To explore wear mechanism of stainless steel used in nuclear pump, the wear properties and the worn surface characteristics of unlubricated 304L austenitic stainless steel on itself were investigated in air at room te...To explore wear mechanism of stainless steel used in nuclear pump, the wear properties and the worn surface characteristics of unlubricated 304L austenitic stainless steel on itself were investigated in air at room temperature. The experimental results demonstrated that the wear rate of the material decreased with the increase of the wear time. The friction coefficient fluctuated severely when the applied load was 120 N. At 120 N the wear rate was much higher than that of the applied load of 70 N. At 70 N the wear rate did not show much difference from that of 30 N. The wear mechanism was adhesive and abrasive wear under different load at the initial stage of the wear test. Then, the main wear mechanism changed with the wearing time and the applied load.展开更多
The effects of anodizing conditions (electrolyte, current density and temperature) on the friction coefficient and Vickers mierohardness of anodic oxide layers formed on A1 5754 and A1 1050A substrates were investig...The effects of anodizing conditions (electrolyte, current density and temperature) on the friction coefficient and Vickers mierohardness of anodic oxide layers formed on A1 5754 and A1 1050A substrates were investigated. The studied properties were examined using DELTALAB HVS-1000 Vickers mierohardness tester and rotating pin on disc tribometer. It was established that the highest microhardness (〉HV 400) and the lowest friction coefficient (〈0.4) were obtained with the oxalic acid addition of 10 g/L at high current density of 3 A/dm2 and low temperature of 5 ~C. The presence of oxidized Mg through the anodic oxide layer formed on A1 5754 was examined using glow-discharge optical emission spectroscopy (GDOES). The MgO was found to act negatively on the mechanical property of the layer. Finally, the scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy (AFM) were used to characterize the anodic layer before and after friction tests. It is found that the wear mechanism is related to many aspects of the initial morphology, chemical composition of the layer (C, S and Mg), porosity and internal stress.展开更多
基金Funded by the National Basic Research Program of China(No.2009CB724305)the Program for New Century Excellent Talents in University(No.NCET-10-0278)
文摘To explore wear mechanism of stainless steel used in nuclear pump, the wear properties and the worn surface characteristics of unlubricated 304L austenitic stainless steel on itself were investigated in air at room temperature. The experimental results demonstrated that the wear rate of the material decreased with the increase of the wear time. The friction coefficient fluctuated severely when the applied load was 120 N. At 120 N the wear rate was much higher than that of the applied load of 70 N. At 70 N the wear rate did not show much difference from that of 30 N. The wear mechanism was adhesive and abrasive wear under different load at the initial stage of the wear test. Then, the main wear mechanism changed with the wearing time and the applied load.
基金supported by the Ministry of Higher Education and Scientific Research,Tunisia
文摘The effects of anodizing conditions (electrolyte, current density and temperature) on the friction coefficient and Vickers mierohardness of anodic oxide layers formed on A1 5754 and A1 1050A substrates were investigated. The studied properties were examined using DELTALAB HVS-1000 Vickers mierohardness tester and rotating pin on disc tribometer. It was established that the highest microhardness (〉HV 400) and the lowest friction coefficient (〈0.4) were obtained with the oxalic acid addition of 10 g/L at high current density of 3 A/dm2 and low temperature of 5 ~C. The presence of oxidized Mg through the anodic oxide layer formed on A1 5754 was examined using glow-discharge optical emission spectroscopy (GDOES). The MgO was found to act negatively on the mechanical property of the layer. Finally, the scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy (AFM) were used to characterize the anodic layer before and after friction tests. It is found that the wear mechanism is related to many aspects of the initial morphology, chemical composition of the layer (C, S and Mg), porosity and internal stress.