) Algorithm and the fuzzy logic was built to study the nonlinear relationships between different physical -chemical factors and the denseness of red tide algae, and to anticipate the denseness of the red tide algae. For the first time, the fuzzy neural network technology was applied to research the prediction of red tide. Compared with BP network and RBF network, the outcome of this method is better.
文摘Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,there are limited regression models capable of predicting the PD under multistress levels,and these models have regression limitations and generally fail to cover the complexity of UGM behaviour.Recent researches are focused on using new methods of computational intelligence systems to address the problems,such as artificial neural network(ANN).In this context,we aim to develop an artificial neural model to predict the PD of UGMs exposed to repeated loads.Extensive repeated load triaxial tests(RLTTs)were conducted on base and subbase materials locally available in Victoria,Australia to investigate the PD properties of the tested materials and to prepare the database of the neural networks.Specimens were prepared over different moisture contents and gradations to cover a wide testing matrix.The ANN model consists of one input layer with five neurons,one hidden layer with twelve neurons,and one output layer with one neuron.The five inputs were the number of load cycles,deviatoric stress,moisture content,coefficient of uniformity,and coefficient of curvature.The sensitivity analysis showed that the most important indicator that impacts PD is the number of load cycles with influence factor of 41%.It shows that the ANN method is rapid and efficient to predict the PD,which could be implemented in the Austroads pavement design method.
文摘Protein Secondary Structure Prediction (PSSP) is considered as one of the major challenging tasks in bioinformatics, so many solutions have been proposed to solve that problem via trying to achieve more accurate prediction results. The goal of this paper is to develop and implement an intelligent based system to predict secondary structure of a protein from its primary amino acid sequence by using five models of Neural Network (NN). These models are Feed Forward Neural Network (FNN), Learning Vector Quantization (LVQ), Probabilistic Neural Network (PNN), Convolutional Neural Network (CNN), and CNN Fine Tuning for PSSP. To evaluate our approaches two datasets have been used. The first one contains 114 protein samples, and the second one contains 1845 protein samples.
文摘Artificial Neural Networks(ANNs)are used in numerous engineering and scientific disciplines as an automated approach to resolve a number of problems.However,to build an artificial neural network that is prudent enough to rely on,vast quantities of relevant data have to be fed.In this study,we analysed the scope of artificial neural networks in geothermal reservoir architecture.In particular,we attempted to solve joint inversion problem through Feedforward Neural Network(FNN)technique.In order to identify geothermal sweet spots in the subsurface,an extensive geophysical studies were conducted in Gandhar area of Gujarat,India.The data were acquired along six profile lines for gravity,magnetics and magnetotellurics.Initially low velocity zone was identified using refraction seismic technique in order to set a common datum level for other potential data.The depth of low velocity zone in Gandhar was identified at 11 m.The FNN backpropagation method was applied to gain the global minima of the data space and model space as desired.The input dataset fed to the inversion algorithm in the form of gravity,magnetic susceptibility and resistivity helped to predict the suitable model after network training in multiple steps.The joint inversion of data is conducive to understanding the subsurface geological and lithological features along with probable geothermal sweet spots.The results of this study show the geothermal sweet spots at depth ranging from 200 m to 300 m.The results from our study can be used for targeted zones for geothermal water exploitation.
基金Sponsored by the National Nature Science Foundation of China(Grant No.60774062)the Research Fund for the Doctoral Program of High Education of China(Grant No.20070213061)
文摘In this paper,a neural network adaptive controller is proposed for attitude tracking of flexible spacecraft in presence of unknown inertial matrix and external disturbance.In this approach,neural network technique is employed to approximate the unknown system dynamics with finite combinations of some basis functions,and a robust controller is also designed to attenuate the effect of approximation error,more specially,the knowledge of angular velocity is not required.In the closed-loop system,Lyapunov stability analysis shows that the attitude trajectories asymptotically follow the reference output trajectories.Finally,simulation results are presented for the attitude tracking of a flexible spacecraft to show the excellent performance of the proposed controller and illustrate its robustness in face of external disturbances and unknown dynamics.
文摘The fuzzy logic and neural networks are combined in this paper, setting upthe fuzzy neural network (FNN ) ; meanwhile, the distinct differences and connections between thefuzzy logic and neural network are compared. Furthermore, the algorithm and structure of the FNN areintroduced. In order to diagnose the faults of nuclear power plant, the FNN is applied to thenuclear power planl, and the intelligence fault diagnostic system of the nuclear power plant isbuilt based on the FNN . The fault symptoms and the possibility of the inverted U-tube breakaccident of steam generator are discussed. In order to test the system' s validity, the invertedU-tube break accident of steam generator is used as an example and many simulation experiments areperformed. The test result shows that the FNN can identify the fault.
文摘Artificial intelligence techniques have been used to predict basic oxygen furnace(BOF) end-points. However,the main challenge is to effectively reduce the input nodes as too many input nodes in neural network increase complexity,decrease accuracy and slow down the training speed of the network.Simply picking-up variables as input usually influence validity of model.It is quite necessary to develop an effective method to reduce the number of input nodes whereby to simplify the network and improve model performance.In this study,a variable-filtrating technique combining both metallurgical mechanism model and partial least-squares(PLS ) regression method has been proposed by taking the advantages of both of them,i.e.qualitive and quantative relationships between variables respectively.Accordingly,a fuzzy-reasoning neural network(FNN) prediction model for basic oxygen furnace(BOF) end-point carbon content based on this technique has been developed.The prediction results showed that this model can effectively improve the hit rate of end-point carbon content and increase network training speed.The successful hit rate of the model can reach up to 94.12%with about 0.02% error range.
基金National Natural Science Foundations of China (No.60975059, No.60775052)Specialized Research Fund for the Doctoral Program of Higher Education from Ministry of Education of China (No.20090075110002)Projects of Shanghai Committee of Science and Technology, China (No.09JC1400900, No.08JC1400100, No.10DZ0506500)
文摘By modeling the decision-making process of garment coordination of fashion designers, a kind of computer-aid garment coordination using fuzzy neural network was propesed. The Takagi Sugeno Fuzzy Neural Network (TSFNN) is used to learn the knowledge and rules of fashion designers on garment coordination and calculate the garment coordination satisfaction index (GCSI). The implementation of the computer-aid garment coordination tool is divided into two stages. The first stage is to acquire the knowledge of garment coordination. The second stage is to train and use the fuzzy neural network to conduct garment coordination. Three layers structure were also discussed for developing the system. By applying the computer-aid garment coordination tool into a real fushionretailing store, the experimental results show the system pexforms well with choosing a suitable value for screening out the satisfaction coordination pairs.
基金National Natural Science Foundation of China(No.60873179)Doctoral Program Foundation of Institutions of Higher Education of China(No.20090121110032)+3 种基金Shenzhen Science and Technology Research Foundations,China(No.JC200903180630A,No.ZYB200907110169A)Key Project of Institutes Serving for the Economic Zone on the Western Coast of the Tai wan Strait,ChinaNatural Science Foundation of Xiamen,China(No.3502Z2093018)Projects of Education Depart ment of Fujian Province of China(No.JK2009017,No.JK2010031,No.JA10196)
文摘Linguistic dynamic systems(LDS)are dynamic processes involving computing with words(CW)for modeling and analysis of complex systems.In this paper,a fuzzy neural network(FNN)structure of LDS was proposed.In addition,an improved nonlinear particle swarm optimization was employed for training FNN.The experiment results on logistics formulation demonstrates the feasibility and the efficiency of this FNN model.
基金the Natural Science Foundation of Fujian,China(No.2021J01633).
文摘This paper presents a novel approach that simultaneously enables photovoltaic(PV)inversion and flexible arc suppression during single-phase grounding faults.Inverters compensate for ground currents through an arc-elimination function,while outputting a PV direct current(DC)power supply.This method effectively reduces the residual grounding current.To reduce the dependence of the arc-suppression performance on accurate compensation current-injection models,an adaptive fuzzy neural network imitating a sliding mode controller was designed.An online adaptive adjustment law for network parameters was developed,based on the Lyapunov stability theorem,to improve the robustness of the inverter to fault and connection locations.Furthermore,a new arc-suppression control exit strategy is proposed to allow a zerosequence voltage amplitude to quickly and smoothly track a target value by controlling the nonlinear decrease in current and reducing the regulation time.Simulation results showed that the proposed method can effectively achieve fast arc suppression and reduce the fault impact current in single-phase grounding faults.Compared to other methods,the proposed method can generate a lower residual grounding current and maintain good arc-suppression performance under different transition resistances and fault locations.