SnO2intermediate layers were coated on the titanium(Ti)substrate by thermal decomposition.Scanning electronmicroscope(SEM)and X-ray diffraction(XRD)results show that uniform SnO2intermediate layers with rutile crystal...SnO2intermediate layers were coated on the titanium(Ti)substrate by thermal decomposition.Scanning electronmicroscope(SEM)and X-ray diffraction(XRD)results show that uniform SnO2intermediate layers with rutile crystal structure weresuccessfully achieved.According to the results of linear sweep voltammetry(LSV),oxygen evolution potential(OEP)of theTi/SnO2/MnO2electrodes decreases with increasing SnO2content,indicating that the electro-catalytic oxidation activity of theelectrode increases.Accelerated service life tests results demonstrate that SnO2intermediate layer can improve the service life of theTi/SnO2/MnO2electrode.As the content of SnO2intermediate layer increases,the cell voltage and the energy consumption decreaseapparently.展开更多
基金Project(51574287) supported by the National Natural Science Foundation of ChinaProject supported by the Collaborative Innovation Center of Manganese-Zinc-Vanadium Industrial Technology
文摘SnO2intermediate layers were coated on the titanium(Ti)substrate by thermal decomposition.Scanning electronmicroscope(SEM)and X-ray diffraction(XRD)results show that uniform SnO2intermediate layers with rutile crystal structure weresuccessfully achieved.According to the results of linear sweep voltammetry(LSV),oxygen evolution potential(OEP)of theTi/SnO2/MnO2electrodes decreases with increasing SnO2content,indicating that the electro-catalytic oxidation activity of theelectrode increases.Accelerated service life tests results demonstrate that SnO2intermediate layer can improve the service life of theTi/SnO2/MnO2electrode.As the content of SnO2intermediate layer increases,the cell voltage and the energy consumption decreaseapparently.