In this paper,we present a modeling of the soil-water characteristic curve for residual and sedimentary soils of Bom Brinquedo Hill’s,located in Antonina,Brazil.This mountain range region is characterized as a natura...In this paper,we present a modeling of the soil-water characteristic curve for residual and sedimentary soils of Bom Brinquedo Hill’s,located in Antonina,Brazil.This mountain range region is characterized as a natural disaster risk area,requiring continuous research related to the stability of the area.To obtain the soil-water characteristic curve,undisturbed samples of residual and sedimentary soil were collected,followed by suction testing using the filter paper method.Considering the bimodal characteristic presented by the soil,LABFIT software was employed for curve fitting using the generic formulation“Harris+C”.The results of the tests indicated that the phenomenon of hysteresis had a greater influence in situations with higher suction levels.When comparing the residual moisture values of the macropores between residual soil and sedimentary soil,the former exhibited the lower value.This suggests that the residual soil has a coarser grain size and larger pores,which facilitates the release of water retained in the soil’s macropores.展开更多
Accurately predicting battery degradation is crucial for battery system management.However,due to the complexities of aging mechanisms and limitations of historical data,comprehensively indicating battery degradation ...Accurately predicting battery degradation is crucial for battery system management.However,due to the complexities of aging mechanisms and limitations of historical data,comprehensively indicating battery degradation solely through maximum capacity loss assessment is challenging.While machine learning offers promising solutions,it often overlooks domain knowledge,resulting in reduced accu racy,increased computational burden and decreased interpretability.Here,this study proposes a method to predict the voltage-capacity(V-Q) curve during battery degradation with limited historical data.This process is achieved through two physically interpretable components:a lightweight interpretable physical model and a physics-informed neural network.These components incorporate domain knowledge into machine learning to improve V-Q curve prediction performance and enhance interpretability.Extensive validation was conducted on 52 batteries of different types under different testing conditions.The proposed method can accurately predict future V-Q.curves for hundreds of cycles using only one-present-cycle V-Q curve,with root mean square error and mean absolute error basically less than 0.035 Ah and R^(2) basically less than 98.5%.This means that incremental capacity curves can be extracted from the predicted results for a more comprehensive and accurate battery degradation analysis.Furthermore,the method can flexibly adjust prediction length and density to cater to the practical needs of long-cycle prediction and data generation.This study provides a viable method for rapid degradation prediction and is expected to be generalized to in-vehicle implementations.展开更多
Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nano...Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nanobeams. Opposite to traditional curved finite elements developed by using approximate interpolation functions, the proposed curved finite element is developed by using exact analytical solutions. Although this approach was first introduced for analyzing the mechanical behaviors of macro-scale curved beams by adopting the local theory of elasticity, the exact analytical expressions used in this study were obtained from the solutions of governing equations that were expressed via the differential form of the nonlocal theory of elasticity. Therefore, the effects of shear strain and axial extension included in the analytical formulation are also inherited by the curved finite element developed here. The rigidity matrix and the consistent force vector are developed for a circular finite element. To demonstrate the applicability of the method, static analyses of various curved nanobeams subjected to different boundary conditions and loading scenarios are performed, and the obtained results are compared with the exact analytical ones. The presented study provides an accurate and low computational cost method for researchers to investigate the in-plane static behavior of curved nanobeams.展开更多
The high-pressure mercury intrusion (HPMI) experiment is widely used to assess the pore architecture oftight sandstone reservoirs. However, the conventional analysis of the high- pressure mercury intrusionhas always f...The high-pressure mercury intrusion (HPMI) experiment is widely used to assess the pore architecture oftight sandstone reservoirs. However, the conventional analysis of the high- pressure mercury intrusionhas always focused on the mercury injection curves themselves, neglecting the important geologicalinformation conveyed by the mercury ejection curves. This paper quantitatively describes the fractalcharacteristics of ejection curves by using four fractal models, i.e.,. Menger model, Thermodynamicmodel, Sierpinski model, and multi- fractal model. In comparison with mercury injection curves, weexplore the fractal significance of mercury ejection curves and define the applicability of different fractalmodels in characterizing pore architectures. Investigated tight sandstone samples can be divided intofour types (Types A, B, C and D) based on porosity, permeability, and mercury removal efficiency. Type Dsamples are unique in that they have higher permeability (>0.6 mD) but lower mercury removal effi-ciency (<35%). Fractal studies of the mercury injection curve show that it mainly reflects the pore throatcharacteristics, while the mercury ejection curve serves to reveal the pore features, and porosity andpermeability correlate well with the fractal dimension of the injection curve, while mercury removalefficiency correlates only with the Ds' value of the ejection curve. The studies on the mercury ejectioncurves also reveal that the small pores and micropores of the Type C and Type D samples are moredeveloped, with varying pore architecture. The fractal dimension Ds' value of Type D samples is greaterthan that of Type C samples, and the dissolution of Type D samples is more intense than that of Type Csamples, which further indicates that the Type D samples are smaller in pore size, rougher in surface, andwith greater difficulty for the hydrocarbon to enter, resulting in their reservoir capacity probably lessthan that of Type C samples. In this regard, the important information characterized by the mercuryejection curve should be considered in evaluating the tight sandstone reservoirs. Finally, the Menger andThermodynamic models prove to be more suitable for describing the total pore architecture, while theSierpinski model is better for characterizing the variability of the interconnected pores.展开更多
The fundamental scientific and engineering knowledge concerning the solar power curve,which maps solar irradiance and other auxiliary meteorological variables to photovoltaic output power,has been gathered and put for...The fundamental scientific and engineering knowledge concerning the solar power curve,which maps solar irradiance and other auxiliary meteorological variables to photovoltaic output power,has been gathered and put forward in the preceding tutorial review.Despite the many pages of that review,it was incomplete in the sense that it did not elaborate on the applications of this very important tool of solar energy meteorology.Indeed,solar power curves are ubiquitously needed in a broad spectrum of solar forecasting and solar resource assessment tasks.Hence,this tutorial review should continue from where it left off and present examples concerning the usage of solar power curves.In a nutshell,this tutorial review,together with the preceding one,should elucidate how surface shortwave radiation data,be they ground-based,satelliteretrieved,or model-output,are bridged to various power system operations via solar power curves.展开更多
We discuss the information paradox and its implications for regular black holes. Our primary focus is on Page curve using the island treatment and analyzing relevant parameters like Page time and scrambling time. Calc...We discuss the information paradox and its implications for regular black holes. Our primary focus is on Page curve using the island treatment and analyzing relevant parameters like Page time and scrambling time. Calculations without considering the island show that the entanglement entropy increases linearly and continues to infinity. When we consider the generalized entropy, we find that the island extends just beyond the horizon, leading to a constant entanglement entropy.Specifically, we find that in the early stages, the island never forms, regardless of the charge and mass configuration of the black hole.展开更多
Solar flares are violent solar outbursts which have a great influence on the space environment surrounding Earth,potentially causing disruption of the ionosphere and interference with the geomagnetic field,thus causin...Solar flares are violent solar outbursts which have a great influence on the space environment surrounding Earth,potentially causing disruption of the ionosphere and interference with the geomagnetic field,thus causing magnetic storms.Consequently,it is very important to accurately predict the time period of solar flares.This paper proposes a flare prediction model,based on physical images of active solar regions.We employ X-ray flux curves recorded directly by the Geostationary Operational Environmental Satellite,used as input data for the model,allowing us to largely avoid the influence of accidental errors,effectively improving the model prediction efficiency.A model based on the X-ray flux curve can predict whether there will be a flare event within 24 hours.The reverse can also be verified by the peak of the X-ray flux curve to see if a flare has occurred within the past 24 hours.The True Positive Rate and False Positive Rate of the prediction model,based on physical images of active regions are 0.6070 and 0.2410 respectively,and the accuracy and True Skill Statistics are 0.7590 and 0.5556.Our model can effectively improve prediction efficiency compared with models based on the physical parameters of active regions or magnetic field records,providing a simple method for solar flare prediction.展开更多
The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield...The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield tunneling remains inadequate.The analytical solution for calculating the deformation of the ground and existing tunnel induced by overlapped curved shield tunneling is derived by the Mirror theory,Mindlin solution and Euler-Bernoulli-Pasternak model,subsequently validated through both finite element simulation and field monitoring.It is determined that the overcutting plays a crucial role in the ground settlement resulting from curved shield tunneling compared to straight shield tunneling.The longitudinal settlement distribution can be categorized into five areas,with the area near the tunnel surface experiencing the most dramatic settlement changes.The deformation of the existing tunnel varies most significantly with turning radius compared to tunnel clearance and grouting pressure,especially when the turning radius is less than 30 times the tunnel diameter.The tunnel crown exhibits larger displacement than the tunnel bottom,resulting in a distinctive‘vertical egg'shape.Furthermore,an optimized overcutting mode is proposed,involving precise control of the extension speed and angular velocity of the overcutting cutter,which effectively mitigates ground deformation,ensuring the protection of the existing tunnel during the construction.展开更多
Purpose–To investigate the influence of vehicle operation speed,curve geometry parameters and rail profile parameters on wheel–rail creepage in high-speed railway curves and propose a multi-parameter coordinated opt...Purpose–To investigate the influence of vehicle operation speed,curve geometry parameters and rail profile parameters on wheel–rail creepage in high-speed railway curves and propose a multi-parameter coordinated optimization strategy to reduce wheel–rail contact fatigue damage.Design/methodology/approach–Taking a small-radius curve of a high-speed railway as the research object,field measurements were conducted to obtain track parameters and wheel–rail profiles.A coupled vehicle-track dynamics model was established.Multiple numerical experiments were designed using the Latin Hypercube Sampling method to extract wheel-rail creepage indicators and construct a parameter-creepage response surface model.Findings–Key service parameters affecting wheel–rail creepage were identified,including the matching relationship between curve geometry and vehicle speed and rail profile parameters.The influence patterns of various parameters on wheel–rail creepage were revealed through response surface analysis,leading to the establishment of parameter optimization criteria.Originality/value–This study presents the systematic investigation of wheel–rail creepage characteristics under multi-parameter coupling in high-speed railway curves.A response surface-based parameter-creepage relationship model was established,and a multi-parameter coordinated optimization strategy was proposed.The research findings provide theoretical guidance for controlling wheel–rail contact fatigue damage and optimizing wheel–rail profiles in high-speed railway curves.展开更多
This paper examines the transport analysis,including both heat transfer and mass transfer,in hybrid nanofluid flow containing gyrotactic microorganisms towards a curved oscillatory surface.The influence of magnetic fi...This paper examines the transport analysis,including both heat transfer and mass transfer,in hybrid nanofluid flow containing gyrotactic microorganisms towards a curved oscillatory surface.The influence of magnetic fields is also inspected in terms of their physical characteristics.To depict the phenomena of transport,modified versions of both Fick's and Fourier's laws are used.Additionally,the characteristics of both heterogeneous and homogeneous chemical reactions are also incorporated.Utilizing a curvilinear coordinate system,the flow problem is formulated as partial differential equations(PDEs)for momentum,concentration,microorganism field,and energy.An analytical solution to the obtained flow equations is achieved utilizing the homotopy analysis method(HAM).The effects of significant flow parameters on the pressure and microorganism fields,velocity,oscillation velocity,concentration,and temperature distributions are shown via graphs.Furthermore,the variations in skin friction,mass transfer rate,heat transfer rate,and local motile number due to different involved parameters are presented in tables and are analyzed in detail.Graphical results indicate that the curves of velocity and temperature fields are enhanced as the values of the solid volume fraction variables increase.It is also verified that the concentration rate field decreases as the values of the homogeneous reaction strength parameter and the radius of curvature parameter increase,and it increases with the Schmidt number and the heterogeneous reaction strength parameter.Tabular outcomes show a favorable response of the motile number to advanced values of the Peclet number,the Schmidt number,the microorganism difference parameter,and the bio-convective Lewis number.展开更多
The unreasonable application of nitrogen fertilizer poses a threat to agricultural productivity and the environment protection in Northeast China.Therefore,accurately assessing crop nitrogen requirements and optimizin...The unreasonable application of nitrogen fertilizer poses a threat to agricultural productivity and the environment protection in Northeast China.Therefore,accurately assessing crop nitrogen requirements and optimizing fertilization are crucial for sustainable agricultural production.A three-year field experiment was conducted to evaluate the effects of planting density on the critical nitrogen concentration dilution curve(CNDC)for spring maize under drip irrigation and fertilization integration,incorporating two planting densities:D1(60,000 plants ha^(-1))and D2(90,000 plants ha^(-1))and six nitrogen levels:no nitrogen(N0),90(N90),180(N180),270(N270),360(N360),and 450(N450)kg ha^(-1).A Bayesian hierarchical model was used to develop CNDC models based on dry matter(DM)and leaf area index(LAI).The results revealed that the critical nitrogen concentration exhibited a power function relationship with both DM and LAI,while planting density had no significant impact on the CNDC parameters.Based on these findings,we propose unified CNDC equations for maize under drip irrigation and fertilization integration:Nc=4.505DM-0.384(based on DM)and Nc=3.793LAI-0.327(based on LAI).Additionally,the nitrogen nutrition index(NNI),derived from the CNDC,increased with higher nitrogen application rates.The nitrogen nutrition index(NNI)approached 1 with a nitrogen application rate of 180 kg ha^(-1)under the D1 planting density,while it reached 1 at 270 kg ha^(-1)under the D2 planting density.The relationship between NNI and relative yield(RY)followed a“linear+plateau”model,with maximum RY observed when the NNI approached 1.Thus,under the condition of drip irrigation and fertilization integration in Northeast China’s spring maize production,the optimal nitrogen application rates for achieving the highest yields were 180 kg ha^(-1)at a planting density of 60,000 plants ha^(-1),and 270 kg ha^(-1)at a density of 90,000 plants ha^(-1).The CNDC and NNI models developed in this study are valuable tools for diagnosing nitrogen nutrition and guiding precise fertilization practices in maize production under integrated drip irrigation and fertilization systems in Northeast China.展开更多
This paper investigates the free vibration and transient response of interconnected structures including double curved beams and intermediate straight beams,which are all constructed from functionally graded porous(FG...This paper investigates the free vibration and transient response of interconnected structures including double curved beams and intermediate straight beams,which are all constructed from functionally graded porous(FGP)materials.The strain potential and kinetic energies of each beam along with the work done by the external force are calculated.Additionally,a higher-order beam element is introduced to derive stiffness and mass matrices,along with the force vector.The curved and straight beams are discretized,and their assembled stiffness,mass matrices,and force vectors,are obtained.Continuity conditions at the joints are used to derive the total matrices of the entire structure.Subsequently,the natural frequencies and transient response of the system are determined.The accuracy of the mathematical model and the self-developed computer program is validated through the comparison of the obtained results with those of the existing literature and commercial software ANSYS,demonstrating excellent agreement.Furthermore,a comprehensive study is conducted to investigate the effects of various parameters on the free vibration and transient response of the considered structure.展开更多
Endocrine disrupting chemicals (EDCs) in the natural environment exhibit a unique non-monotonic dose-response curve and it is impossible to select one simple index to characterize the bilogogical activity of these com...Endocrine disrupting chemicals (EDCs) in the natural environment exhibit a unique non-monotonic dose-response curve and it is impossible to select one simple index to characterize the bilogogical activity of these compounds. Quantitative structure-activity relationship (QSAR) study on non-monotonic dose-response curve has become a real challenge presently. In order to explore the possible mechanism for the non-monotonic dose-response curve of polychlorinated biphenyls congeners (PCBs) in chicken embryo hepatocyte bioassay, AM1 method of ChemOffice was adopted to calculate necessary structure descriptors for PCBs, while the interactions between PCBs and simulated AhR ligand binding domain (LBD) were analyzed by using FlexX in SYBYL7.0. Different binding modes for PCBs have been distinguished not only from aligned conformation but also from free binding energy. Some QSAR models were established separately for both low and high doses ranges, revealing that receptor binding may predominate in the interference of the physiological function of cytochrome P4501A-P4501A in the low doses range. But with the higher doses range, the EROD suppression might be related to acute toxicity owing to molecular polarity or distribution of charges and consequently damage structure and function of chicken embryo hepatocyte.展开更多
Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attent...Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attention hitherto.One essential skill of solar energy meteorologists is solar power curve modeling,which seeks to map irradiance and auxiliary weather variables to solar power,by statistical and/or physical means.In this regard,this tutorial review aims to deliver a complete overview of those fundamental scientific and engineering principles pertaining to the solar power curve.Solar power curves can be modeled in two primary ways,one of regression and the other of model chain.Both classes of modeling approaches,alongside their hybridization and probabilistic extensions,which allow accuracy improvement and uncertainty quantification,are scrutinized and contrasted thoroughly in this review.展开更多
With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair compar...With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves.展开更多
Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between di...Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between different patterns under deformation.However,the related inverse design problem is quite challenging,due to the lack of appropriate mathematical formulation and the convergence issue in the post-buckling analysis of intermediate designs.In this work,periodic unit cells are explicitly described by the moving morphable voids method and effectively analyzed by eliminating the degrees of freedom in void regions.Furthermore,by exploring the Pareto frontiers between error and cost,an inverse design formulation is proposed for unit cells.This formulation aims to achieve a prescribed constitutive curve and is validated through numerical examples and experimental results.The design approach presented here can be extended to the inverse design of other types of mechanical metamaterials with prescribed nonlinear effective properties.展开更多
The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs ami...The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs amidst varying total water contents throughout the freezing-thawing process.Firstly,a general model is proposed,wherein the unfrozen water content at arbitrary temperature is determined as the lesser of the current total water content and the reference value derived from saturated SFCC.The dynamic performance of this model is verified through test data.Subsequently,in accordance with electric double layer(EDL)theory,the theoretical residual and minimum temperatures in SFCC are calculated to be-14.5℃to-20℃for clay particles and-260℃,respectively.To ensure that the SFCC curve ends at minimum temperature,a correction function is introduced into the general model.Furthermore,a simplified dynamic model is proposed and investigated,necessitating only three parameters inherited from the general model.Additionally,both general and simplified models are evaluated based on a test database and proven to fit the test data exactly across the entire temperature range.Typical recommended parameter values for various types of soils are summarized.Overall,this study provides not only a theoretical basis for most empirical equations but also proposes a new and more general equation to describe the SFCC.展开更多
The occurrence of blockages of trash intercepting net in nuclear power plant due to marine biofouling has become increasingly frequent,leading to significant changes in the mechanical state.This paper establishes a CF...The occurrence of blockages of trash intercepting net in nuclear power plant due to marine biofouling has become increasingly frequent,leading to significant changes in the mechanical state.This paper establishes a CFD(Computational Fluid Dynamics)model to simulate the hydrodynamic forces of trash intercepting net under the action of regular waves.The porous media model is used to calculate the hydrodynamic forces,and the maximum mooring load is also evaluated.The simplified calculation method considering the different curved shape based on the flat nets are proposed,and the influences of wave parameters,solidity,and curved shape are investigated.The results indicate that under the regular wave conditions,as the solidity increases,the phenomenon of secondary wave peaks becomes more pronounced.The horizontal wave force reduction coefficient follows a three-piecewise linear relationship with the non-dimensional deformation level of curved shape.The trash intercepting net exhibits more potent scattering effects on short-wave conditions,displaying significant non-linear characteristics.The deformation level of the trash intercepting net is a significant factor influencing the mooring load.展开更多
The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigate...The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed.展开更多
文摘In this paper,we present a modeling of the soil-water characteristic curve for residual and sedimentary soils of Bom Brinquedo Hill’s,located in Antonina,Brazil.This mountain range region is characterized as a natural disaster risk area,requiring continuous research related to the stability of the area.To obtain the soil-water characteristic curve,undisturbed samples of residual and sedimentary soil were collected,followed by suction testing using the filter paper method.Considering the bimodal characteristic presented by the soil,LABFIT software was employed for curve fitting using the generic formulation“Harris+C”.The results of the tests indicated that the phenomenon of hysteresis had a greater influence in situations with higher suction levels.When comparing the residual moisture values of the macropores between residual soil and sedimentary soil,the former exhibited the lower value.This suggests that the residual soil has a coarser grain size and larger pores,which facilitates the release of water retained in the soil’s macropores.
基金jointly supported by the National Natural Science Foundation of China(Grant No.52277213,52177210,and 52207229)key project of science and technology research program of Chongqing Education Commission of China (Grant No. KJZD-K202201103,KJZD-K202301108)Chongqing Graduate Research Innovation Project (Grant No.CYS240657).
文摘Accurately predicting battery degradation is crucial for battery system management.However,due to the complexities of aging mechanisms and limitations of historical data,comprehensively indicating battery degradation solely through maximum capacity loss assessment is challenging.While machine learning offers promising solutions,it often overlooks domain knowledge,resulting in reduced accu racy,increased computational burden and decreased interpretability.Here,this study proposes a method to predict the voltage-capacity(V-Q) curve during battery degradation with limited historical data.This process is achieved through two physically interpretable components:a lightweight interpretable physical model and a physics-informed neural network.These components incorporate domain knowledge into machine learning to improve V-Q curve prediction performance and enhance interpretability.Extensive validation was conducted on 52 batteries of different types under different testing conditions.The proposed method can accurately predict future V-Q.curves for hundreds of cycles using only one-present-cycle V-Q curve,with root mean square error and mean absolute error basically less than 0.035 Ah and R^(2) basically less than 98.5%.This means that incremental capacity curves can be extracted from the predicted results for a more comprehensive and accurate battery degradation analysis.Furthermore,the method can flexibly adjust prediction length and density to cater to the practical needs of long-cycle prediction and data generation.This study provides a viable method for rapid degradation prediction and is expected to be generalized to in-vehicle implementations.
基金supported by Scientific Research Projects Department of Istanbul Technical University.Project Number:MGA-2018-41546.Grant receiver:E.T.
文摘Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nanobeams. Opposite to traditional curved finite elements developed by using approximate interpolation functions, the proposed curved finite element is developed by using exact analytical solutions. Although this approach was first introduced for analyzing the mechanical behaviors of macro-scale curved beams by adopting the local theory of elasticity, the exact analytical expressions used in this study were obtained from the solutions of governing equations that were expressed via the differential form of the nonlocal theory of elasticity. Therefore, the effects of shear strain and axial extension included in the analytical formulation are also inherited by the curved finite element developed here. The rigidity matrix and the consistent force vector are developed for a circular finite element. To demonstrate the applicability of the method, static analyses of various curved nanobeams subjected to different boundary conditions and loading scenarios are performed, and the obtained results are compared with the exact analytical ones. The presented study provides an accurate and low computational cost method for researchers to investigate the in-plane static behavior of curved nanobeams.
基金The research project was co-funded by the National Natural Science Foundation of China(No.42072172,No.41772120)Shandong Province Natural Science Fund for Distinguished Young Scholars(No.JQ201311)the Graduate Scientific and Technological Innovation Project Financially Supported by Shandong University of Science and Technology(No.SDKDYC190313).
文摘The high-pressure mercury intrusion (HPMI) experiment is widely used to assess the pore architecture oftight sandstone reservoirs. However, the conventional analysis of the high- pressure mercury intrusionhas always focused on the mercury injection curves themselves, neglecting the important geologicalinformation conveyed by the mercury ejection curves. This paper quantitatively describes the fractalcharacteristics of ejection curves by using four fractal models, i.e.,. Menger model, Thermodynamicmodel, Sierpinski model, and multi- fractal model. In comparison with mercury injection curves, weexplore the fractal significance of mercury ejection curves and define the applicability of different fractalmodels in characterizing pore architectures. Investigated tight sandstone samples can be divided intofour types (Types A, B, C and D) based on porosity, permeability, and mercury removal efficiency. Type Dsamples are unique in that they have higher permeability (>0.6 mD) but lower mercury removal effi-ciency (<35%). Fractal studies of the mercury injection curve show that it mainly reflects the pore throatcharacteristics, while the mercury ejection curve serves to reveal the pore features, and porosity andpermeability correlate well with the fractal dimension of the injection curve, while mercury removalefficiency correlates only with the Ds' value of the ejection curve. The studies on the mercury ejectioncurves also reveal that the small pores and micropores of the Type C and Type D samples are moredeveloped, with varying pore architecture. The fractal dimension Ds' value of Type D samples is greaterthan that of Type C samples, and the dissolution of Type D samples is more intense than that of Type Csamples, which further indicates that the Type D samples are smaller in pore size, rougher in surface, andwith greater difficulty for the hydrocarbon to enter, resulting in their reservoir capacity probably lessthan that of Type C samples. In this regard, the important information characterized by the mercuryejection curve should be considered in evaluating the tight sandstone reservoirs. Finally, the Menger andThermodynamic models prove to be more suitable for describing the total pore architecture, while theSierpinski model is better for characterizing the variability of the interconnected pores.
基金supported by the National Natural Science Foundation of China(project no.42375192)supported by the National Natural Science Foundation of China(project no.42030608)+3 种基金China Meteorological Administration Climate Change Special Program(CMA-CCSPproject no.QBZ202315)supported by the National Research,Development and Innovation Fund,project no.OTKA-FK 142702the János Bolyai Research Scholarship。
文摘The fundamental scientific and engineering knowledge concerning the solar power curve,which maps solar irradiance and other auxiliary meteorological variables to photovoltaic output power,has been gathered and put forward in the preceding tutorial review.Despite the many pages of that review,it was incomplete in the sense that it did not elaborate on the applications of this very important tool of solar energy meteorology.Indeed,solar power curves are ubiquitously needed in a broad spectrum of solar forecasting and solar resource assessment tasks.Hence,this tutorial review should continue from where it left off and present examples concerning the usage of solar power curves.In a nutshell,this tutorial review,together with the preceding one,should elucidate how surface shortwave radiation data,be they ground-based,satelliteretrieved,or model-output,are bridged to various power system operations via solar power curves.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12275166 and 12311540141)。
文摘We discuss the information paradox and its implications for regular black holes. Our primary focus is on Page curve using the island treatment and analyzing relevant parameters like Page time and scrambling time. Calculations without considering the island show that the entanglement entropy increases linearly and continues to infinity. When we consider the generalized entropy, we find that the island extends just beyond the horizon, leading to a constant entanglement entropy.Specifically, we find that in the early stages, the island never forms, regardless of the charge and mass configuration of the black hole.
基金National Key R&D Program of China(2022YFE0133700)National Natural Science Foundation of China(12273007)+4 种基金Guizhou Provincial Excellent Young Science and Technology Talent Program(YQK[2023]006)National SKA Program of China(2020SKA0110300)National Natural Science Foundation of China(11963003)Guizhou Provincial Basic Research Program(Natural Science)(ZK[2022]143)Cultivation project of Guizhou University([2020]76).
文摘Solar flares are violent solar outbursts which have a great influence on the space environment surrounding Earth,potentially causing disruption of the ionosphere and interference with the geomagnetic field,thus causing magnetic storms.Consequently,it is very important to accurately predict the time period of solar flares.This paper proposes a flare prediction model,based on physical images of active solar regions.We employ X-ray flux curves recorded directly by the Geostationary Operational Environmental Satellite,used as input data for the model,allowing us to largely avoid the influence of accidental errors,effectively improving the model prediction efficiency.A model based on the X-ray flux curve can predict whether there will be a flare event within 24 hours.The reverse can also be verified by the peak of the X-ray flux curve to see if a flare has occurred within the past 24 hours.The True Positive Rate and False Positive Rate of the prediction model,based on physical images of active regions are 0.6070 and 0.2410 respectively,and the accuracy and True Skill Statistics are 0.7590 and 0.5556.Our model can effectively improve prediction efficiency compared with models based on the physical parameters of active regions or magnetic field records,providing a simple method for solar flare prediction.
基金financially supported by the National Natural Science Foundation of China(Grant No.52078334)the National Key Research and Development Program of China(Grant No.2017YFC0805402)the Tianjin Research Innovation Project for Postgraduate Students(Grant No.2021YJSB141).
文摘The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield tunneling remains inadequate.The analytical solution for calculating the deformation of the ground and existing tunnel induced by overlapped curved shield tunneling is derived by the Mirror theory,Mindlin solution and Euler-Bernoulli-Pasternak model,subsequently validated through both finite element simulation and field monitoring.It is determined that the overcutting plays a crucial role in the ground settlement resulting from curved shield tunneling compared to straight shield tunneling.The longitudinal settlement distribution can be categorized into five areas,with the area near the tunnel surface experiencing the most dramatic settlement changes.The deformation of the existing tunnel varies most significantly with turning radius compared to tunnel clearance and grouting pressure,especially when the turning radius is less than 30 times the tunnel diameter.The tunnel crown exhibits larger displacement than the tunnel bottom,resulting in a distinctive‘vertical egg'shape.Furthermore,an optimized overcutting mode is proposed,involving precise control of the extension speed and angular velocity of the overcutting cutter,which effectively mitigates ground deformation,ensuring the protection of the existing tunnel during the construction.
基金sponsored by the National Natural Science Foundation of China(Grant No.52405443)the Technology Research and Development Plan of China Railway(Grant No.N2023G063)the Fund of China Academy of Railway Sciences Corporation Limited(Grant No.2023YJ054).
文摘Purpose–To investigate the influence of vehicle operation speed,curve geometry parameters and rail profile parameters on wheel–rail creepage in high-speed railway curves and propose a multi-parameter coordinated optimization strategy to reduce wheel–rail contact fatigue damage.Design/methodology/approach–Taking a small-radius curve of a high-speed railway as the research object,field measurements were conducted to obtain track parameters and wheel–rail profiles.A coupled vehicle-track dynamics model was established.Multiple numerical experiments were designed using the Latin Hypercube Sampling method to extract wheel-rail creepage indicators and construct a parameter-creepage response surface model.Findings–Key service parameters affecting wheel–rail creepage were identified,including the matching relationship between curve geometry and vehicle speed and rail profile parameters.The influence patterns of various parameters on wheel–rail creepage were revealed through response surface analysis,leading to the establishment of parameter optimization criteria.Originality/value–This study presents the systematic investigation of wheel–rail creepage characteristics under multi-parameter coupling in high-speed railway curves.A response surface-based parameter-creepage relationship model was established,and a multi-parameter coordinated optimization strategy was proposed.The research findings provide theoretical guidance for controlling wheel–rail contact fatigue damage and optimizing wheel–rail profiles in high-speed railway curves.
文摘This paper examines the transport analysis,including both heat transfer and mass transfer,in hybrid nanofluid flow containing gyrotactic microorganisms towards a curved oscillatory surface.The influence of magnetic fields is also inspected in terms of their physical characteristics.To depict the phenomena of transport,modified versions of both Fick's and Fourier's laws are used.Additionally,the characteristics of both heterogeneous and homogeneous chemical reactions are also incorporated.Utilizing a curvilinear coordinate system,the flow problem is formulated as partial differential equations(PDEs)for momentum,concentration,microorganism field,and energy.An analytical solution to the obtained flow equations is achieved utilizing the homotopy analysis method(HAM).The effects of significant flow parameters on the pressure and microorganism fields,velocity,oscillation velocity,concentration,and temperature distributions are shown via graphs.Furthermore,the variations in skin friction,mass transfer rate,heat transfer rate,and local motile number due to different involved parameters are presented in tables and are analyzed in detail.Graphical results indicate that the curves of velocity and temperature fields are enhanced as the values of the solid volume fraction variables increase.It is also verified that the concentration rate field decreases as the values of the homogeneous reaction strength parameter and the radius of curvature parameter increase,and it increases with the Schmidt number and the heterogeneous reaction strength parameter.Tabular outcomes show a favorable response of the motile number to advanced values of the Peclet number,the Schmidt number,the microorganism difference parameter,and the bio-convective Lewis number.
基金supported by the grants from National Key Research and Development Program of China(2023YFD2303300)China Agriculture Research System(CARS-02-15)the Agricultural Science and Technology Innovation Program(CAAS-ZDRW202004).
文摘The unreasonable application of nitrogen fertilizer poses a threat to agricultural productivity and the environment protection in Northeast China.Therefore,accurately assessing crop nitrogen requirements and optimizing fertilization are crucial for sustainable agricultural production.A three-year field experiment was conducted to evaluate the effects of planting density on the critical nitrogen concentration dilution curve(CNDC)for spring maize under drip irrigation and fertilization integration,incorporating two planting densities:D1(60,000 plants ha^(-1))and D2(90,000 plants ha^(-1))and six nitrogen levels:no nitrogen(N0),90(N90),180(N180),270(N270),360(N360),and 450(N450)kg ha^(-1).A Bayesian hierarchical model was used to develop CNDC models based on dry matter(DM)and leaf area index(LAI).The results revealed that the critical nitrogen concentration exhibited a power function relationship with both DM and LAI,while planting density had no significant impact on the CNDC parameters.Based on these findings,we propose unified CNDC equations for maize under drip irrigation and fertilization integration:Nc=4.505DM-0.384(based on DM)and Nc=3.793LAI-0.327(based on LAI).Additionally,the nitrogen nutrition index(NNI),derived from the CNDC,increased with higher nitrogen application rates.The nitrogen nutrition index(NNI)approached 1 with a nitrogen application rate of 180 kg ha^(-1)under the D1 planting density,while it reached 1 at 270 kg ha^(-1)under the D2 planting density.The relationship between NNI and relative yield(RY)followed a“linear+plateau”model,with maximum RY observed when the NNI approached 1.Thus,under the condition of drip irrigation and fertilization integration in Northeast China’s spring maize production,the optimal nitrogen application rates for achieving the highest yields were 180 kg ha^(-1)at a planting density of 60,000 plants ha^(-1),and 270 kg ha^(-1)at a density of 90,000 plants ha^(-1).The CNDC and NNI models developed in this study are valuable tools for diagnosing nitrogen nutrition and guiding precise fertilization practices in maize production under integrated drip irrigation and fertilization systems in Northeast China.
文摘This paper investigates the free vibration and transient response of interconnected structures including double curved beams and intermediate straight beams,which are all constructed from functionally graded porous(FGP)materials.The strain potential and kinetic energies of each beam along with the work done by the external force are calculated.Additionally,a higher-order beam element is introduced to derive stiffness and mass matrices,along with the force vector.The curved and straight beams are discretized,and their assembled stiffness,mass matrices,and force vectors,are obtained.Continuity conditions at the joints are used to derive the total matrices of the entire structure.Subsequently,the natural frequencies and transient response of the system are determined.The accuracy of the mathematical model and the self-developed computer program is validated through the comparison of the obtained results with those of the existing literature and commercial software ANSYS,demonstrating excellent agreement.Furthermore,a comprehensive study is conducted to investigate the effects of various parameters on the free vibration and transient response of the considered structure.
基金Supported by the National Natural Science Foundation of China(Grant Nos. 20777035 & 20737001) 863 Advanced Research Project (Grant Nos. 2007AA06Z416, 2006AA06Z424 & 2007AA06A405)
文摘Endocrine disrupting chemicals (EDCs) in the natural environment exhibit a unique non-monotonic dose-response curve and it is impossible to select one simple index to characterize the bilogogical activity of these compounds. Quantitative structure-activity relationship (QSAR) study on non-monotonic dose-response curve has become a real challenge presently. In order to explore the possible mechanism for the non-monotonic dose-response curve of polychlorinated biphenyls congeners (PCBs) in chicken embryo hepatocyte bioassay, AM1 method of ChemOffice was adopted to calculate necessary structure descriptors for PCBs, while the interactions between PCBs and simulated AhR ligand binding domain (LBD) were analyzed by using FlexX in SYBYL7.0. Different binding modes for PCBs have been distinguished not only from aligned conformation but also from free binding energy. Some QSAR models were established separately for both low and high doses ranges, revealing that receptor binding may predominate in the interference of the physiological function of cytochrome P4501A-P4501A in the low doses range. But with the higher doses range, the EROD suppression might be related to acute toxicity owing to molecular polarity or distribution of charges and consequently damage structure and function of chicken embryo hepatocyte.
基金supported by the National Natural Science Foundation of China(project no.42375192),and the China Meteorological Administration Climate Change Special Program(CMA-CCSPproject no.QBZ202315)+2 种基金supported by the National Natural Science Foundation of China(project no.42030608)supported by the National Research,Development and Innovation Fund,project no.OTKA-FK 142702by the Hungarian Academy of Sciences through the Sustainable Development and Technologies National Programme(FFT NP FTA)and the János Bolyai Research Scholarship.
文摘Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attention hitherto.One essential skill of solar energy meteorologists is solar power curve modeling,which seeks to map irradiance and auxiliary weather variables to solar power,by statistical and/or physical means.In this regard,this tutorial review aims to deliver a complete overview of those fundamental scientific and engineering principles pertaining to the solar power curve.Solar power curves can be modeled in two primary ways,one of regression and the other of model chain.Both classes of modeling approaches,alongside their hybridization and probabilistic extensions,which allow accuracy improvement and uncertainty quantification,are scrutinized and contrasted thoroughly in this review.
基金supported by the National Natural Science Foundation of China (52075420)the National Key Research and Development Program of China (2020YFB1708400)。
文摘With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.12002073 and 12372122)the National Key Research and Development Plan of China(Grant No.2020YFB 1709401)+2 种基金the Science Technology Plan of Liaoning Province(Grant No.2023JH2/101600044)the Liaoning Revitalization Talents Pro-gram(Grant No.XLYC2001003)111 Project of China(Grant No.B14013).
文摘Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between different patterns under deformation.However,the related inverse design problem is quite challenging,due to the lack of appropriate mathematical formulation and the convergence issue in the post-buckling analysis of intermediate designs.In this work,periodic unit cells are explicitly described by the moving morphable voids method and effectively analyzed by eliminating the degrees of freedom in void regions.Furthermore,by exploring the Pareto frontiers between error and cost,an inverse design formulation is proposed for unit cells.This formulation aims to achieve a prescribed constitutive curve and is validated through numerical examples and experimental results.The design approach presented here can be extended to the inverse design of other types of mechanical metamaterials with prescribed nonlinear effective properties.
基金supported by the National Natural Science Foundation of China(Grant No.51979002)the Fundamental Research Funds for the Central Universities(Grant No.2022YJS080).
文摘The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs amidst varying total water contents throughout the freezing-thawing process.Firstly,a general model is proposed,wherein the unfrozen water content at arbitrary temperature is determined as the lesser of the current total water content and the reference value derived from saturated SFCC.The dynamic performance of this model is verified through test data.Subsequently,in accordance with electric double layer(EDL)theory,the theoretical residual and minimum temperatures in SFCC are calculated to be-14.5℃to-20℃for clay particles and-260℃,respectively.To ensure that the SFCC curve ends at minimum temperature,a correction function is introduced into the general model.Furthermore,a simplified dynamic model is proposed and investigated,necessitating only three parameters inherited from the general model.Additionally,both general and simplified models are evaluated based on a test database and proven to fit the test data exactly across the entire temperature range.Typical recommended parameter values for various types of soils are summarized.Overall,this study provides not only a theoretical basis for most empirical equations but also proposes a new and more general equation to describe the SFCC.
基金financially supported by National Natural Science Foundation of China(Grant No.52201311)Fundamental Research Funds for the Central Universities.
文摘The occurrence of blockages of trash intercepting net in nuclear power plant due to marine biofouling has become increasingly frequent,leading to significant changes in the mechanical state.This paper establishes a CFD(Computational Fluid Dynamics)model to simulate the hydrodynamic forces of trash intercepting net under the action of regular waves.The porous media model is used to calculate the hydrodynamic forces,and the maximum mooring load is also evaluated.The simplified calculation method considering the different curved shape based on the flat nets are proposed,and the influences of wave parameters,solidity,and curved shape are investigated.The results indicate that under the regular wave conditions,as the solidity increases,the phenomenon of secondary wave peaks becomes more pronounced.The horizontal wave force reduction coefficient follows a three-piecewise linear relationship with the non-dimensional deformation level of curved shape.The trash intercepting net exhibits more potent scattering effects on short-wave conditions,displaying significant non-linear characteristics.The deformation level of the trash intercepting net is a significant factor influencing the mooring load.
文摘The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed.