期刊文献+
共找到1,986篇文章
< 1 2 100 >
每页显示 20 50 100
An improved method for fluorescence analysis of dissolved organic matter in cave drip water 被引量:1
1
作者 Xiuli LI Chaoyong HU Jin LIAO Liangliang BAO Qixi MAO 《Frontiers of Earth Science》 SCIE CAS CSCD 2014年第4期595-598,共4页
An improved synchronous fluorimetric method for the determination of dissolved organic matter in cave drip water, by adding ascorbic acid, is described. The method is based on the redox reaction between ascorbic acid ... An improved synchronous fluorimetric method for the determination of dissolved organic matter in cave drip water, by adding ascorbic acid, is described. The method is based on the redox reaction between ascorbic acid and the electron-withdrawing constituents in dissolved organic matter. The results show that adding ascorbic acid can quench the minor peaks, at 200-300 nm, but does not affect the intensity of the main peaks at 300-500nm. In addition, adding ascorbic acid can maintain relatively high and constant fuorescence intensity over a wide pH range (9-4). 展开更多
关键词 drip water synchronous fluorescence spectro-scopy ascorbic acid PH
原文传递
Oxygen and carbon isotopic characteristics of rainwater,drip water and present speleothems in a cave in Guilin area,and their environmental meanings 被引量:31
2
作者 李彬 袁道先 +2 位作者 覃嘉铭 林玉石 张美良 《Science China Earth Sciences》 SCIE EI CAS 2000年第3期277-285,共9页
The studies of the oxgen and carbon isotopes of the rainwater in Guilin area, the drip water and the present carbonate deposit in Panlong cave of Guilin show that: (i) as to the general characteristics of the oxygen i... The studies of the oxgen and carbon isotopes of the rainwater in Guilin area, the drip water and the present carbonate deposit in Panlong cave of Guilin show that: (i) as to the general characteristics of the oxygen isotopes of the rainwater within a year and between years, the δ18O values decrease with an increase of air temperature and the rainfall, and the correlation between δ18O values and the mean monthly air temperature is much better than that between δ18O values and the rainfall, and the δ18O values of the rainwater during the summer monsoon are much smaller than those during winter monsoon; (ii) δ18O values of the drip water have a quite good correlation with the δ18O values of the rainwater in the same period; (iii) when the conditions are appropriate, δ13C can be used as an environmental proxy, that is, the smaller δ13C of speleothems is, the larger the proportion of C3 plants is and the more plentiful the rainfall is. On the contrary, C4plants may be prevailing or the environment may be a stony desert caused by climate changes or human activity. 展开更多
关键词 RAINwater CAVE drip water PRESENT speleothem OXYGEN and CARBON isotopes environmental meanings.
原文传递
Significance and dynamics of drip water responding to rainfall in four caves of Guizhou, China 被引量:19
3
作者 ZHOUYunchao WANGShijie XIEXingneng LUOWeijun LITingyu 《Chinese Science Bulletin》 SCIE EI CAS 2005年第2期154-161,共8页
sources of cave drip water, time scales of drip water re- sponding to precipitation, and processes of water dynamics in four caves of Pearl watershed in Guizhou, China (Liang- feng cave in Libo, Qixing cave in Duyun, ... sources of cave drip water, time scales of drip water re- sponding to precipitation, and processes of water dynamics in four caves of Pearl watershed in Guizhou, China (Liang- feng cave in Libo, Qixing cave in Duyun, Jiangjun cave in Anshun and Xiniu cave in Zhenning). Because of the variety of karst cave surroundings, interconnections of water trans- porting ways, water dynamics processes etc., time scales of drip-water in four caves responding to rainfall is 0—40 d. According to the characteristics of water transport in cave roof, pathways of water movement, types of water head etc., drip water of four caves can be divided into five hydrody- namics types. The differences of time scales, and ways of water-soil and water-rock interaction during water trans- porting in cave roof make it difficult to correctly measure speleothem record and trace material sources. In addition, there exist great differences in water dynamic conditions among the four caves. So the interpretation of the paleoenvi- ronment records of speleothem must be supported by the understanding of hydrodynamics conditions of different drip sites. Based on the data got from drip sites in four caves, drip conductivity accords with precipitation, which indicates that element contents in speleothem formed by drip water record the change of karst paleoenvironment. But results of multi-points study are needed to guarantee the correctness of interpretation. 展开更多
关键词 中国 贵州 降雨量 喀斯特洞穴 环境暗示 水动力学
原文传递
Transmission of oxygen isotope signals of precipitation-soil water-drip water and its implications in Liangfeng Cave of Guizhou,China 被引量:12
4
作者 LUO WeiJun WANG ShiJie 《Chinese Science Bulletin》 SCIE EI CAS 2008年第21期3364-3370,共7页
According to systemically monitoring results of oxygen(hydrogen) isotope compositions of precipita-tion,soil waters,soil CO2,cave drip waters and their corresponding speleothems in Liangfeng Cave(LFC) in Guizhou Provi... According to systemically monitoring results of oxygen(hydrogen) isotope compositions of precipita-tion,soil waters,soil CO2,cave drip waters and their corresponding speleothems in Liangfeng Cave(LFC) in Guizhou Province,Southwest China,it is found that local precipitation is the main source of soil waters and drip waters,and that the amplitudes of those δ 18O values of three waters(precipitation,soil water and drip water) decrease in turn in the observed year,which are 0‰ to -10‰, -2‰ to -9‰ and -6‰ to -8‰,respectively.Moreover,the δ 18O values for three waters show a roughly simultaneous variation,namely,that those values are lighter in the rainy seasons,weightier in the dry seasons,and that the average δ 18O value of drip waters is about 0.3‰ weightier than that of precipitation,which is modified by surface evaporation processes.We also find that oxygen isotope equilibrium is reached or neared in the formation processes of speleothems in LFC system,and that it is feasible to reconstruct paleotemperature and paleoprecipitation by using δ 18O values of speleothems.However,it should be noted that surface evaporation would affect the oxygen isotope values in the study area. 展开更多
关键词 贵州 氧化同位素 洞穴堆积物 古代气候
原文传递
Effects of Irrigation Water Quality and Drip Tape Arrangement on Soil Salinity,Soil Moisture Distribution,and Cotton Yield (Gossypium hirsutum L.) Under Mulched Drip Irrigation in Xinjiang,China 被引量:24
5
作者 LIU Mei-xian YANG Jing-song +2 位作者 LI Xiao-ming YU Mei WANG Jin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第3期502-511,共10页
More and more attention is being focused on saline water utilization in irrigation due to the shortage of fresh water to agriculture in many regions. For purpose of reducing the risks of using of saline water for irri... More and more attention is being focused on saline water utilization in irrigation due to the shortage of fresh water to agriculture in many regions. For purpose of reducing the risks of using of saline water for irrigation, the mechanism of soil moisture and salinity distribution and transport should be well understood for developing optimum management strategies. In this paper, field experiments were carried out at Junggar Basin, China, to study the effects of drip irrigation water quality and drip tape arrangement on distribution of soil salinity and soil moisture. Six treatments were designed, including two drip tape arrangement modes and three irrigation water concentration levels (0.24, 4.68, and 7.42 dS m^-l). Results showed that, soil moisture content (SMC) directly beneath the drip tape in all treatments kept a relatively high value about 18% before boll opening stage; the SMC in the narrow strip in single tape arrangement (Ms) plot was obviously lower than that in the double tapes arrangement (Md) plot, indicating that less sufficient water was supplied under the same condition of irrigation depth, but there was no significant reduction in yield. Mulching had not significant influence on salt accumulation but the drip tape arrangement, under the same condition of irrigation water depth and quality, compared with Md, Ms reduced salt accumulation in root zone and brought about relatively high cotton yield. 展开更多
关键词 COTTON drip tape arrangement mulched drip irrigation water quality
在线阅读 下载PDF
Three-dimensional fluorescence spectral characteristics of dissolved organic carbon in cave drip waters and their responses to environment changes: Four cave systems as an example in Guizhou Province, China 被引量:5
6
作者 XIE XingNeng WANG ShiJie +1 位作者 ZHOU YunChao LUO WeiJun 《Chinese Science Bulletin》 SCIE EI CAS 2008年第6期884-889,共6页
Understanding the responses of fluorescence spectral characteristics of cave drip waters to modern environment and climate changes is key to the reconstructions of environmental and climatic changes using fluorescence... Understanding the responses of fluorescence spectral characteristics of cave drip waters to modern environment and climate changes is key to the reconstructions of environmental and climatic changes using fluorescence spectral characteristics of speleothems. The fluorescence spectral characteristics of dissolved organic carbon (DOC) in four active cave systems were analyzed with a three-dimensional (3D) fluorescence spectral analysis method. We found that the fluorescence types of DOC were mainly of fulvic-like and protein-like fluorescences, both in soil waters and cave drip waters. The intensity of fulvic-like fluorescence was positively correlated with the concentrations of DOC, suggesting that the DOC of cave drip waters was derived from the overlying soil layer of a cave system. Compared with the other cave systems, the variation range of the excitation and emission wavelengths for fulvic-like fluorescence of cave drip waters in Liangfeng cave system that had forest vegetation was smaller and the excitation wavelength was longer, while its fluorescence intensity varied significantly. By contrast, the excitation and emission wavelengths and fluorescence intensity for that in Jiangjun cave system that had a scrub and tussock vegetation showed the most significant variation, while its excitation wavelength was shorter. This implies that the variation of vegetation overlying a cave appears to be a factor affecting the fluorescence spectral characteristics of cave drip waters. 展开更多
关键词 中国 贵州 洞穴水 三维荧光光谱 土层类型 植物类型
原文传递
The Potential Contribution of Subsurface Drip Irrigation to Water-Saving Agriculture in the Western USA 被引量:19
7
作者 T L Thompson PANG Huan-cheng LI Yu-yi 《Agricultural Sciences in China》 CSCD 2009年第7期850-854,共5页
Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurfa... Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurface drip irrigation (SDI) provides a potential solution to the problem of low water use efficiency. Other advantages of SDI include reduced NO3 leaching compared to surface irrigation, higher yields, a dry soil surface for improved weed control, better crop health, and harvest flexibility for many specialty crops. The use of SDI also allows the virtual elimination of crop water stress, the ability to apply water and nutrients to the most active part of the root zone, protection of drip lines from damage due to cultivation and tillage, and the ability to irrigate with wastewater while preventing human contact. Yet, SDI is used only on a minority of cropland in the arid western USA. Reasons for the limited adoption of SDI include the high initial capital investment required, the need for intensive management, and the urbanization that is rapidly consuming farmland in parts of the western USA. The contributions of SDI to increasing yield, quality, and water use efficiency have been demonstrated. The two major barriers to SDI sustainability in arid regions are economics (i.e., paying for the SDI system), including the high cost of installation; and salt accumulation, which requires periodic leaching, specialized tillage methods, or transplanting of seedlings rather than direct-seeding. We will review advances in irrigation management with SDI. 展开更多
关键词 subsurface drip irrigation (SDI) water-saving agriculture western USA
在线阅读 下载PDF
Effects of biochar on water movement characteristics in sandy soil under drip irrigation 被引量:11
8
作者 PU Shenghai LI Guangyong +5 位作者 TANG Guangmu ZHANG Yunshu XU Wanli LIPan FENG Guangping DING Feng 《Journal of Arid Land》 SCIE CSCD 2019年第5期740-753,共14页
Biochar addition can improve the physical and hydraulic characteristics of sandy soil.This study investigated the effects of biochar on water holding capacity and water movement in sandy soil under drip irrigation.By ... Biochar addition can improve the physical and hydraulic characteristics of sandy soil.This study investigated the effects of biochar on water holding capacity and water movement in sandy soil under drip irrigation.By indoor simulation experiments,the effects of biochar application at five levels(0%,1%,2%,4%and 6%)on the soil water retention curve,infiltration characteristics of drip irrigation and water distribution were tested and analyzed.The results showed that biochar addition rate was positively correlated with water holding capacity of sandy soil and soil available water.Within the same infiltration time,with an increasing amount of added biochar,the diffusion distance of the horizontal wetting front(HWF)tended to decrease,while the infiltration distance of vertical wetting front(VWF)initially declined and then rose.The features of wetted bodies changed from"broad-shallow"to"narrow-deep"type.The relationship between the transport distances of HWF and VWF and the infiltration time was described by a power function.At the same distance from the point source,the larger the amount of added biochar,the higher the soil water content.Biochar had a great influence on the water content of the layer with biochar(0–200 mm)and had some effects at 200–250 mm without biochar;but it had less influence on the soil water content deeper than 250 mm.For the application rate of biochar of 4%,most water was retained within 0–250 mm soil layer.However,when biochar application amount was high(6%),it would be helpful for water infiltration.During the improvement of sandy soil,biochar application rate of 4%in the plow layer had the best effect. 展开更多
关键词 BIOCHAR SANDY soil water HOLDING capacity water movement drip IRRIGATION
在线阅读 下载PDF
Response of yield,quality,water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China 被引量:27
9
作者 DU Ya-dan CAO Hong-xia +2 位作者 LIU Shi-quan GU Xiao-bo CAO Yu-xin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1153-1161,共9页
The objective of this study was to investigate the effects of applying different amounts of water and nitrogen on yield, fruit quality, water use efficiency (WUE), irrigation water use efficiency (IWUE) and nitrog... The objective of this study was to investigate the effects of applying different amounts of water and nitrogen on yield, fruit quality, water use efficiency (WUE), irrigation water use efficiency (IWUE) and nitrogen use efficiency (NUE) of drip-irrigated greenhouse tomatoes in northwestern China. The plants were irrigated every seven days at various proportions of 20-cm pan evaporation (Ep). The experiment consisted of three irrigation levels (11, 50% Ep; 12, 75% Ep; and 13, 100% Ep) and three N application levels (N1, 150 kg N ha^-1; N2, 250 kg N ha^-1;and N3, 350 kg N ha^-1). Tomato yield increased with the amount of applied irrigation water in 12 and then decreased in 13. WUE and IWUE were the highest in Ii. WUE was 16.5% lower in 12 than that in I1, but yield was 26.6% higher in 12 than that in I1. Tomato yield, WUE, and IWUE were significantly higher in N2 than that in N1 and N3. NUIE decreased with increasing N levels but NUE increased with increase the amount of water applied. Increasing both water and N levels increased the foliar net photosynthetic rate. I1 and 12 treatments significantly increased the contents of total soluble solids (TSS), vitamin C (VC), lycopene, soluble sugars (SS), and organic acids (OA) and the sugar:acid ratio in the fruit and decreased the nitrate content. TSS, VC, lycopene, and SS contents were the highest in N2. The harvest index (HI) was the highest in 12N2. 12N2 provided the optimal combination of tomato yield, fruit quality, and WUE. The irrigation and fertilisation regime of 75% Ep and 250 kg N ha^-1 was the best strategy of water and N management for the production of drip-irrigated greenhouse tomato. 展开更多
关键词 TOMATO drip irrigation YIELD fruit quality water use efficiency (WUE)
在线阅读 下载PDF
Fruit Yield and Quality, and Irrigation Water Use Efficiency of Summer Squash Drip-Irrigated with Different Irrigation Quantities in a Semi-Arid Agricultural Area 被引量:5
10
作者 Yasemin Kuslu Ustun Sahin +1 位作者 Fatih M Kiziloglu Selcuk Memis 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第11期2518-2526,共9页
Fruit yield, yield components, fruit mineral content, total phenolic content, antioxidant activity and irrigation water use efifciency (IWUE) of summer squash responses to different irrigation quantities were evalua... Fruit yield, yield components, fruit mineral content, total phenolic content, antioxidant activity and irrigation water use efifciency (IWUE) of summer squash responses to different irrigation quantities were evaluated with a ifeld study. Irrigations were done when the total evaporated water from a Class A pan was about 30 mm. Different irrigation quantities were adjusted using three different plant-pan coefifcients (Kcp, 100% (Kcp1), 85% (Kcp2) and 70% (Kcp3)). Results indicated that lower irrigation quantities provided statistically lower yield and yield components. The highest seasonal fruit yield (80.0 t ha-1) was determined in the Kcp1 treatment, which applied the highest volume of irrigation water (452.9 mm). The highest early fruit yield, average fruit weight and fruit diameter, length and number per plant were also determined in the Kcp1 treatment, with values of 7.25 t ha-1, 264.1 g, 5.49 cm, 19.95 cm and 10.92, respectively. Although the IWUE value was the highest in the Kcp1 treatment (176.6 kg ha-1 mm-1), it was statistically similar to the value for Kcp3 treatment (157.1 kg ha-1 mm-1). Total phenolic content and antioxidant activity of fruits was higher in the Kcp1 (44.27 μg gallic acid equivalents (GAE) mg-1 fresh sample) and in the Kcp2 (84.75%) treatments, respectively. Major (Na, N, P, K, Ca, Mg and S) and trace (Fe, Cu, Mn, Zn and B) mineral contents of squash fruits were the highest in the Kcp2 treatment, with the exception of P, Ca and Cu. Mineral contents and total phenolic content were signiifcantly affected by irrigation quantities, but antioxidant activity was not affected. It can be concluded that the Kcp1 treatment was the most suitable for achieving higher yield and IWUE. However, the Kcp2 treatment will be the most suitable due to the high fruit quality and relatively high yield in water shortage conditions. 展开更多
关键词 summer squash drip irrigation irrigation water use efifciency total phenolic content antioxidant activity fruit mineral content
在线阅读 下载PDF
Effects of Drip System Uniformity and Irrigation Amount on Water and Salt Distributions in Soil Under Arid Conditions 被引量:5
11
作者 GUAN Hong-jie LI Jiu-sheng LI Yan-feng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第5期924-939,共16页
The dynamics of water and salt in soil were monitored in the 2010 and 2011 growing seasons of cotton to evaluate the salinity risk of soil under drip irrigation in arid environments for different management practices ... The dynamics of water and salt in soil were monitored in the 2010 and 2011 growing seasons of cotton to evaluate the salinity risk of soil under drip irrigation in arid environments for different management practices of drip system uniformity and irrigation amount. In the experiments, three Christiansen uniformity coefficients (CU) of approximately 65, 80, and 95% (referred to as low, medium, and high uniformity, respectively) and three irrigation amounts of 50, 75, and 100% of full irrigation were used. The distribution of the soil water content and bulk electrical conductivity (ECb) was monitored continuously with approximately equally spaced frequency domain reflectometry (FDR) sensors located along a dripline. Gravimetric samples of soil were collected regularly to determine the distribution of soil salinity. A great fluctuation in CU of water content and ECb at 60 cm depth was observed for the low uniformity treatment during the irrigation season, while a relatively stable variation pattern was observed for the high uniformity treatment. The ECb CU was substantially lower than the water content CU and its value was greatly related to the water content CU and the initial ECb CU. The spatial variation of seasonal mean soil water content and seasonal mean soil bulk electrical conductivity showed a high dependence on the variation pattern of emitter discharge rate along a dripline for the low and medium uniformity treatments. A greater irrigation amount produced a significantly lower soil salinity at the end of the irrigation season, while the influence of the system uniformity on the soil salinity was insignificant at a probability level of 0.1. In arid regions, the determination of the target drip irrigation system uniformity should consider the potential salinity risk of soil caused by nonuniform water application as the influence of the system uniformity on the distribution of the soil salinity was progressively strengthened during the growing season of crop. 展开更多
关键词 drip irrigation UNIFORMITY soil water content soil bulk electrical conductivity soil salinity
在线阅读 下载PDF
Effects of Soil Water Content on Cotton Root Growth and Distribution Under Mulched Drip Irrigation 被引量:25
12
作者 HU Xiao-tang, CHEN Hu, WANG Jing, MENG Xiao-bin and CHEN Fu-hong Agricultural College, Shihezi University, Shihezi 832003, P.R.China 《Agricultural Sciences in China》 CSCD 2009年第6期709-716,共8页
The relation between soil water content and the growth of cotton root was studied for the scheme of field water and cotton yield under mulched drip irrigation. Based on the field experiments, three treatments of soil ... The relation between soil water content and the growth of cotton root was studied for the scheme of field water and cotton yield under mulched drip irrigation. Based on the field experiments, three treatments of soil water content were conducted with 90%, 75%θf, and 60%θf (θfis field water capacity). Cotton roots and root-shoot ratio were studied with digging method, and the soil moisture was observed with TDR (time domain reflector), and cotton yield was measured. The results indicated that the growth of cotton root accorded with Logistic growth curve in the three treatments, the cotton root grew quickly and its weight was very high under 75%θf because of the suitable soil water condition, while grew slowly and its weight was lower under 90%θf due to water moisture beyond the suitable condition, and the root weight was in between under 60%θf For the three water treatments, the cotton root weight decreased with soil depth, and decreased more significantly in deeper soil layer with the soil moisture increasing. And the ratio of cotton root weight in 0-30 cm soil layer to the total root weight was the highest under 75%θf. The cotton root system was distributed mainly in the soil of narrow row and wide row mulched with plastic film, and little in the soil outside plastic film. The weight of cotton root was the highest in the soil of narrow row or wide row mulched with plastic film under 75%θf. Root-shoot ratio decreased with the soil moisture increasing. The soil water content affected cotton yields, and cotton yield was the highest under 75%θf. The higher soil moisture level is unfavorable to the growth of cotton root system and yield of cotton under mulched drip irrigation. 展开更多
关键词 mulched drip irrigation cotton (Gossypium hirsutum L.) soil water content ROOT
在线阅读 下载PDF
Cotton's Water Demand and Water-Saving Benefits under Drip Irrigation with Plastic Film Mulch 被引量:2
13
作者 Yingyu YAN Juyan LI 《Asian Agricultural Research》 2016年第4期32-36,41,共6页
The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Fi... The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Field Observation and Research Station for Oasis Farmland Ecosystem in Aksu of Xinjiang in 2008.Water balance method was adopted to study the water requirement and water consumption law of cotton under mulched drip irrigation in Tarim Irrigated Area.Statistical analysis of experimental data of irrigation indicates that the relationship between yield of cotton and irrigation presents a quadratic parabola.We fit the model of cotton water production on the basis of field experimental data of cotton.And the analysis on water saving benefit of cotton under mulched drip irrigation was done.Results indicate that water requirements for the irrigated cotton are 543 mm in Tarim Irrigated Area.The water requirements of seedling stage is 252 mm,budding stage is 186 mm,bolling stage is 316 mm and wadding stage is 139 mm.the irrigation amount determines the spatial distribution of soil moisture and water consumption during cotton life cycle.However,water consumption at different growth stages was inconsistent with irrigation.Quantitatively,the water consumed by cotton decreases upon the increase of irrigation amount.From the perspective of water saving,the maximal water use efficiency can reach 3 091 m3/ha.But the highest cotton yield needs 3464 m3/ha irrigation water.In summary,compared to the conventional drip irrigation,a number of benefits in water saving and yield increase were observed when using plastic mulch.At the same amount of irrigation,the cotton yield with plastic mulch was 30.2% higher than conventional approaches,and the efficiency of water utilization increased by30.2%.While at the same yield level,29.3% water was saved by using plastic mulch,and the efficiency increased by 41.5%. 展开更多
关键词 Cotton’s water demand Cotton’s water consumption water-SAVING BENEFITS drip irrigation with PLASTIC film MULCH
在线阅读 下载PDF
Water Dynamics under Drip Irrigation to Proper Manage Water Use in Arid Zone
14
作者 Siguibnoma Kevin Landry Ouédraogo Marcel Bawindsom Kébré Francois Zougmoré 《Journal of Agricultural Chemistry and Environment》 2021年第1期57-68,共12页
The water resources reduction due to climate changes and also population increase, have contributed to increas<span style="font-family:Verdana;">ing</span><span style="font-family:Verdana... The water resources reduction due to climate changes and also population increase, have contributed to increas<span style="font-family:Verdana;">ing</span><span style="font-family:Verdana;"> the constraint on water disponibility and accessibility. In the agricultural field, we need moderate soil and water resources management. This work aims to simulate water dynamics in soil under drip irrigation system in arid regions to better manage irrigation water. Simulations are done with soil physical properties of Burkina Faso. We assess maize plant water requirements for the whole growing season. With Hydrus 2D, we simulate water supply in the soil column. We assign atmospheric conditions on the top of the domain, zero flux of water on the lateral sides, and free drainage on the bottom boundary domain. We perform many irrigation events to analyze wetting pattern distribution around the em</span><span style="font-family:Verdana;">i</span><span style="font-family:Verdana;">tter</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> which allowed us to contain the amount of irrigation water applied, only around the area dominated by roots</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> and then reduce water losses that roots cannot uptake. According to the different growing stages of the maize crop, we choose proper irrigation duration and frequency, and suggest irrigation schedule for the whole growing season.</span> 展开更多
关键词 drip Irrigation water Dynamics Hydrus (2D/3D) water
在线阅读 下载PDF
Essentials of Drip Irrigation System for Saving Water and Nutrients to Plant Roots: As a Guide for Growers
15
作者 Tawheed Mohammed Elheesin Shareef Zhongming Ma Baowei Zhao 《Journal of Water Resource and Protection》 2019年第9期1129-1145,共17页
Many regions around the world are characterized by limited water resources, where the average annual per capita renewable water is about 1000 -1700 cubic meters. For instance, in china the problems of water supply are... Many regions around the world are characterized by limited water resources, where the average annual per capita renewable water is about 1000 -1700 cubic meters. For instance, in china the problems of water supply are widely known globally. Though, China is facing main problem which is how to distribute water, instead of water shortage in itself. Therefore, restricted resources of water are increasingly stressed in the future by many factors such as excessive clouds of water, pollution and climate change. On the other hand, most studies have been indicated that the agricultural sector is one of the sectors that will face a large water deficit in the future due to the high demand for food, competition for water resources, drought and the high consumption of water due to the acquisition of traditional surface irrigation techniques. In spite of introduce modern irrigation methods such as drip irrigation in agriculture by developing irrigation methods and eliminating old traditional irrigation methods, however, its efficiency is related to the qualifying of farms and users of irrigation water, where they are the main users of irrigation water in water resources management. The considerable challenge facing agriculture is to raise irrigation efficiency depending on water-saving irrigation systems to provide water resources for crops. Therefore, the purpose of this study was to provide farmers with important points about using drip irrigation technology, to raise their technical level in using irrigation water, through their guidance to the best techniques and to avoid some common mistakes in design, utilization, management and maintenance of drip irrigation system. 展开更多
关键词 drip IRRIGATION IRRIGATION Efficiency water Saving EMITTERS water Requirements
在线阅读 下载PDF
Energy and water saving by using modified closed circuits of drip irrigation system 被引量:1
16
作者 Hani Abdel-Ghani Mansour Mohamed Yousif Tayel +1 位作者 David A. Lightfoot Abdel-Ghany Mohamed El-Gindy 《Agricultural Sciences》 2010年第3期154-177,共24页
The aim of this research was determine the en- ergy and water use efficiencies under the modification of closed circuit drip irrigation systems designs. Field experiments carried out on transgenic maize (GDH, LL3), (Z... The aim of this research was determine the en- ergy and water use efficiencies under the modification of closed circuit drip irrigation systems designs. Field experiments carried out on transgenic maize (GDH, LL3), (Zea Mays crop) under two types of closed circuits: a) One manifold for lateral lines or Closed circuits with One Manifold of Drip Irrigation System (CM1DIS);b) Closed circuits with Two Manifolds of Drip Irrigation System (CM2DIS), and c) Traditional Drip Irrigation System (TDIS) as a control. Three lengths of lateral lines were used, 40, 60, and 80 meters. PE tubes lateral lines: 16 mm diameter;30 cm emitters distance, and GR built-in emitters 4 lph when operating pressure 1 bar under Two levels slope conditions 0% and 2%. Experiments were conducted at the Agric. Res. Fields., Soil and Plant & Agric. System Dept., Agric. Faculty, Southern Illinois University, Car- bondale (SIUC), Illinois, USA. Under 0% level slope when using CM2DIS the increase percent of Energy Use Efficiency (EUE) were 32.27, 33.21, and 34.37% whereas with CM1DIS were 30.84, 28.96, and 27.45% On the other hand when level slope 2% were with CM2DIS 31.57, 33.14, and 34.25 while CM1DIS were 30.15, 28.98, and 27.53 under lateral lengths 40, 60 and 80 m respectively relative to TDIS. Water Use Efficiency (WUE) when level slope 0% under CM2DIS were 1.67, 1.18, and 0.87 kg/m3 compared to 1.65, 1.16, and 0.86 kg/m3 with CM1DIS and 1.35, 1.04, and 0.75 kg/m3 with TDIS whereas with level slope 2% when using CM2DIS were 1.76, 1.29, and 0.84 kg/m3 compared to 1.77, 1.30, and 0.87 kg/m3 with CM1DIS and 1.41, 1.12, and 0.76 kg/m3 (for lateral lengths 40, 60, and 80 meters respectively). Water saving percent varied widely within individual lateral lengths and between circuit types relative to TDIS. Under slope 0% level CM2DIS water saving percent values were 19.26, 12.48, and 14.03%;with CM1DIS they were 18.51, 10.50, and 12.78%;and under slope level 2% with CM2DIS they were 19.93, 13.26, and 10.38% and CM1DIS were 20.49, 13.96, and 13.23% (for lateral lengths 40, 60, 80 meters respectively). The energy use efficiency and water saving were observed under CM2DIS and CM1DIS when using the shortest lateral length 40 meters, then lateral length 60 meters, while the lowest value was observed when using lateral length 80 meters this result depends on the physical and hydraulic characteristics of the emitters, lateral line uniformity, and friction losses. CM2DIS was more energy use efficiency, EUE, water saving, and WUE than either CM1DIS or TDIS. 展开更多
关键词 drip IRRIGATION CLOSED CIRCUITS Energy USE EFFICIENCY water USE EFFICIENCY
在线阅读 下载PDF
Water-saving Potential in aeolian sand soil under straight tube and surface drip irrigation in Taklimakan Desert in Northwest China 被引量:6
17
作者 ZhongWen Bao HuLin Du XiaoJun Jin 《Research in Cold and Arid Regions》 2011年第3期243-251,共9页
Evaporation loss from the saturated soil beneath drip irrigation emitters highly influences the irrigation efficiency of drip krigation (D1]. Subsurface drip irrigation (SDI) is one good approach to curb this ineff... Evaporation loss from the saturated soil beneath drip irrigation emitters highly influences the irrigation efficiency of drip krigation (D1]. Subsurface drip irrigation (SDI) is one good approach to curb this inefficiency, but in a new irrigation method, straight tube irrigation (STI), the irrigation tubes do not need to be buried and thus STI is recommended to increase the irrigation efficiency under normal surface-applied DI. STI consists of only connectors and water-transference tubes that can directly transfer irrigation water from the lateral emitters in the drip line to the root zone of plants. Five-month field experiments were carried out in aeolian sand soil in the forest-belts of the Taklimakan Desert, which have poor water storage capacity, to compare the potential water saving between STI and DI. The preliminary results showed that, compared with DI, STI (1) improved the soil water content in soil depths from 40 to 100 cm under the soil surface; (2) achieved the same irrigation effects in relatively shorter irrigation durations; (3) had very little water loss due to deep seepage; and (4) formed a layer of dry sand about 10 to 30 cm thick immediately below the soil surface, which lessened evaporation loss of soil water beneath the emitters on the soil surface. This demonstrates that STI can maximize the water-saving potential of DI through the reduction of wetted soil perimeters on the soil surface. This is valuable information for water-saving engineering applications and projects with STI in arid and semiarid regions. 展开更多
关键词 potential water saving evaporation loss straight tube irrigation drip irrigation EFFICIENCY Taklimakan Desert
在线阅读 下载PDF
The Effect of Water Saving and Production Increment by Drip Irrigation Schedules 被引量:2
18
作者 QIUYuan-feng LUOJin-yao MENGGe 《Wuhan University Journal of Natural Sciences》 CAS 2004年第4期493-497,共5页
Drip irrigation system can achieve high uniformity. When the system is designed for uniformity coefficient equal or more than 70%, the water application in the field can be expressed as a normal distribution and furth... Drip irrigation system can achieve high uniformity. When the system is designed for uniformity coefficient equal or more than 70%, the water application in the field can be expressed as a normal distribution and further simplified to a linear distribution. This paper will describe the irrigation scheduling parameters, percent of deficit, application efficiency and coefficient of variation by simple mathematical model. Using this effective model and the irrigation application, the total yield affected by the total water application for different uniformity of irrigation application can be determined. More over, this paper uses the cost of water, price of yield, uniformity of the drip irrigation system, crop response to water application and environmental concerns of pollution and contamination to determine the optimal irrigation schedule. A case study shows that the optimal irrigation schedule can achieve the effect of water saving and production increment compared with the conventional irrigation schedule in which the whole field is fully irrigated. Key words drip irrigation - linear cumulative frequency curve - optimal irrigation schedule - water saving - production increment CLC number TV 139.1 Foundation item: Supported by the National Natural Science Foundation of China (59379407)Biography: QIU Yuan-feng (1973-), male, Ph. D, research direction: water saving irrigation theory and techniques. 展开更多
关键词 drip irrigation linear cumulative frequency curve optimal irrigation schedule water saving production increment
在线阅读 下载PDF
Comparison of Two Dripper Line Designs to Assess Cotton Yield,Water Use,and Net Return in Northwest China
19
作者 WANG Ruo-shui WAN Shu-qin +1 位作者 KANG Yue-hu LIU Shi-ping 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第11期1924-1932,共9页
This study aimed to compare the effects of two types of drip irrigation line design on cotton yield, water use, and net returns. The experiments were carried out in the arid region of Xinjiang, Northwest China, during... This study aimed to compare the effects of two types of drip irrigation line design on cotton yield, water use, and net returns. The experiments were carried out in the arid region of Xinjiang, Northwest China, during 2009-2010 growing years. The two types of lateral placement are commonly used by the local farmers in the area: double lines (two laterals controlling four rows) and single line designs (one lateral controlling four rows). The results indicated that less irrigation water was applied by single line compared with double lines design. This implies that more irrigation water could be saved using single line, by reducing the water consumption of cotton. The emergence rates for double lines were 2 and 6% higher than those for single line design in 2009 and 2010. The seed cotton yields for double lines design were 5.76 and 6.41 Mg ha-1 which were 13 and 9% higher than for single line design in 2009 and 2010, respectively. Single lines could however lower the investment cost compared to double lines, which produced 10 and 7% more net income in 2009 and 2010, respectively. By contrast, the double lines was more profitable and suitable for the farmers in Northwest China than single line design. 展开更多
关键词 drip irrigation lateral layout economic benefit water saving water use efficiency (WUE)
在线阅读 下载PDF
Water Dynamics Combined with a Supply of NPK Solutes and Urea in a 3-Layer Soil Profile under Drip Irrigation
20
作者 Siguibnoma Kévin Landry Ouédraogo Marcel Bawindsom Kébré François Zougmoré 《Agricultural Sciences》 2021年第11期1321-1341,共21页
The intensive and inappropriate use of water, fertilizers and phytosanitary products is sources of water and soil pollution. It is thus necessary to improve the management of irrigation water in order to optimize its ... The intensive and inappropriate use of water, fertilizers and phytosanitary products is sources of water and soil pollution. It is thus necessary to improve the management of irrigation water in order to optimize its use and productivity, especially in regions where water resources are becoming increasingly scarce. The water flow and non-reactive solutes’ transport simulation under drip irrigation were carried out in a 3-layered soil profile distributed from top to bottom<em> i.e</em>., sandy, sandy-silty, silty-sandy-clay. The aim of this study was thus, to provide a good practice of water management associated with solutes’ application, in order to retain as much solute as possible in the root zone, which will increase the residence time of the solutes. Three treatments of water flux corresponding to 100% <em>ET</em><sub><em>c</em></sub>, 75% <em>ET</em><sub><em>c</em></sub>, 50% <em>ET</em><sub><em>c</em></sub>, combined with 100 mmol /L/ m<sup>2</sup> of NPK and 246 mmol/L/m<sup>2</sup> of urea applicable in two doses, were carried out over a period of 110 days corresponding to the duration of the cropping cycle for the intermediate variety of maize. The 100%<em> ET</em><sub><em>c</em></sub> and 75% <em>ET</em><sub><em>c</em></sub> treatments cause more loss of water and solutes, because of the sandy texture of the soil. However, a 50% <em>ET</em><sub><em>c</em></sub> water flux would reduce more water loss through drainage, and solutes’ loss due to leaching beyond the root zone, which would increase the residence time of solutes in the soil profile. Application tests of the NPK solute on different days before the 15<sup>th</sup> day after sowing were also carried out according to the technical itinerary for maize production in Burkina Faso, in order to find a favorable day for application of the solute. For the different dates of solute’s application, there was more loss of the solute as we approach the 15<sup>th</sup> day after sowing. To limit this loss and increase the residence time of the NPK solute, one could apply the solute without first supplying water, the day before and the day after the date of solute’ injection. Or, one could amend the soil with organic matter to improve its retention capacity of water, and the solutes’ residence time in the soil. 展开更多
关键词 drip Irrigation Hydrus 1D Solute and water Management Residence Time
在线阅读 下载PDF
上一页 1 2 100 下一页 到第
使用帮助 返回顶部