This study was conducted to evaluate the effect of lactic acid bacteria and propionic acid on the fermentation quality, aer- obic stability and in vitro gas production kinetics and digestibility of whole-crop corn bas...This study was conducted to evaluate the effect of lactic acid bacteria and propionic acid on the fermentation quality, aer- obic stability and in vitro gas production kinetics and digestibility of whole-crop corn based totalmixed ration (TMR) silage. Total mixed ration was ensiled with four treatments: (1) no additives (control); (2) an inoculant (Lactobacillus plantarum) (L); (3) propionicacid (P); (4) propionic acid+lactic acid bacteria (PL). All treatments were ensiled in laboratory-scale silos for 45 days, and then subjected to an aerobic stability test for12 days. Further, four TMR silages were incubated in vitro with buffered rumen fluid to study in vitro gas production kinetics and digestibility. The results indicated that all TMR silages had good fermentation characteristics with low pH (〈3.80) and ammonia nitrogen (NH3-N) contents, and high lactic acid contents as well as Flieg points. Addition of L further improved TMR silage quality with more lactic acid production. Addition of P and PL decreased lactic acid and NH3-N contents of TMR silage compared to the control (P〈0.05). After 12 days aerobic exposure, P and PL silages remained stable, but L and the control silages deteriorated as indicated by a reduction in lactic acid and an increase in pH, and numbers of yeast. Compared to the control, addition of L had no effects on TMR silage in terms of 72 h cumulative gas production, in vitro dry matter digestibility, metabolizable energy, net energy for lactation and short chain fatty acids, whereas addition of PL significantly (P〈0.05) increased them. L silage had higher (P〈0.05) in vitro neutral detergent fiber digestibility than the control silage. The results of our study suggested that TMR silage prepared with whole-crop corn can be well preserved with or without additives. Furthermore, the findings of this study suggested that propionic acid is compatible with lactic acid bacteria inoculants, and when used together, although they reduced lactic acid production of TMR silage, they improved aerobic stability and in vitro nutrients digestibility of TMR silage.展开更多
Our aim was to determine the epidemiological characteristics, the resistance patterns and the spread of Gram negative bacteria related to colonization of patients in adult Intensive Care Units. Methods: A prospective ...Our aim was to determine the epidemiological characteristics, the resistance patterns and the spread of Gram negative bacteria related to colonization of patients in adult Intensive Care Units. Methods: A prospective cohort of patients colonized and/or infected with Gram negative bacteria was conducted at two adult ICUs from hospitals in Brazil (April 2012 to February 2013). Nasal, groin and perineum swabs were performed. Samples were incubated on MacConkey and cetrimide agar (48 h at 37℃) and identification tests (Vitek-BioMérieux), antibiogram (Bauer-Kirby method), Carba NP test, Polymerase Chain Reaction (PCR) and sequencing were performed. The patterns of resistant microorganisms were compared by rep-PCR (Diversilab). Results: There were 53 cases of colonization. In these cases, we identified imipenem-resistant Acinetobacter baumannii (51%), Pseudomonas aeruginosa (32%), Klebsiella pneumoniae ESBL (38%) or imipenem resistant (5.6%). The use of antimicrobials and medical devices were related to colonization (p The resistance patterns expressed by Klebsiella pneumoniae were ESBL (CTX-M, SHV e TEM) and KPC2. A verified profile of Acinetobacter baumannii was related to OXA-23 and OXA-253 (OXA-143 variant). The profiles ESBL and KPC2 expressed by Klebsiella pneumoniae were distributed between the both ICUs. The distribution of OXA-23 and OXA-253 was verified only in one ICU. The similarity of strains ranged from 80% to 95%, highlighting the horizontal transference of these microorganisms.展开更多
基金supported by the project of Jiangsu Independent Innovation,China(CX(15)1003-3)the Key Technologies R&D Program of China during the 13th Five-Year Plan period(2016YFC0502005)the Special Project of Grass of Tibet Autonomous Region for the 13th Five-Year Plan,China
文摘This study was conducted to evaluate the effect of lactic acid bacteria and propionic acid on the fermentation quality, aer- obic stability and in vitro gas production kinetics and digestibility of whole-crop corn based totalmixed ration (TMR) silage. Total mixed ration was ensiled with four treatments: (1) no additives (control); (2) an inoculant (Lactobacillus plantarum) (L); (3) propionicacid (P); (4) propionic acid+lactic acid bacteria (PL). All treatments were ensiled in laboratory-scale silos for 45 days, and then subjected to an aerobic stability test for12 days. Further, four TMR silages were incubated in vitro with buffered rumen fluid to study in vitro gas production kinetics and digestibility. The results indicated that all TMR silages had good fermentation characteristics with low pH (〈3.80) and ammonia nitrogen (NH3-N) contents, and high lactic acid contents as well as Flieg points. Addition of L further improved TMR silage quality with more lactic acid production. Addition of P and PL decreased lactic acid and NH3-N contents of TMR silage compared to the control (P〈0.05). After 12 days aerobic exposure, P and PL silages remained stable, but L and the control silages deteriorated as indicated by a reduction in lactic acid and an increase in pH, and numbers of yeast. Compared to the control, addition of L had no effects on TMR silage in terms of 72 h cumulative gas production, in vitro dry matter digestibility, metabolizable energy, net energy for lactation and short chain fatty acids, whereas addition of PL significantly (P〈0.05) increased them. L silage had higher (P〈0.05) in vitro neutral detergent fiber digestibility than the control silage. The results of our study suggested that TMR silage prepared with whole-crop corn can be well preserved with or without additives. Furthermore, the findings of this study suggested that propionic acid is compatible with lactic acid bacteria inoculants, and when used together, although they reduced lactic acid production of TMR silage, they improved aerobic stability and in vitro nutrients digestibility of TMR silage.
文摘Our aim was to determine the epidemiological characteristics, the resistance patterns and the spread of Gram negative bacteria related to colonization of patients in adult Intensive Care Units. Methods: A prospective cohort of patients colonized and/or infected with Gram negative bacteria was conducted at two adult ICUs from hospitals in Brazil (April 2012 to February 2013). Nasal, groin and perineum swabs were performed. Samples were incubated on MacConkey and cetrimide agar (48 h at 37℃) and identification tests (Vitek-BioMérieux), antibiogram (Bauer-Kirby method), Carba NP test, Polymerase Chain Reaction (PCR) and sequencing were performed. The patterns of resistant microorganisms were compared by rep-PCR (Diversilab). Results: There were 53 cases of colonization. In these cases, we identified imipenem-resistant Acinetobacter baumannii (51%), Pseudomonas aeruginosa (32%), Klebsiella pneumoniae ESBL (38%) or imipenem resistant (5.6%). The use of antimicrobials and medical devices were related to colonization (p The resistance patterns expressed by Klebsiella pneumoniae were ESBL (CTX-M, SHV e TEM) and KPC2. A verified profile of Acinetobacter baumannii was related to OXA-23 and OXA-253 (OXA-143 variant). The profiles ESBL and KPC2 expressed by Klebsiella pneumoniae were distributed between the both ICUs. The distribution of OXA-23 and OXA-253 was verified only in one ICU. The similarity of strains ranged from 80% to 95%, highlighting the horizontal transference of these microorganisms.