To manage potential microbial risks and meet increasingly strict drinking water health standards,UV treatment has attracted increasing attention for use in drinking water systems in China.However,the effects of UV tre...To manage potential microbial risks and meet increasingly strict drinking water health standards,UV treatment has attracted increasing attention for use in drinking water systems in China.However,the effects of UV treatment on microbial control and disinfection byproducts(DBPs)formation in real municipal drinking water systems are poorly understood.Here,we collected water samples from three real drinking water systems in Beijing and Tianjin to investigate the impacts of UV treatment on microbial control and DBP formation.We employed heterotrophic plate count(HPC),flow cytometry(FCM),quantitative PCR analysis,and high-throughput sequencing to measure microorganisms in the samples.Different trends were observed between HPC and total cell count(measured by FCM),indicating that a single indicator could not reflect the real degree of biological re-growth in drinking water distribution systems(DWDSs).A significant increase in the 16S rRNA gene concentration was observed when the UV system was stopped.Besides,the bacterial community composition was similar at the phylum level but differed markedly at the genera level among the three DWDSs.Some chlorine-resistant bacteria,including potential pathogens(e.g.,Acinetobacter)showed a high relative abundance when the UV system was turned off.It can be concluded that UV treatment can mitigate microbial re-growth to some extent.Finally,UV treatment had a limited influence on the formation of DBPs,including trihalomethanes,haloacetic acids,and nitrogenated DBPs.The findings of this study may help to understand the performance of UV treatment in real drinking water systems.展开更多
A field study on the estimation and analysis of iron stability in drinking water distribution system was carried out in a city of China. The stability of iron ion was estimated by pC-pH figure. It was found that iron ...A field study on the estimation and analysis of iron stability in drinking water distribution system was carried out in a city of China. The stability of iron ion was estimated by pC-pH figure. It was found that iron ion was unstable, with a high Fe (OH)3 precipitation tendency and obvious increase in turbidity. The outer layer of the corrosion scale was compact, while the inner core was porous. The main composition of the scale was iron, and the possible compound constitutes of the outer scale were α-FeOH, γ-FeOOH, α-Fe2O3, γ-F2O3, FeCl3, while the inner were Fe3O4, FeCl2, FeCO3. According to the characteristics of the corrosion scale, it was thought that the main reason for iron instability was iron release from corrosion scale. Many factors such as pipe materials, dissolved oxygen and chlorine residual affect iron release. Generally, higher iron release occurred with lower dissolved oxygen or chlorine residual concentration, while lower iron release occurred with higher dissolved oxygen or chlorine residual concentration. The reason was considered that the passivated out layer of scale of ferric oxide was broken down by reductive reaction in a condition of low oxidants concentration, which would result more rapid corrosion of the nine and red water phenomenon.展开更多
Demand response(DR) is gaining more and more importance in the architecture of power systems in a context of flexible loads and high share of intermittent generation. Changes in electricity markets regulation in sever...Demand response(DR) is gaining more and more importance in the architecture of power systems in a context of flexible loads and high share of intermittent generation. Changes in electricity markets regulation in several countries have recently enabled an effective integration of DR mechanisms in power systems. Through its flexible components(pumps, tanks), drinking water systems are suitable candidates for energy-efficient DR mechanisms. However, these systems are often managed independently of power system operation for both economic and operational reasons. Indeed, a sufficient level of economic viability and water demands risk management are necessary for water utilities to integrate their flexibilities to power system operation. In this paper,we proposed a mathematical model for optimizing pump schedules in water systems while trading DR blocs in a spot power market during peak times. Uncertainties about water demands were considered in the mathematical model allowing to propose power reductions covering the potential risk of real-time water demand forecasting inaccuracy.Numerical results were discussed on a real water system in France, demonstrating both economic and ecological benefits.展开更多
The effects of O3/Cl2 disinfection on corrosion and the growth of opportunistic pathogens in drinking water distribution systems were studied using annular reactors (ARs). The corrosion process and most probable num...The effects of O3/Cl2 disinfection on corrosion and the growth of opportunistic pathogens in drinking water distribution systems were studied using annular reactors (ARs). The corrosion process and most probable number (MPN) analysis indicated that the higher content of iron-oxidizing bacteria and iron-reducing bacteria in biofilms of the AR treated with O3/Cl2 induced higher Fe304 formation in corrosion scales. These corrosion scales became more stable than the ones that formed in the AR treated with Cl2 alone. O3/Cl2 disinfection inhibited corrosion and iron release efficiently by changing the content of corrosion-related bacteria. Moreover, ozone disinfection inactivated or damaged the opportunistic pathogens due to its strong oxidizing properties. The damaged bacteria resulting from initial ozone treatment were inactivated by the subsequent chlorine disinfection. Compared with the AR treated with Cl2 alone, the opportunistic pathogens M. auium and L. pneumophila were not detectable in effluents of the AR treated with O3/Cl2, and decreased to (4.60 ± 0.14) and (3.09 ± 0.12) loglo (gene copies/g corrosion scales) in biofilms, respectively. The amoeba counts were also lower in the AR treated with O3/Cl2. Therefore, O3/Cl2 disinfection can effectively control opportunistic pathogens in effluents and biofilms of an AR used as a model for a drinking water distribution system.展开更多
Bacterial community structure and iron corrosion were investigated for simulated drinking water distribution systems(DWDSs) composed of annular reactors incorporating three different treatments: ozone, biologically...Bacterial community structure and iron corrosion were investigated for simulated drinking water distribution systems(DWDSs) composed of annular reactors incorporating three different treatments: ozone, biologically activated carbon and chlorination(O3-BAC-Cl2);ozone and chlorination(O3-Cl2); or chlorination alone(Cl2). The lowest corrosion rate and iron release, along with more Fe3O4 formation, occurred in DWDSs with O3-BAC-Cl2 compared to those without a BAC filter. It was verified that O3-BAC influenced the bacterial community greatly to promote the relative advantage of nitrate-reducing bacteria(NRB)in DWDSs. Moreover, the advantaged NRB induced active Fe(III) reduction coupled to Fe(II) oxidation, enhancing Fe3O4 formation and inhibiting corrosion. In addition, O3-BAC pretreatment could reduce high-molecular-weight fractions of dissolved organic carbon effectively to promote iron particle aggregation and inhibit further iron release. Our findings indicated that the O3-BAC treatment, besides removing organic pollutants in water, was also a good approach for controlling cast iron corrosion and iron release in DWDSs.展开更多
Many problems in drinking water distribution systems(DWDSs)are caused by microbe,such as biofilm formation,biocorrosion and opportunistic pathogens growth.More iron release from corrosion scales may induce red water.B...Many problems in drinking water distribution systems(DWDSs)are caused by microbe,such as biofilm formation,biocorrosion and opportunistic pathogens growth.More iron release from corrosion scales may induce red water.Biofilm played great roles on the corrosion.The iron-oxidizing bacteria(IOB)promoted corrosion.However,when iron-reducing bacteria(IRB)and nitrate-reducing bacteria(NRB)became the main bacteria in biofilm,they could induce iron redox cycling in corrosion process.This process enhanced the precipitation of iron oxides and formation of more Fe3 O4 in corrosion scales,which inhibited corrosion effectively.Therefore,the IRB and NRB in the biofilm can reduce iron release and red water occurrence.Moreover,there are many opportunistic pathogens in biofilm of DWDSs.The opportunistic pathogens growth in DWDSs related to the bacterial community changes due to the effects of micropollutants.Micropollutants increased the number of bacteria with antibiotic resistance genes(ARGs).Furthermore,extracellular polymeric substances(EPS)production was increased by the antibiotic resistant bacteria,leading to greater bacterial aggregation and adsorption,increasing the chlorine-resistance capability,which was responsible for the enhancement of the particle-associated opportunistic pathogens in DWDSs.Moreover,O3-biological activated carbon filtration-UV-Cl2 treatment could be used to control the iron release,red water occurrence and opportunistic pathogens growth in DWDSs.展开更多
Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. T...Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants(chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiS eq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination.展开更多
Often as a result ofbiofilm formation, drinking water distribution systems (DWDS) are regularly faced with the problem of microbial contamination. Quorum sensing (QS) systems play a marked role in the regulation o...Often as a result ofbiofilm formation, drinking water distribution systems (DWDS) are regularly faced with the problem of microbial contamination. Quorum sensing (QS) systems play a marked role in the regulation of microbial biofilm formation; thus, inhibition of QS systems may provide a promising approach to biofilm formation control in DWDS. In the present study, 22 bacterial strains were isolated from drinking water-related environments. The following properties of the strains were investigated: bacterial biofilm formation capacity, QS signal molecule N-acyl-L-homoserine lactones (AHLs) production ability, and responses to AHLs and AHL analogs, 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)- furanone (MX) and 2(5H)-furanone. Four AHLs were added to developed biofilms at dosages ranging from 0.1 nmol.L J to 100nmol.L1. As a result, the biofilm growth of more than 1/4 of the isolates, which included AHL producers and non-producers, were significantly promoted. Further, the biofilm biomasses were closely associated with respective AHLs concentrations. These results provided evidence to support the idea that AHLs play a definitive role in biofilm formation in many of the studied bacteria. Meanwhile, two AHLs analogs demon- strated unexpectedly minimal negative effects on biofilm formation. This suggested that, in order to find an applicable QS inhibition approach for biofilm control in DWDS, the testing and analysis of more analogs is needed.展开更多
Delivery of safe and pathogen-free drinking water is crucial to public health.However,there exist challenges to the maintenance of the sterility of drinking water throughout the drinking water distribution systems(D...Delivery of safe and pathogen-free drinking water is crucial to public health.However,there exist challenges to the maintenance of the sterility of drinking water throughout the drinking water distribution systems(DWDS).Microbial growth in DWDS,such as growth of opportunistic pathogenic microorganisms,can lead to severe health problems in consumers(Berry et al.,2006;Brettar and Hofle,2006;Lu et al.,2014;Zhang et al.,2015).展开更多
Iron corrosion in drinking water distribution systems(DWDSs)is the root cause of the deterioration of drinking water quality.Humic acid(HA)is a critical component of dissolved organic matter in drinking water.However,...Iron corrosion in drinking water distribution systems(DWDSs)is the root cause of the deterioration of drinking water quality.Humic acid(HA)is a critical component of dissolved organic matter in drinking water.However,the influences of HA on iron pipe corrosion in DWDSs have not been fully understood,especially the combined effects of corrosive microorganisms and HA with different molecular weights(MWs).This study used bench-scale reactors to explore the impacts of ironoxidizing bacteria(IOB)(Microbacterium oxydans ZT-1,a common iron-oxidizing bacterium)and HA with different MWs on iron pipe corrosion.Before 6 d,loose and porous goethite(α-FeOOH)was the most prevalent compound in the corrosion products.The addition of ZT-1 and HA promoted iron corrosion and release.Under the condition of ZT-1+>100-kDa HA,the maximum values of corrosion rate and total iron concentrations were 0.23 mm/a and 9.94 mg/L,respectively.As corrosion proceeded,magnetite(Fe3O4)formed from FeOOH,and Fe-HA complexes accumulated,resulting in deceleration of iron corrosion.After 54 d,the corrosion rate and total iron concentration had decreased by ZT-1,and HA with different MWs.展开更多
Corrosion in drinking water distribution systems(DWDSs)may lead to pipe failures and water quality deterioration;biocorrosion is the most common type.Chlorine disinfectants are widely used in DWDSs to inhibit microorg...Corrosion in drinking water distribution systems(DWDSs)may lead to pipe failures and water quality deterioration;biocorrosion is the most common type.Chlorine disinfectants are widely used in DWDSs to inhibit microorganism growth,but these also promote electrochemical corrosion to a certain extent.This study explored the independent and synergistic effects of chlorine and microorganisms on pipeline corrosion.Sodium hypochlorite(NaOCl)at different concentrations(0,0.25,0.50,and 0.75 mg/L)and iron-oxidizing bacteria(IOB)were added to the reaction system,and a biofilm annular reactor(BAR)was employed to simulate operational water supply pipes and explain the composite effects.The degree of corrosion became severe with increasing NaOCl dosage.IOB accelerated the corrosion rate at an early stage,after which the reaction system gradually stabilized.When NaOCl and IOB existed together in the BAR,both synergistic and antagonistic effects occurred during the corrosion process.The AOC content increased due to the addition of NaOCl,which is conducive to bacterial regrowth.However,biofilm on cast iron coupons was greatly influenced by the disinfectant,leading to a decrease in microbial biomass over time.More research is needed to provide guidelines for pipeline corrosion control.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51778323,51761125013 and51290284)the National Science and Technology Major Project of China(Nos.2012ZX07404-002,2017ZX07108-003 and 2017ZX07502-003)
文摘To manage potential microbial risks and meet increasingly strict drinking water health standards,UV treatment has attracted increasing attention for use in drinking water systems in China.However,the effects of UV treatment on microbial control and disinfection byproducts(DBPs)formation in real municipal drinking water systems are poorly understood.Here,we collected water samples from three real drinking water systems in Beijing and Tianjin to investigate the impacts of UV treatment on microbial control and DBP formation.We employed heterotrophic plate count(HPC),flow cytometry(FCM),quantitative PCR analysis,and high-throughput sequencing to measure microorganisms in the samples.Different trends were observed between HPC and total cell count(measured by FCM),indicating that a single indicator could not reflect the real degree of biological re-growth in drinking water distribution systems(DWDSs).A significant increase in the 16S rRNA gene concentration was observed when the UV system was stopped.Besides,the bacterial community composition was similar at the phylum level but differed markedly at the genera level among the three DWDSs.Some chlorine-resistant bacteria,including potential pathogens(e.g.,Acinetobacter)showed a high relative abundance when the UV system was turned off.It can be concluded that UV treatment can mitigate microbial re-growth to some extent.Finally,UV treatment had a limited influence on the formation of DBPs,including trihalomethanes,haloacetic acids,and nitrogenated DBPs.The findings of this study may help to understand the performance of UV treatment in real drinking water systems.
文摘A field study on the estimation and analysis of iron stability in drinking water distribution system was carried out in a city of China. The stability of iron ion was estimated by pC-pH figure. It was found that iron ion was unstable, with a high Fe (OH)3 precipitation tendency and obvious increase in turbidity. The outer layer of the corrosion scale was compact, while the inner core was porous. The main composition of the scale was iron, and the possible compound constitutes of the outer scale were α-FeOH, γ-FeOOH, α-Fe2O3, γ-F2O3, FeCl3, while the inner were Fe3O4, FeCl2, FeCO3. According to the characteristics of the corrosion scale, it was thought that the main reason for iron instability was iron release from corrosion scale. Many factors such as pipe materials, dissolved oxygen and chlorine residual affect iron release. Generally, higher iron release occurred with lower dissolved oxygen or chlorine residual concentration, while lower iron release occurred with higher dissolved oxygen or chlorine residual concentration. The reason was considered that the passivated out layer of scale of ferric oxide was broken down by reductive reaction in a condition of low oxidants concentration, which would result more rapid corrosion of the nine and red water phenomenon.
文摘Demand response(DR) is gaining more and more importance in the architecture of power systems in a context of flexible loads and high share of intermittent generation. Changes in electricity markets regulation in several countries have recently enabled an effective integration of DR mechanisms in power systems. Through its flexible components(pumps, tanks), drinking water systems are suitable candidates for energy-efficient DR mechanisms. However, these systems are often managed independently of power system operation for both economic and operational reasons. Indeed, a sufficient level of economic viability and water demands risk management are necessary for water utilities to integrate their flexibilities to power system operation. In this paper,we proposed a mathematical model for optimizing pump schedules in water systems while trading DR blocs in a spot power market during peak times. Uncertainties about water demands were considered in the mathematical model allowing to propose power reductions covering the potential risk of real-time water demand forecasting inaccuracy.Numerical results were discussed on a real water system in France, demonstrating both economic and ecological benefits.
基金supported by the National Natural Science Foundation of China(No.51290281)the project of Chinese Academy of Sciences(No.QYZDY-SSW-DQC004)the Federal Department of Chinese Water Control and Treatment(Nos.2017ZX07108,2017ZX07501002)
文摘The effects of O3/Cl2 disinfection on corrosion and the growth of opportunistic pathogens in drinking water distribution systems were studied using annular reactors (ARs). The corrosion process and most probable number (MPN) analysis indicated that the higher content of iron-oxidizing bacteria and iron-reducing bacteria in biofilms of the AR treated with O3/Cl2 induced higher Fe304 formation in corrosion scales. These corrosion scales became more stable than the ones that formed in the AR treated with Cl2 alone. O3/Cl2 disinfection inhibited corrosion and iron release efficiently by changing the content of corrosion-related bacteria. Moreover, ozone disinfection inactivated or damaged the opportunistic pathogens due to its strong oxidizing properties. The damaged bacteria resulting from initial ozone treatment were inactivated by the subsequent chlorine disinfection. Compared with the AR treated with Cl2 alone, the opportunistic pathogens M. auium and L. pneumophila were not detectable in effluents of the AR treated with O3/Cl2, and decreased to (4.60 ± 0.14) and (3.09 ± 0.12) loglo (gene copies/g corrosion scales) in biofilms, respectively. The amoeba counts were also lower in the AR treated with O3/Cl2. Therefore, O3/Cl2 disinfection can effectively control opportunistic pathogens in effluents and biofilms of an AR used as a model for a drinking water distribution system.
基金supported by the National Natural Science Foundation of China(Nos.51308529,51290281)
文摘Bacterial community structure and iron corrosion were investigated for simulated drinking water distribution systems(DWDSs) composed of annular reactors incorporating three different treatments: ozone, biologically activated carbon and chlorination(O3-BAC-Cl2);ozone and chlorination(O3-Cl2); or chlorination alone(Cl2). The lowest corrosion rate and iron release, along with more Fe3O4 formation, occurred in DWDSs with O3-BAC-Cl2 compared to those without a BAC filter. It was verified that O3-BAC influenced the bacterial community greatly to promote the relative advantage of nitrate-reducing bacteria(NRB)in DWDSs. Moreover, the advantaged NRB induced active Fe(III) reduction coupled to Fe(II) oxidation, enhancing Fe3O4 formation and inhibiting corrosion. In addition, O3-BAC pretreatment could reduce high-molecular-weight fractions of dissolved organic carbon effectively to promote iron particle aggregation and inhibit further iron release. Our findings indicated that the O3-BAC treatment, besides removing organic pollutants in water, was also a good approach for controlling cast iron corrosion and iron release in DWDSs.
基金funded by the National Natural Science Foundation of China(Nos.51878654,52070189,51838005)the National Key R&D Program of China(Nos.2019YFD1100105,SQ2018YFE020448)+2 种基金the project of Chinese Academy of Sciences(No.QYZDY-SSW-ZQC004)Major Science and Technology Program for Water Pollution Control and Treatment(Nos.2017ZX07108,2017ZX07501-002)。
文摘Many problems in drinking water distribution systems(DWDSs)are caused by microbe,such as biofilm formation,biocorrosion and opportunistic pathogens growth.More iron release from corrosion scales may induce red water.Biofilm played great roles on the corrosion.The iron-oxidizing bacteria(IOB)promoted corrosion.However,when iron-reducing bacteria(IRB)and nitrate-reducing bacteria(NRB)became the main bacteria in biofilm,they could induce iron redox cycling in corrosion process.This process enhanced the precipitation of iron oxides and formation of more Fe3 O4 in corrosion scales,which inhibited corrosion effectively.Therefore,the IRB and NRB in the biofilm can reduce iron release and red water occurrence.Moreover,there are many opportunistic pathogens in biofilm of DWDSs.The opportunistic pathogens growth in DWDSs related to the bacterial community changes due to the effects of micropollutants.Micropollutants increased the number of bacteria with antibiotic resistance genes(ARGs).Furthermore,extracellular polymeric substances(EPS)production was increased by the antibiotic resistant bacteria,leading to greater bacterial aggregation and adsorption,increasing the chlorine-resistance capability,which was responsible for the enhancement of the particle-associated opportunistic pathogens in DWDSs.Moreover,O3-biological activated carbon filtration-UV-Cl2 treatment could be used to control the iron release,red water occurrence and opportunistic pathogens growth in DWDSs.
基金financially supported by the State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (No. MARC2012D010)the National Water Special Program (No. 2012ZX07404-002)the International Science & Technology Cooperation Program of China (No. 2010DFA91830)
文摘Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants(chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiS eq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination.
文摘Often as a result ofbiofilm formation, drinking water distribution systems (DWDS) are regularly faced with the problem of microbial contamination. Quorum sensing (QS) systems play a marked role in the regulation of microbial biofilm formation; thus, inhibition of QS systems may provide a promising approach to biofilm formation control in DWDS. In the present study, 22 bacterial strains were isolated from drinking water-related environments. The following properties of the strains were investigated: bacterial biofilm formation capacity, QS signal molecule N-acyl-L-homoserine lactones (AHLs) production ability, and responses to AHLs and AHL analogs, 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)- furanone (MX) and 2(5H)-furanone. Four AHLs were added to developed biofilms at dosages ranging from 0.1 nmol.L J to 100nmol.L1. As a result, the biofilm growth of more than 1/4 of the isolates, which included AHL producers and non-producers, were significantly promoted. Further, the biofilm biomasses were closely associated with respective AHLs concentrations. These results provided evidence to support the idea that AHLs play a definitive role in biofilm formation in many of the studied bacteria. Meanwhile, two AHLs analogs demon- strated unexpectedly minimal negative effects on biofilm formation. This suggested that, in order to find an applicable QS inhibition approach for biofilm control in DWDS, the testing and analysis of more analogs is needed.
文摘Delivery of safe and pathogen-free drinking water is crucial to public health.However,there exist challenges to the maintenance of the sterility of drinking water throughout the drinking water distribution systems(DWDS).Microbial growth in DWDS,such as growth of opportunistic pathogenic microorganisms,can lead to severe health problems in consumers(Berry et al.,2006;Brettar and Hofle,2006;Lu et al.,2014;Zhang et al.,2015).
基金financially supported by the Project of Youth Innovation Team Construction(No.21JP065).
文摘Iron corrosion in drinking water distribution systems(DWDSs)is the root cause of the deterioration of drinking water quality.Humic acid(HA)is a critical component of dissolved organic matter in drinking water.However,the influences of HA on iron pipe corrosion in DWDSs have not been fully understood,especially the combined effects of corrosive microorganisms and HA with different molecular weights(MWs).This study used bench-scale reactors to explore the impacts of ironoxidizing bacteria(IOB)(Microbacterium oxydans ZT-1,a common iron-oxidizing bacterium)and HA with different MWs on iron pipe corrosion.Before 6 d,loose and porous goethite(α-FeOOH)was the most prevalent compound in the corrosion products.The addition of ZT-1 and HA promoted iron corrosion and release.Under the condition of ZT-1+>100-kDa HA,the maximum values of corrosion rate and total iron concentrations were 0.23 mm/a and 9.94 mg/L,respectively.As corrosion proceeded,magnetite(Fe3O4)formed from FeOOH,and Fe-HA complexes accumulated,resulting in deceleration of iron corrosion.After 54 d,the corrosion rate and total iron concentration had decreased by ZT-1,and HA with different MWs.
基金grateful for primary support from the National Natural Science Foundation of China(Grant No.51979194).
文摘Corrosion in drinking water distribution systems(DWDSs)may lead to pipe failures and water quality deterioration;biocorrosion is the most common type.Chlorine disinfectants are widely used in DWDSs to inhibit microorganism growth,but these also promote electrochemical corrosion to a certain extent.This study explored the independent and synergistic effects of chlorine and microorganisms on pipeline corrosion.Sodium hypochlorite(NaOCl)at different concentrations(0,0.25,0.50,and 0.75 mg/L)and iron-oxidizing bacteria(IOB)were added to the reaction system,and a biofilm annular reactor(BAR)was employed to simulate operational water supply pipes and explain the composite effects.The degree of corrosion became severe with increasing NaOCl dosage.IOB accelerated the corrosion rate at an early stage,after which the reaction system gradually stabilized.When NaOCl and IOB existed together in the BAR,both synergistic and antagonistic effects occurred during the corrosion process.The AOC content increased due to the addition of NaOCl,which is conducive to bacterial regrowth.However,biofilm on cast iron coupons was greatly influenced by the disinfectant,leading to a decrease in microbial biomass over time.More research is needed to provide guidelines for pipeline corrosion control.