期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Evolutionary Computation for Expensive Optimization:A Survey 被引量:9
1
作者 Jian-Yu Li Zhi-Hui Zhan Jun Zhang 《Machine Intelligence Research》 EI CSCD 2022年第1期3-23,共21页
Expensive optimization problem(EOP) widely exists in various significant real-world applications. However, EOP requires expensive or even unaffordable costs for evaluating candidate solutions, which is expensive for t... Expensive optimization problem(EOP) widely exists in various significant real-world applications. However, EOP requires expensive or even unaffordable costs for evaluating candidate solutions, which is expensive for the algorithm to find a satisfactory solution. Moreover, due to the fast-growing application demands in the economy and society, such as the emergence of the smart cities, the internet of things, and the big data era, solving EOP more efficiently has become increasingly essential in various fields, which poses great challenges on the problem-solving ability of optimization approach for EOP. Among various optimization approaches, evolutionary computation(EC) is a promising global optimization tool widely used for solving EOP efficiently in the past decades. Given the fruitful advancements of EC for EOP, it is essential to review these advancements in order to synthesize and give previous research experiences and references to aid the development of relevant research fields and real-world applications. Motivated by this, this paper aims to provide a comprehensive survey to show why and how EC can solve EOP efficiently. For this aim, this paper firstly analyzes the total optimization cost of EC in solving EOP. Then, based on the analysis, three promising research directions are pointed out for solving EOP, which are problem approximation and substitution, algorithm design and enhancement, and parallel and distributed computation. Note that, to the best of our knowledge, this paper is the first that outlines the possible directions for efficiently solving EOP by analyzing the total expensive cost. Based on this, existing works are reviewed comprehensively via a taxonomy with four parts, including the above three research directions and the real-world application part. Moreover, some future research directions are also discussed in this paper. It is believed that such a survey can attract attention, encourage discussions, and stimulate new EC research ideas for solving EOP and related real-world applications more efficiently. 展开更多
关键词 expensive optimization problem evolutionary computation evolutionary algorithm swarm intelligence particle swarm optimization differential evolution
原文传递
Hybrid Meta-Model Based Design Space Differentiation Method for Expensive Problems 被引量:1
2
作者 Nianfei Gan Guangyao Li Jichao Gu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2016年第2期120-132,共13页
In this work,a hybrid meta-model based design space differentiation(HMDSD)method is proposed for practical problems.In the proposed method,an iteratively reduced promising region is constructed using the expensive p... In this work,a hybrid meta-model based design space differentiation(HMDSD)method is proposed for practical problems.In the proposed method,an iteratively reduced promising region is constructed using the expensive points,with two different search strategies respectively applied inside and outside the promising region.Besides,the hybrid meta-model strategy applied in the search process makes it possible to solve the complex practical problems.Tested upon a serial of benchmark math functions,the HMDSD method shows great efficiency and search accuracy.On top of that,a practical lightweight design demonstrates its superior performance. 展开更多
关键词 hybrid meta-model design space differentiation expensive problems global optimization
原文传递
An Optimization Algorithm Employing Multiple Metamodels and Optimizers 被引量:2
3
作者 Yoel Tenne 《International Journal of Automation and computing》 EI CSCD 2013年第3期227-241,共15页
Modern engineering design optimization often relies on computer simulations to evaluate candidate designs, a setup which results in expensive black-box optimization problems. Such problems introduce unique challenges,... Modern engineering design optimization often relies on computer simulations to evaluate candidate designs, a setup which results in expensive black-box optimization problems. Such problems introduce unique challenges, which has motivated the application of metamodel-assisted computational intelligence algorithms to solve them. Such algorithms combine a computational intelligence optimizer which employs a population of candidate solutions, with a metamodel which is a computationally cheaper approximation of the expensive computer simulation. However, although a variety of metamodels and optimizers have been proposed, the optimal types to employ are problem dependant. Therefore, a priori prescribing the type of metamodel and optimizer to be used may degrade its effectiveness. Leveraging on this issue, this study proposes a new computational intelligence algorithm which autonomously adapts the type of the metamodel and optimizer during the search by selecting the most suitable types out of a family of candidates at each stage. Performance analysis using a set of test functions demonstrates the effectiveness of the proposed algorithm, and highlights the merit of the proposed adaptation approach. 展开更多
关键词 expensive optimization problems computational intelligence adaptive algorithms METAMODELLING model selection.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部