It is currently prevalent to locate faults for a satellite power system based on an expert system, not utilizing all the available information provided by tests. The casual network model for a satellite power system i...It is currently prevalent to locate faults for a satellite power system based on an expert system, not utilizing all the available information provided by tests. The casual network model for a satellite power system is presented. Considerations for failure probability of each component of the power system, the cost of applying each test, the influence of a precedent test result on the next test selection, and an optimal sequential testing algorithm for fault location is presented. This program is applied to locate the failure component of the power system of a satellite. The results show this program is very effective and it is very fast to generate an optimal diagnosis tree.展开更多
Radio-frequency(RF)breakdown analysis and location are critical for successful development of high-gradient traveling-wave(TW)accelerators,especially those expected to generate high-intensity,high-power beams.Compared...Radio-frequency(RF)breakdown analysis and location are critical for successful development of high-gradient traveling-wave(TW)accelerators,especially those expected to generate high-intensity,high-power beams.Compared with commonly used schemes involving dedicated devices or complicated techniques,a convenient approach for breakdown locating based on transmission line(TL)theory offers advantages in the typical constant-gradient TW-accelerating structure.To deliver such an approach,an equivalent TL model has been constructed to equate the TW-accelerating structure based on the fun-damental theory of the TL transient response in the time domain.An equivalence relationship between the TW-accelerating structure and the TL model has been established via analytical derivations associated with grid charts and verified by TL circuit simulations.Furthermore,to validate the proposed fault-locating method in practical applications,an elaborate analysis via such a method has been conducted for the recoverable RF-breakdown phenomena observed at an existing prototype of a TW-accelerating-structure-based beam injector constructed at the Huazhong University of Science and Technology.In addition,further considerations and discussion for extending the applications of the proposed method have been given.This breakdown-locating approach involving the transient response in the framework of TL theory can be a conceivable supple-ment to existing methods,facilitating solution to construction problems at an affordable cost.展开更多
Precise fault location plays an important role in the reliability of modern power systems.With the in-creasing penetration of renewable energy sources,the power system experiences a decrease in system inertia and alte...Precise fault location plays an important role in the reliability of modern power systems.With the in-creasing penetration of renewable energy sources,the power system experiences a decrease in system inertia and alterations in steady-state characteristics following a fault occurrence.Most existing single-ended phasor domain methods assume a certain impedance of the remote-end system or consistent current phases at both ends.These problems present challenges to the applicability of con-ventional phasor-domain location methods.This paper presents a novel single-ended time domain fault location method for single-phase-to-ground faults,one which fully considers the distributed parameters of the line model.The fitting of transient signals in the time domain is real-ized to extract the instantaneous amplitude and phase.Then,to eliminate the error caused by assumptions of lumped series resistance in the Bergeron model,an im-proved numerical derivation is presented for the distrib-uted parameter line model.The instantaneous symmet-rical components are extracted for decoupling and inverse transformation of three-phase recording data.Based on the above,the equation of instantaneous phase constraint is established to effectively identify the fault location.The proposed location method reduces the negative effects of fault resistance and the uncertainty of remote end pa-rameters when relying on one-terminal data for localiza-tion.Additionally,the proposed fault analysis methods have the ability to adapt to transient processes in power systems.Through comparisons with existing methods in three different systems,the fault position is correctly identified within an error of 1%.Also,the results are not affected by sampling rates,data windows,fault inception angles,and load conditions. Index Terms—Fault location,distributed parameter line model,transient signal,renewable energy,instantaneous phase.展开更多
When high-impedance faults(HIFs)occur in resonant grounded distribution networks,the current that flows is extremely weak,and the noise interference caused by the distribution network operation and the sampling error ...When high-impedance faults(HIFs)occur in resonant grounded distribution networks,the current that flows is extremely weak,and the noise interference caused by the distribution network operation and the sampling error of the measurement devices further masks the fault characteristics.Consequently,locating a fault section with high sensitivity is difficult.Unlike existing technologies,this study presents a novel fault feature identification framework that addresses this issue.The framework includes three key steps:(1)utilizing the variable mode decomposition(VMD)method to denoise the fault transient zero-sequence current(TZSC);(2)employing a manifold learning algorithm based on t-distributed stochastic neighbor embedding(t-SNE)to further reduce the redundant information of the TZSC after denoising and to visualize fault information in high-dimensional 2D space;and(3)classifying the signal of each measurement point based on the fuzzy clustering method and combining the network topology structure to determine the fault section location.Numerical simulations and field testing confirm that the proposed method accurately detects the fault location,even under the influence of strong noise interference.展开更多
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim...The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach.展开更多
The distribution network exhibits complex structural characteristics,which makes fault localization a challenging task.Especially when a branch of the multi-branch distribution network fails,the traditional multi-bran...The distribution network exhibits complex structural characteristics,which makes fault localization a challenging task.Especially when a branch of the multi-branch distribution network fails,the traditional multi-branch fault location algorithm makes it difficult to meet the demands of high-precision fault localization in the multi-branch distribution network system.In this paper,the multi-branch mainline is decomposed into single branch lines,transforming the complex multi-branch fault location problem into a double-ended fault location problem.Based on the different transmission characteristics of the fault-traveling wave in fault lines and non-fault lines,the endpoint reference time difference matrix S and the fault time difference matrix G were established.The time variation rule of the fault-traveling wave arriving at each endpoint before and after a fault was comprehensively utilized.To realize the fault segment location,the least square method was introduced.It was used to find the first-order fitting relation that satisfies the matching relationship between the corresponding row vector and the first-order function in the two matrices,to realize the fault segment location.Then,the time difference matrix is used to determine the traveling wave velocity,which,combined with the double-ended traveling wave location,enables accurate fault location.展开更多
In order to improve the accuracy of cable fault position location at a low cost and make the testing results intuitive, a cable fault detector based on wave form reconstruction is designed. In this detector, the cable...In order to improve the accuracy of cable fault position location at a low cost and make the testing results intuitive, a cable fault detector based on wave form reconstruction is designed. In this detector, the cable fault position is located based on the time-domain pulse reflection (TDR) principle. A pulse waveform is injected in the tested cable, and a high-speed comparator with changeable reference voltages is used to binarize the test pulse waveform to a binary sequence on a certain voltage. Through scanning the reference voltage in a full voltage range, multi-sequences are acquired to reconstruct the pulse waveform transmission in the cable, and then the pulse attenuation feature, electrical open circuit fault, electrical short circuit fault, and the fault position of the cable are diagnosed. Experimental results show that the designed cable fault detector can determine the fault type and its position of the cable being tested, and the testing results are intuitive.展开更多
A novel numerical algorithm of fault location estimation for double line to ground fault involving different phases from each of two parallel lines is presented in this paper.It is based on the one terminal voltag...A novel numerical algorithm of fault location estimation for double line to ground fault involving different phases from each of two parallel lines is presented in this paper.It is based on the one terminal voltage and current data.The loop and nodal equations comparing faulted phase with non faulted phase of two parallel lines are introduced in the fault location estimation models,in which the source impedance of a remote end is not involved.The effects of load flow and fault resistance on the accuracy of fault location are effectively eliminated,therefore precise algorithms of locating fault are derived.The algorithm is demonstrated by digital computer simulations.展开更多
In this paper a fault location and recording system based on a computer network is presented. A brief description of the system structure and main features are given. Emphasis is placed on the accurate fault location ...In this paper a fault location and recording system based on a computer network is presented. A brief description of the system structure and main features are given. Emphasis is placed on the accurate fault location method for extra high voltage and long distance transmission lines.展开更多
Active distribution network(ADN)is a solution for power system with interconnection of distributed energy resources(DER),which may change the network operation and power flow of traditional power distribution network....Active distribution network(ADN)is a solution for power system with interconnection of distributed energy resources(DER),which may change the network operation and power flow of traditional power distribution network.However,in some circumstances the malfunction of protection and feeder automation in distribution network occurs due to the uncertain bidirectional power flow.Therefore,a novel method of fault location,isolation,and service restoration(FLISR)for ADN based on distributed processing is proposed in this paper.The differential-activated algorithm based on synchronous sampling for feeder fault location and isolation is studied,and a framework of fault restoration is established for ADN.Finally,the effectiveness of the proposed algorithm is verified via computer simulation of a case study for active distributed power system.展开更多
In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert system and build up intelligent fault diagnosis for a type of missile weapon system, the concrete implementation of a fuz...In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert system and build up intelligent fault diagnosis for a type of missile weapon system, the concrete implementation of a fuzzy NN fault diagnosis expert system is given in this paper. Based on thorough research of knowledge presentation, the intelligent fault diagnosis system is implemented with artificial intelligence for a large-scale missile weapon equipment. The method is an effective way to perform fuzzy fault diagnosis. Moreover, it provides a new way of the fault diagnosis for large-scale missile weapon equipment.展开更多
Security and reliability of inverter are an indispensable part in power electronic system. Faults of inverter are usually caused by switch elements’ operating fault. Taking the inverter with hysteresis current contro...Security and reliability of inverter are an indispensable part in power electronic system. Faults of inverter are usually caused by switch elements’ operating fault. Taking the inverter with hysteresis current control as the research object, a universal open-circuit fault location method which can be applied to multiple control strategies is proposed in the paper. If the switch open-circuit fault happens in inverter, the output phase current will inevitably change, which can be used as a characteristic for diagnosis, combined with the comparison of phase-current direction before and after the fault occurrence, to diagnose and locate the open-circuit fault in a half cycle. Moreover, this method requires neither system control signals nor sensor. The validity, reliability and limitation of the fault location method in the paper are verified and analyzed through dSPACE-based experiment platform.展开更多
This paper presents a fast hybrid fault location method for active distribution networks with distributed generation(DG)and microgrids.The method uses the voltage and current data from the measurement points at the ma...This paper presents a fast hybrid fault location method for active distribution networks with distributed generation(DG)and microgrids.The method uses the voltage and current data from the measurement points at the main substation,and the connection points of DG and microgrids.The data is used in a single feedforward artificial neural network(ANN)to estimate the distances to fault from all the measuring points.A k-nearest neighbors(KNN)classifier then interprets the ANN outputs and estimates a single fault location.Simulation results validate the accuracy of the fault location method under different fault conditions including fault types,fault points,and fault resistances.The performance is also validated for non-synchronized measurements and measurement errors.展开更多
High voltage direct current (HVDC) transmission is an economical option for transmitting a large amount of power over long distances. Initially, HVDC was developed using thyristor-based current source converters (CSC)...High voltage direct current (HVDC) transmission is an economical option for transmitting a large amount of power over long distances. Initially, HVDC was developed using thyristor-based current source converters (CSC). With the development of semiconductor devices, a voltage source converter (VSC)-based HVDC system was introduced, and has been widely applied to integrate large-scale renewables and network interconnection. However, the VSC-based HVDC system is vulnerable to DC faults and its protection becomes ever more important with the fast growth in number of installations. In this paper, detailed characteristics of DC faults in the VSC-HVDC system are presented. The DC fault current has a large peak and steady values within a few milliseconds and thus high-speed fault detection and isolation methods are required in an HVDC grid. Therefore, development of the protection scheme for a multi-terminal VSC-based HVDC system is challenging. Various methods have been developed and this paper presents a comprehensive review of the different techniques for DC fault detection, location and isolation in both CSC and VSC-based HVDC transmission systems in two-terminal and multi-terminal network configurations.展开更多
The modern travelling wave based fault location principles for transmission lines are analyzed.In order to apply the travelling wave principles to HVDC transmission lines,the special technical problems are studied.Bas...The modern travelling wave based fault location principles for transmission lines are analyzed.In order to apply the travelling wave principles to HVDC transmission lines,the special technical problems are studied.Based on this,a fault locating system for HVDC transmission lines is developed.The system can support modern double ended and single ended travelling wave princi- ples simultaneously,and it is composed of three different parts:travelling wave data acquisition and processing system,communication network and PC based master station.In the system,the fault generated transients are induced from the ground leads of the over-voltage suppression capacitors of an HVDC line through specially developed travelling wave couplers.The system was applied to 500 kV Gezhouba-Nanqiao(Shanghai)HVDC transmission line in China.Some field operation experiences are summarized,showing that the system has very high reliability and accuracy,and the maximum location error is about 3 km(not more than 0.3%of the total line length). Obviously,the application of the system is successful,and the fault location problem has finally been solved completely since the line operation.展开更多
Electric power grids are critical infrastructure for delivering energy from generation stations to load centers. To maximize utilization of assets, it is desirable to increase the power transferred over transmission s...Electric power grids are critical infrastructure for delivering energy from generation stations to load centers. To maximize utilization of assets, it is desirable to increase the power transferred over transmission systems. Reliable protection of transmission systems is essential for safeguarding the integrity and reliability of the power grid. Distance protection is the most widely used scheme for protecting transmission lines. Most existing protection systems use local measurements to make a decision while pilot protection is used in some circumstances. Distance protection may fail under stressed operating conditions, which could lead to cascading faults. This paper proposes a system integrity protection scheme by utilizing wide area measurements. The scheme partitions the system into subnetworks or protection zones and employs current measurements to derive a fault identification vector indicating the faulted zone. Then the fault location is pinpointed based on wide area measurements and network data. The proposed method is able to deal with multiple, simultaneous faults, and is applicable to both transposed and untransposed lines. Evaluation studies based on simulation studies are presented.展开更多
The existing LCC-HVDC transmission project adopts the fixed-time delay restarting method.This method has disadvantages such as non-selectivity,long restart process,and high probability of restart failure.These issues ...The existing LCC-HVDC transmission project adopts the fixed-time delay restarting method.This method has disadvantages such as non-selectivity,long restart process,and high probability of restart failure.These issues cause a secondary impact on equipment and system power fluctuation.To solve this problem,an adaptive restarting method based on the principle of fault location by current injection is proposed.First,an additional control strategy is proposed to inject a current detection signal.Second,the propagation law of the current signal in the line is analyzed based on the distributed parameter model of transmission line.Finally,a method for identifying fault properties based on the principle of fault location is proposed.The method fully considers the influence of the long-distance transmission line with earth capacitance and overcomes the influence of the increasing effect of the opposite terminal.Simulation results show that the proposed method can accurately identify the fault properties under various complex fault conditions and subsequently realize the adaptive restarting process.展开更多
In long transmission lines,the charging current caused by the shunt capacitance decreases the accuracy in impedance based fault location.To improve the accuracy of fault location,this paper presents a novel scheme,whe...In long transmission lines,the charging current caused by the shunt capacitance decreases the accuracy in impedance based fault location.To improve the accuracy of fault location,this paper presents a novel scheme,where two Digital Fault Recorders(DFRs)are installed in a line.They can send the transient data of the faults to the both ends of a line.To estimate the distance of a fault,impedance based fault location methods are applied with transient fault data of both ends protection relays and both DFRs installed in a line.To evaluate the proposed scheme,a laboratory setup has been developed.In the lab,several faults have been simulated and associated voltages and currents are injected to a relay IED to compare experimental results.展开更多
The intermittent connection(IC)of the field-bus in networked manufacturing systems is a common but hard troubleshooting network problem,which may result in system level failures or safety issues.However,there is no ...The intermittent connection(IC)of the field-bus in networked manufacturing systems is a common but hard troubleshooting network problem,which may result in system level failures or safety issues.However,there is no online IC location identification method available to detect and locate the position of the problem.To tackle this problem,a novel model based online fault location identification method for localized IC problem is proposed.First,the error event patterns are identified and classified according to different node sources in each error frame.Then generalized zero inflated Poisson process(GZIP)model for each node is established by using time stamped error event sequence.Finally,the location of the IC fault is determined by testing whether the parameters of the fitted stochastic model is statistically significant or not using the confident intervals of the estimated parameters.To illustrate the proposed method,case studies are conducted on a 3-node controller area network(CAN)test-bed,in which IC induced faults are imposed on a network drop cable using computer controlled on-off switches.The experimental results show the parameters of the GZIP model for the problematic node are statistically significant(larger than 0),and the patterns of the confident intervals of the estimated parameters are directly linked to the problematic node,which agrees with the experimental setup.The proposed online IC location identification method can successfully identify the location of the drop cable on which IC faults occurs on the CAN network.展开更多
This article proposes a new fault location mechanism in optical network. In this mechanism, a network alarm packet format with time-stamp is introduced to implement fast restoration. In locating the fault, the existin...This article proposes a new fault location mechanism in optical network. In this mechanism, a network alarm packet format with time-stamp is introduced to implement fast restoration. In locating the fault, the existing schemes are usually complex and inaccessible when solving the multifailure location problem. For multifailures, the proposed mechanism using time-stamps is more efficient in locating the fault and decreasing computational complexity.展开更多
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2002AA721063).
文摘It is currently prevalent to locate faults for a satellite power system based on an expert system, not utilizing all the available information provided by tests. The casual network model for a satellite power system is presented. Considerations for failure probability of each component of the power system, the cost of applying each test, the influence of a precedent test result on the next test selection, and an optimal sequential testing algorithm for fault location is presented. This program is applied to locate the failure component of the power system of a satellite. The results show this program is very effective and it is very fast to generate an optimal diagnosis tree.
基金supported by the National Natural Science Foundation of China(No.11905074).
文摘Radio-frequency(RF)breakdown analysis and location are critical for successful development of high-gradient traveling-wave(TW)accelerators,especially those expected to generate high-intensity,high-power beams.Compared with commonly used schemes involving dedicated devices or complicated techniques,a convenient approach for breakdown locating based on transmission line(TL)theory offers advantages in the typical constant-gradient TW-accelerating structure.To deliver such an approach,an equivalent TL model has been constructed to equate the TW-accelerating structure based on the fun-damental theory of the TL transient response in the time domain.An equivalence relationship between the TW-accelerating structure and the TL model has been established via analytical derivations associated with grid charts and verified by TL circuit simulations.Furthermore,to validate the proposed fault-locating method in practical applications,an elaborate analysis via such a method has been conducted for the recoverable RF-breakdown phenomena observed at an existing prototype of a TW-accelerating-structure-based beam injector constructed at the Huazhong University of Science and Technology.In addition,further considerations and discussion for extending the applications of the proposed method have been given.This breakdown-locating approach involving the transient response in the framework of TL theory can be a conceivable supple-ment to existing methods,facilitating solution to construction problems at an affordable cost.
文摘Precise fault location plays an important role in the reliability of modern power systems.With the in-creasing penetration of renewable energy sources,the power system experiences a decrease in system inertia and alterations in steady-state characteristics following a fault occurrence.Most existing single-ended phasor domain methods assume a certain impedance of the remote-end system or consistent current phases at both ends.These problems present challenges to the applicability of con-ventional phasor-domain location methods.This paper presents a novel single-ended time domain fault location method for single-phase-to-ground faults,one which fully considers the distributed parameters of the line model.The fitting of transient signals in the time domain is real-ized to extract the instantaneous amplitude and phase.Then,to eliminate the error caused by assumptions of lumped series resistance in the Bergeron model,an im-proved numerical derivation is presented for the distrib-uted parameter line model.The instantaneous symmet-rical components are extracted for decoupling and inverse transformation of three-phase recording data.Based on the above,the equation of instantaneous phase constraint is established to effectively identify the fault location.The proposed location method reduces the negative effects of fault resistance and the uncertainty of remote end pa-rameters when relying on one-terminal data for localiza-tion.Additionally,the proposed fault analysis methods have the ability to adapt to transient processes in power systems.Through comparisons with existing methods in three different systems,the fault position is correctly identified within an error of 1%.Also,the results are not affected by sampling rates,data windows,fault inception angles,and load conditions. Index Terms—Fault location,distributed parameter line model,transient signal,renewable energy,instantaneous phase.
基金supported in part by the Science and Technology Program of State Grid Corporation of China(No.5108-202218280A-2-75-XG)the Fundamental Research Funds for the Central Universities(No.B200203129)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(No.KYCX20_0432)。
文摘When high-impedance faults(HIFs)occur in resonant grounded distribution networks,the current that flows is extremely weak,and the noise interference caused by the distribution network operation and the sampling error of the measurement devices further masks the fault characteristics.Consequently,locating a fault section with high sensitivity is difficult.Unlike existing technologies,this study presents a novel fault feature identification framework that addresses this issue.The framework includes three key steps:(1)utilizing the variable mode decomposition(VMD)method to denoise the fault transient zero-sequence current(TZSC);(2)employing a manifold learning algorithm based on t-distributed stochastic neighbor embedding(t-SNE)to further reduce the redundant information of the TZSC after denoising and to visualize fault information in high-dimensional 2D space;and(3)classifying the signal of each measurement point based on the fuzzy clustering method and combining the network topology structure to determine the fault section location.Numerical simulations and field testing confirm that the proposed method accurately detects the fault location,even under the influence of strong noise interference.
基金the National Natural Science Foundation of China(52177074).
文摘The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach.
基金This work was funded by the project of State Grid Hunan Electric Power Research Institute(No.SGHNDK00PWJS2210033).
文摘The distribution network exhibits complex structural characteristics,which makes fault localization a challenging task.Especially when a branch of the multi-branch distribution network fails,the traditional multi-branch fault location algorithm makes it difficult to meet the demands of high-precision fault localization in the multi-branch distribution network system.In this paper,the multi-branch mainline is decomposed into single branch lines,transforming the complex multi-branch fault location problem into a double-ended fault location problem.Based on the different transmission characteristics of the fault-traveling wave in fault lines and non-fault lines,the endpoint reference time difference matrix S and the fault time difference matrix G were established.The time variation rule of the fault-traveling wave arriving at each endpoint before and after a fault was comprehensively utilized.To realize the fault segment location,the least square method was introduced.It was used to find the first-order fitting relation that satisfies the matching relationship between the corresponding row vector and the first-order function in the two matrices,to realize the fault segment location.Then,the time difference matrix is used to determine the traveling wave velocity,which,combined with the double-ended traveling wave location,enables accurate fault location.
基金The National Natural Science Foundation of China(No.61240032)the Natural Science Foundation of Jiangsu Province(No.BK2012560)+1 种基金the College Scientific and Technological Achievements Transformation Promotion Project of Jiangsu Province(No.JH-05)the Science and Technology Support Program of Jiangsu Province(No.BE2012740)
文摘In order to improve the accuracy of cable fault position location at a low cost and make the testing results intuitive, a cable fault detector based on wave form reconstruction is designed. In this detector, the cable fault position is located based on the time-domain pulse reflection (TDR) principle. A pulse waveform is injected in the tested cable, and a high-speed comparator with changeable reference voltages is used to binarize the test pulse waveform to a binary sequence on a certain voltage. Through scanning the reference voltage in a full voltage range, multi-sequences are acquired to reconstruct the pulse waveform transmission in the cable, and then the pulse attenuation feature, electrical open circuit fault, electrical short circuit fault, and the fault position of the cable are diagnosed. Experimental results show that the designed cable fault detector can determine the fault type and its position of the cable being tested, and the testing results are intuitive.
基金Supported by Science Foundation of Guangdong(No.990 577)
文摘A novel numerical algorithm of fault location estimation for double line to ground fault involving different phases from each of two parallel lines is presented in this paper.It is based on the one terminal voltage and current data.The loop and nodal equations comparing faulted phase with non faulted phase of two parallel lines are introduced in the fault location estimation models,in which the source impedance of a remote end is not involved.The effects of load flow and fault resistance on the accuracy of fault location are effectively eliminated,therefore precise algorithms of locating fault are derived.The algorithm is demonstrated by digital computer simulations.
文摘In this paper a fault location and recording system based on a computer network is presented. A brief description of the system structure and main features are given. Emphasis is placed on the accurate fault location method for extra high voltage and long distance transmission lines.
基金This paper was supported by the National High Technology Research and Development Program of China(863 Program)(No.2014AA051902).
文摘Active distribution network(ADN)is a solution for power system with interconnection of distributed energy resources(DER),which may change the network operation and power flow of traditional power distribution network.However,in some circumstances the malfunction of protection and feeder automation in distribution network occurs due to the uncertain bidirectional power flow.Therefore,a novel method of fault location,isolation,and service restoration(FLISR)for ADN based on distributed processing is proposed in this paper.The differential-activated algorithm based on synchronous sampling for feeder fault location and isolation is studied,and a framework of fault restoration is established for ADN.Finally,the effectiveness of the proposed algorithm is verified via computer simulation of a case study for active distributed power system.
文摘In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert system and build up intelligent fault diagnosis for a type of missile weapon system, the concrete implementation of a fuzzy NN fault diagnosis expert system is given in this paper. Based on thorough research of knowledge presentation, the intelligent fault diagnosis system is implemented with artificial intelligence for a large-scale missile weapon equipment. The method is an effective way to perform fuzzy fault diagnosis. Moreover, it provides a new way of the fault diagnosis for large-scale missile weapon equipment.
基金Projects(2016YFB1200401,2017YFB1200801)supported by the National Key R&D Program of China
文摘Security and reliability of inverter are an indispensable part in power electronic system. Faults of inverter are usually caused by switch elements’ operating fault. Taking the inverter with hysteresis current control as the research object, a universal open-circuit fault location method which can be applied to multiple control strategies is proposed in the paper. If the switch open-circuit fault happens in inverter, the output phase current will inevitably change, which can be used as a characteristic for diagnosis, combined with the comparison of phase-current direction before and after the fault occurrence, to diagnose and locate the open-circuit fault in a half cycle. Moreover, this method requires neither system control signals nor sensor. The validity, reliability and limitation of the fault location method in the paper are verified and analyzed through dSPACE-based experiment platform.
文摘This paper presents a fast hybrid fault location method for active distribution networks with distributed generation(DG)and microgrids.The method uses the voltage and current data from the measurement points at the main substation,and the connection points of DG and microgrids.The data is used in a single feedforward artificial neural network(ANN)to estimate the distances to fault from all the measuring points.A k-nearest neighbors(KNN)classifier then interprets the ANN outputs and estimates a single fault location.Simulation results validate the accuracy of the fault location method under different fault conditions including fault types,fault points,and fault resistances.The performance is also validated for non-synchronized measurements and measurement errors.
文摘High voltage direct current (HVDC) transmission is an economical option for transmitting a large amount of power over long distances. Initially, HVDC was developed using thyristor-based current source converters (CSC). With the development of semiconductor devices, a voltage source converter (VSC)-based HVDC system was introduced, and has been widely applied to integrate large-scale renewables and network interconnection. However, the VSC-based HVDC system is vulnerable to DC faults and its protection becomes ever more important with the fast growth in number of installations. In this paper, detailed characteristics of DC faults in the VSC-HVDC system are presented. The DC fault current has a large peak and steady values within a few milliseconds and thus high-speed fault detection and isolation methods are required in an HVDC grid. Therefore, development of the protection scheme for a multi-terminal VSC-based HVDC system is challenging. Various methods have been developed and this paper presents a comprehensive review of the different techniques for DC fault detection, location and isolation in both CSC and VSC-based HVDC transmission systems in two-terminal and multi-terminal network configurations.
文摘The modern travelling wave based fault location principles for transmission lines are analyzed.In order to apply the travelling wave principles to HVDC transmission lines,the special technical problems are studied.Based on this,a fault locating system for HVDC transmission lines is developed.The system can support modern double ended and single ended travelling wave princi- ples simultaneously,and it is composed of three different parts:travelling wave data acquisition and processing system,communication network and PC based master station.In the system,the fault generated transients are induced from the ground leads of the over-voltage suppression capacitors of an HVDC line through specially developed travelling wave couplers.The system was applied to 500 kV Gezhouba-Nanqiao(Shanghai)HVDC transmission line in China.Some field operation experiences are summarized,showing that the system has very high reliability and accuracy,and the maximum location error is about 3 km(not more than 0.3%of the total line length). Obviously,the application of the system is successful,and the fault location problem has finally been solved completely since the line operation.
文摘Electric power grids are critical infrastructure for delivering energy from generation stations to load centers. To maximize utilization of assets, it is desirable to increase the power transferred over transmission systems. Reliable protection of transmission systems is essential for safeguarding the integrity and reliability of the power grid. Distance protection is the most widely used scheme for protecting transmission lines. Most existing protection systems use local measurements to make a decision while pilot protection is used in some circumstances. Distance protection may fail under stressed operating conditions, which could lead to cascading faults. This paper proposes a system integrity protection scheme by utilizing wide area measurements. The scheme partitions the system into subnetworks or protection zones and employs current measurements to derive a fault identification vector indicating the faulted zone. Then the fault location is pinpointed based on wide area measurements and network data. The proposed method is able to deal with multiple, simultaneous faults, and is applicable to both transposed and untransposed lines. Evaluation studies based on simulation studies are presented.
基金supported by Science and Technology Project of State Grid Corporation of China(52094020006U)National Natural Science Foundation of China(NSFC)(52061635105)China Postdoctoral Science Foundation(2021M692525).
文摘The existing LCC-HVDC transmission project adopts the fixed-time delay restarting method.This method has disadvantages such as non-selectivity,long restart process,and high probability of restart failure.These issues cause a secondary impact on equipment and system power fluctuation.To solve this problem,an adaptive restarting method based on the principle of fault location by current injection is proposed.First,an additional control strategy is proposed to inject a current detection signal.Second,the propagation law of the current signal in the line is analyzed based on the distributed parameter model of transmission line.Finally,a method for identifying fault properties based on the principle of fault location is proposed.The method fully considers the influence of the long-distance transmission line with earth capacitance and overcomes the influence of the increasing effect of the opposite terminal.Simulation results show that the proposed method can accurately identify the fault properties under various complex fault conditions and subsequently realize the adaptive restarting process.
文摘In long transmission lines,the charging current caused by the shunt capacitance decreases the accuracy in impedance based fault location.To improve the accuracy of fault location,this paper presents a novel scheme,where two Digital Fault Recorders(DFRs)are installed in a line.They can send the transient data of the faults to the both ends of a line.To estimate the distance of a fault,impedance based fault location methods are applied with transient fault data of both ends protection relays and both DFRs installed in a line.To evaluate the proposed scheme,a laboratory setup has been developed.In the lab,several faults have been simulated and associated voltages and currents are injected to a relay IED to compare experimental results.
基金Supported by National Natural Science Foundation of China(Grant No51005205)Science Fund for Creative Research Groups of Nationa Natural Science Foundation of China(Grant No.51221004)+1 种基金Nationa Basic Research Program of China(973 Program,Grant No.2013CB035405)Open Foundation of State Key Laboratory of Automotive Safety and Energy,Tsinghua University,China(Grant No.KF13011)
文摘The intermittent connection(IC)of the field-bus in networked manufacturing systems is a common but hard troubleshooting network problem,which may result in system level failures or safety issues.However,there is no online IC location identification method available to detect and locate the position of the problem.To tackle this problem,a novel model based online fault location identification method for localized IC problem is proposed.First,the error event patterns are identified and classified according to different node sources in each error frame.Then generalized zero inflated Poisson process(GZIP)model for each node is established by using time stamped error event sequence.Finally,the location of the IC fault is determined by testing whether the parameters of the fitted stochastic model is statistically significant or not using the confident intervals of the estimated parameters.To illustrate the proposed method,case studies are conducted on a 3-node controller area network(CAN)test-bed,in which IC induced faults are imposed on a network drop cable using computer controlled on-off switches.The experimental results show the parameters of the GZIP model for the problematic node are statistically significant(larger than 0),and the patterns of the confident intervals of the estimated parameters are directly linked to the problematic node,which agrees with the experimental setup.The proposed online IC location identification method can successfully identify the location of the drop cable on which IC faults occurs on the CAN network.
基金supported by the National Natural Science Foundation of China (60877052, 60702005)PCSIRT (IRT0609)the Program of Introducing Talents of Discipline to Universities ( b07005)
文摘This article proposes a new fault location mechanism in optical network. In this mechanism, a network alarm packet format with time-stamp is introduced to implement fast restoration. In locating the fault, the existing schemes are usually complex and inaccessible when solving the multifailure location problem. For multifailures, the proposed mechanism using time-stamps is more efficient in locating the fault and decreasing computational complexity.