We discuss the influence of precipitation and groundwater on the deformation behavior of the Babaoshan fault of Beijing by using long-term observation data from Dahuichang station during 1970-2003. The results show th...We discuss the influence of precipitation and groundwater on the deformation behavior of the Babaoshan fault of Beijing by using long-term observation data from Dahuichang station during 1970-2003. The results show that a) the pore pressure on fault zone as well as the fault deformation behavior exhibited periodically variation as precipitation changed steadily and periodically; b) the periodicity of the pore pressure of fault zones disappeared and the manner of fault deformation behavior changed when precipitation was small and/or was in aberrance. This implies that rainfall plays a key role in fault deformation behavior through changing the pore pressure of fault zones. Combining the existing results about the Babaoshan fault, it is concluded that precipitation and groundwater may adjust the stress/strain field by controlling the deformation behavior of the fault, which can provide direct observation evidence for the interaction of fluid and solid in shallow crust of the Earth.展开更多
High-level radioactive waste should be isolated from humans and society for over 100,000 years.Several factors should be considered for a geologically stable disposal site such as topography,faults,seismic activity,an...High-level radioactive waste should be isolated from humans and society for over 100,000 years.Several factors should be considered for a geologically stable disposal site such as topography,faults,seismic activity,and hydrological properties.Brittle structures within the bedrock,such as faults,act as potential flow pathways for radioactive isotopes as well as significantly influence bedrock stability in the context of future seismicity.However,studies on fault behavior and deformation in underground settings,which are key components for site characterization,are relatively scarce compared with those at the surface.This study was conducted within the KAERI Underground Research Tunnel(KURT),an experimental tunnel focused on comprehending the structural evolution and designing nuclear waste disposal sites.To conduct a comprehensive structural study aimed at reconstructing the structural evolution of the study area in space and time,a preliminary lineament analysis was conducted using a length-weighted lineament analysis.Furthermore,kinematic analysis was conducted based on a cross-cutting relationship to establish the deformation history and change of paleostress condition.We identified three distinct brittle deformation stages evolving from a strike-slip to an extensional regime associated with the change of the maximum horizontal stress from ENE–WSW through NW–SE to NNE–SSW.This study underscored that a detailed study combining remote sensing lineament analysis,field structural surveys,and paleostress analysis could integrate and improve previously proposed methods for the selection of deep geological repositories.展开更多
基金National Natural Science Foundation of China (40374019)Joint Earthquake Science Foundation of China (1040106).
文摘We discuss the influence of precipitation and groundwater on the deformation behavior of the Babaoshan fault of Beijing by using long-term observation data from Dahuichang station during 1970-2003. The results show that a) the pore pressure on fault zone as well as the fault deformation behavior exhibited periodically variation as precipitation changed steadily and periodically; b) the periodicity of the pore pressure of fault zones disappeared and the manner of fault deformation behavior changed when precipitation was small and/or was in aberrance. This implies that rainfall plays a key role in fault deformation behavior through changing the pore pressure of fault zones. Combining the existing results about the Babaoshan fault, it is concluded that precipitation and groundwater may adjust the stress/strain field by controlling the deformation behavior of the fault, which can provide direct observation evidence for the interaction of fluid and solid in shallow crust of the Earth.
基金supported by the Institute for Korea Spent Nuclear Fuel(iKSNF)National Research Foundation of Korea(NRF)grant funded by the Korea government(Ministry of Science and ICT,MSIT)(No.2021M2E1A1085200).
文摘High-level radioactive waste should be isolated from humans and society for over 100,000 years.Several factors should be considered for a geologically stable disposal site such as topography,faults,seismic activity,and hydrological properties.Brittle structures within the bedrock,such as faults,act as potential flow pathways for radioactive isotopes as well as significantly influence bedrock stability in the context of future seismicity.However,studies on fault behavior and deformation in underground settings,which are key components for site characterization,are relatively scarce compared with those at the surface.This study was conducted within the KAERI Underground Research Tunnel(KURT),an experimental tunnel focused on comprehending the structural evolution and designing nuclear waste disposal sites.To conduct a comprehensive structural study aimed at reconstructing the structural evolution of the study area in space and time,a preliminary lineament analysis was conducted using a length-weighted lineament analysis.Furthermore,kinematic analysis was conducted based on a cross-cutting relationship to establish the deformation history and change of paleostress condition.We identified three distinct brittle deformation stages evolving from a strike-slip to an extensional regime associated with the change of the maximum horizontal stress from ENE–WSW through NW–SE to NNE–SSW.This study underscored that a detailed study combining remote sensing lineament analysis,field structural surveys,and paleostress analysis could integrate and improve previously proposed methods for the selection of deep geological repositories.