The modelling of the distribution transformer winding is the starting point and serves as important basis for the transformer characteristics analysis and the lightning pulse response prediction.A distributed paramete...The modelling of the distribution transformer winding is the starting point and serves as important basis for the transformer characteristics analysis and the lightning pulse response prediction.A distributed parameters model can depict the winding characteristics accurately,but it requires complex calculations.Lumped parameter model requires less calculations,but its applicable frequency range is not wide.This paper studies the amplitude-frequency characteristics of the lightning wave,compares the transformer modelling methods and finally proposes a modified lumped parameter model,based on the above comparison.The proposed model minimizes the errors provoked by the lumped parameter approximation,and the hyperbolic functions of the distributed parameter model.By this modification it becomes possible to accurately describe the winding characteristics and rapidly obtain the node voltage response.The proposed model can provide theoretical and experimental support to lightning protection of the distribution transformer.展开更多
The distribution transformer is the mainstay of the power system.Its internal temperature study is desirable for its safe operation in the power system.The purpose of the present study is to determine direct comprehen...The distribution transformer is the mainstay of the power system.Its internal temperature study is desirable for its safe operation in the power system.The purpose of the present study is to determine direct comprehensive thermal distribution in the distribution transformers for different loading conditions.To achieve this goal,the temperature distribution in the oil,core,and windings are studied at each loading.An experimental study is performed with a 10/0.38 kV,10 kVA oil–immersed transformer equipped with forty–two PT100 sensors(PTs)for temperature measurement installed inside during its manufacturing process.All possible locations for the hottest spot temperature(HST)are considered that made by finite element analysis(FEA)simulation and losses calculations.A resistive load is made to achieve 80%to 120%loading of the test transformer for this experiment.Working temperature is measured in each part of the transformer at all provided loading conditions.It is observed that temperature varies with loading throughout the transformer,and a detailed map of temperature is obtained in the whole test transformer.From these results,the HST stays in the critical section of the primary winding at all loading conditions.This work is helpful to understand the complete internal temperature layout and the location of the HST in distribution transformers.展开更多
In the current paper,which deals with the noise pollution excited by distribution transformers in the living area,a comprehensive treatment scheme is put forward for the purpose of reducing the sound pressure level em...In the current paper,which deals with the noise pollution excited by distribution transformers in the living area,a comprehensive treatment scheme is put forward for the purpose of reducing the sound pressure level emitting into the environment.In accordance with the associated test standard,the sound pressure levels of distribution transformer and surrounding environment are not only tested but analyzed as well.The measurements were carried out with the frequency analysis of the 1/3 octave resolution,with the center frequencies at 125 Hz,250 Hz,400 Hz,and 500 Hz.As illustrated,on the basis of the measurement results,the frequency of noise at 500 Hz of distribution transformer causes the major noise pollution in the surrounding environment.This measurement result is in line with the noise frequency characteristics of distribution transformer.There are two transmission routes of noise:(i)the noise excited by distribution transformer transmits by means of the wall of distribution room,and (ii)part of noise spreads through the ground of distribution room.Accordingly,acoustic shield and vibration isolation device are applied for the reduction of the low frequency noise emitted through the above two paths.Aimed at applying the appropriate acoustic material and vibration mounting,the evaluation of the noise reduction and vibration absorption is carried out in accordance with the sound and vibration insulation theory.Following the noise treatment,the transformer and environment noise are measured again.The corresponding findings shed light on the fact that the sound level satisfied the requirement of limits of the ordinance.The proposed noise treatment scheme can be applied to the existing power distribution facilities for controlling the sound levels that reach a point where it is comparatively more unobjectionable.展开更多
To reduce distribution transformer losses and carbon dioxide emissions, in recent years, the major countries in the world have issued mandatory standards for high-energy efficiency in distribution transformers. In 201...To reduce distribution transformer losses and carbon dioxide emissions, in recent years, the major countries in the world have issued mandatory standards for high-energy efficiency in distribution transformers. In 2013,China has carried out a new standard GB 20052-2013. To meet the update of the standard and energy efficiency,it is important to enhance the magnetic properties of core materials. The new products B18R065 and B20R070 which are developed by Baosteel, are successfully used for grade 1 energy efficiency distribution transformers. And Baosteel becomes one of the companies which can supply both the 0.20 mm and the 0.18 mm gauge grain oriented electrical steels (GOES) in the world. The development principle, material properties, and transformer performance of B18R065 and B20R070 were introduced,which were expected to be a useful reference for materials selection by transformer manufacturers.展开更多
A de-centralised load management technique exploiting the flexibility in the charging of Electric Vehicles (EVs) is presented. Two charging regimes are assumed. The Controlled Charging Regime (CCR) between 16:30 hours...A de-centralised load management technique exploiting the flexibility in the charging of Electric Vehicles (EVs) is presented. Two charging regimes are assumed. The Controlled Charging Regime (CCR) between 16:30 hours and 06:00 hours of the next day and the Uncontrolled Charging Regime (UCR) between 06:00 hours and 16:30 hours of the same day. During the CCR, the charging of EVs is coordinated and controlled by means of a wireless two-way communication link between EV Smart Charge Controllers (EVSCCs) at EV owners’ premises and the EV Load Controller (EVLC) at the local LV distribution substation. The EVLC sorts the EVs batteries in ascending order of their states of charge (SoC) and sends command signals for charging to as many EVs as the transformer could allow at that interval based on the condition of the transformer as analysed by the Distribution Transformer Monitor (DTM). A real and typical urban LV area distribution network in Great Britain (GB) is used as the case study. The technique is applied on</span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">the LV area when its transformer is carrying the future load demand of the area on a typical winter weekday in the year 2050. To achieve the load management, load demand of the LV area network is decomposed into Non-EV <span>load and EV load. The load on the transformer is managed by varying the EV load in an optimisation objective function which maximises the capacity uti</span>lisation of the transformer subject to operational constraints and non-disruption of daily trips of EV owners. Results show that with the proposed load management technique, LV distribution networks could accommodate high uptake of EVs without compromising the useful normal life expectancy of distribution transformers before the need for capacity reinforcement.展开更多
Owning to the rapid economy development in China and sharp increase of energyconsumption in recent years, energy shortage is increasingly apparent and becoming an importantobstacle to the sustainable development of ou...Owning to the rapid economy development in China and sharp increase of energyconsumption in recent years, energy shortage is increasingly apparent and becoming an importantobstacle to the sustainable development of our economy. With the aim to relieve the problem ofenergy shortage, the State Development and Reform Commission places the great emphasis ofenergy-saving work on improving energy efficiency of industrial energy-consuming products inenergy-saving work. The General Administration of Quality Supervision, Inspection and Quarantine ofthe People's Republic of China (AQSIQ) has issued and implemented two energy efficiency standardsfor three-phase induction motors and displacement air compressor, and will soon issue another twoenergy efficiency standards for clean- water centrifugal pumps and ventilation fans. The transformeris a kind of electric equipment widely used in many industries in national economy, with featuresof great amount of use, long period of operation and tremendous potential of energy-saving. So, itis necessary to develop the standard of energy efficiency for distribution transformers.展开更多
A transformer is an essential but expensive power delivery equipment for a distribution utility.In many distribution utilities worldwide,a sizable percentage of transformers are near the end of their designed life.At ...A transformer is an essential but expensive power delivery equipment for a distribution utility.In many distribution utilities worldwide,a sizable percentage of transformers are near the end of their designed life.At the same time,distribution utilities are adopting smart inverter-based distributed solar photovoltaic(SPV)systems to maximize renewable generation.The central objective of this paper is to propose a methodology to quantify the effect of smart inverter-based distributed SPV systems on the aging of distribution transformers.The proposed method is first tested on a modified IEEE-123 node distribution feeder.After that,the procedure is applied to a practical distribution system,i.e.,the Indian Institute of Technology(IIT)Roorkee campus,India.The transformer aging models,alongside advanced control functionalities of grid-tied smart inverter-based SPV systems,are implemented in MATLAB.The open-source simulation tool(OpenDSS)is used to model distribution networks.To analyze effectiveness of various inverter functionalities,time-series simulations are performed using exponential load models,considering daily load curves from multiple seasons,load types,current harmonics,etc.Findings show replacing a traditional inverter with a smart inverter-based SPV system can enable local reactive power generation and may extend the life of a distribution transformer.Simulation results demonstrate,simply by incorporating smart inverter-based SPV systems,transformer aging is reduced by 15%to 22%in comparison to SPV systems operating with traditional inverters.展开更多
Hybrid distribution transformers(HDTs)have better performance than traditional distribution transformers in improving power quality through reducing harmonics,unbalance,voltage fluctuations and low power factors in fu...Hybrid distribution transformers(HDTs)have better performance than traditional distribution transformers in improving power quality through reducing harmonics,unbalance,voltage fluctuations and low power factors in future smart power distribution systems.In order to increase the service life and reliability of hybrid distribution transformers,this paper proposes a remote management system using LoRa technology based on fuzzy logic.HDT based on a fuzzy logic judgment system(FLJS)replaces the Boolean logic with fuzzy logic and several power quality problems including power factors,load-side current harmonics and voltage unbalance are considered,as well as grid-side voltage deviation and unbalance.This management system can dynamically adjust the working states of HDT according to the output results of the FLJS to reduce the use time of power electronic devices.Due to the application of LoRa,this management system can remotely adjust the parameters of the FLJS in real time for different distribution network nodes to avoid frequent switching of HDT working states.In addition,it is able to remotely monitor the real-time working states and fault states of HDT to reduce recovery time and maintenance costs in case of HDT failure.Finally,simulation and experimental results are presented to verify the effectiveness of the proposed management system for HDT.展开更多
The steady-state calculations are performed using IEC guidelines to determine the hot spot temperatures of distribution and power transformers in the worst projected Finnish environment due to long summer periods. Mor...The steady-state calculations are performed using IEC guidelines to determine the hot spot temperatures of distribution and power transformers in the worst projected Finnish environment due to long summer periods. Moreover, the effect of increase in winding resistance due to increase in ambient temperatures has been taken into account. The primary objective of the research is to investigate the possible extreme circumstances due to climate change. It is concluded that the power and distribution transformers should be progressively de-rated under such circumstances for their safe operations, which will not only prove cost-effective for utilities but also improve the reliability of the power supply to their valued customers in the challenging future smart grid environment.展开更多
At present, an automatic-mechanic contact tap-changer is widely used in power system, but it can not frequently operate. In addition, arc will occur when the switch changes. In order to solve these two problems, this ...At present, an automatic-mechanic contact tap-changer is widely used in power system, but it can not frequently operate. In addition, arc will occur when the switch changes. In order to solve these two problems, this paper presented an automatic on-load voltage-regulating distributing transformer which employed non-contact solid-state relay as tap-changer, and mainly introduced its structure, basic principal, design method of each key link and experimental results. Laboratory simulation experiments informed that the scheme was feasible. It was a smooth and effective experiment device, which was practical in application.展开更多
In order to study temperature field distribution in burnt surrounding rock and to determine ranges of burnt surrounding rock, coal-wall coking cycle and heat influence in the underground coal gasification(UCG) stope, ...In order to study temperature field distribution in burnt surrounding rock and to determine ranges of burnt surrounding rock, coal-wall coking cycle and heat influence in the underground coal gasification(UCG) stope, based on the Laplace transform and inversion formula, we studied the temperature analytical solution of one-dimensional unsteady heat conduction for multi-layer overlying strata under the first and the forth kinds of boundary conditions, and we also carried out a numerical simulation of twodimensional unsteady heat conduction by the COMSOL multiphysics. The results show that when the boundary temperature of surrounding rock has a linear decrease because of a directional movement of heat source in the UCG flame working face, the temperature in surrounding rock increases first and then decreases with time, the peak of temperature curve decreases gradually and its position moves inside surrounding rock from the boundary. In the surrounding rock of UCG stope, there is an envelope curve of temperature curve clusters. We analyzed the influence of thermophysical parameters on envelope curves and put forward to take envelope curve as the calculation basis for ranges of burnt surrounding rock, coal-wall coking cycle and heat influence. Finally, the concrete numerical values are given by determining those judgement standards and temperature thresholds, which basically tally with the field geophysical prospecting results.展开更多
Medium-voltage distribution systems(MVDSs)mainly consist of a feeder head,lines,distribution transformers,and the equivalent load or power supply interfaced with the distribution transformers.The information of such l...Medium-voltage distribution systems(MVDSs)mainly consist of a feeder head,lines,distribution transformers,and the equivalent load or power supply interfaced with the distribution transformers.The information of such load or power supply can be measured via the three-wattmeter method(THM)and the two-wattmeter method(TWM).The measurements can be used to perform the control of the power supply and simulate the characteristics of the load,so the models of the load and the power supply need to consider the measurement characteristics.Existing research works on three-phase power flow(PF)just consider the measurement characteristics of THM.Hence,the PF equation of the bus measured via TWM is firstly built.Based on conventional measurements,an accurate and general model of the grounded and ungrounded slack bus is proposed.Furthermore,the influence arising from the connection type and angle shift of distribution transformers on the admittance matrix is considered,and thus a general three-phase transformer model is summarized,which is applicable for all the transformers mentioned herein.Finally,Newton's method is adopted to solve the PF calculation,and the performance of the proposed PF model is demonstrated through designed tests.展开更多
In the period 2003-2011, lightning over-voltages accounted for about 47% of the total number of distribution transformer failures observed in the service area ofAES Sul, a power company that operates in the state of R...In the period 2003-2011, lightning over-voltages accounted for about 47% of the total number of distribution transformer failures observed in the service area ofAES Sul, a power company that operates in the state of Rio Grande doSul, in South Brazil. This paper presents the results of an investigation on the influence of the distance between transformer and MV arresters on the surges at the transformer windings caused by direct strikes to the MV network. The analysis, performed through simulations using the Alternative Transients Program, shows that in general higher voltages are produced by subsequent strokes. Although in relation to the primary side the surges transferred to the secondary are much less affected by the distance between transformers and primary arresters, such distance should always be kept as short as possible in order to reduce the probability of occurrence of transformer failures due to over-voltages at the MV bushings.展开更多
Wireless Sensor Networks(WSN) are mainly characterized by a potentially large number of distributed sensor nodes which collectively transmit information about sensed events to the sink.In this paper,we present a Distr...Wireless Sensor Networks(WSN) are mainly characterized by a potentially large number of distributed sensor nodes which collectively transmit information about sensed events to the sink.In this paper,we present a Distributed Wavelet Basis Generation(DWBG) algorithm performing at the sink to obtain the distributed wavelet basis in WSN.And on this basis,a Wavelet Transform-based Distributed Compressed Sensing(WTDCS) algorithm is proposed to compress and reconstruct the sensed data with spatial correlation.Finally,we make a detailed analysis of relationship between reconstruction performance and WTDCS algorithm parameters such as the compression ratio,the channel Signal-to-Noise Ratio(SNR),the observation noise power and the correlation decay parameter by simulation.The simulation results show that WTDCS can achieve high performance in terms of energy and reconstruction accuracy,as compared to the conventional distributed wavelet transform algorithm.展开更多
It is important to estimate the Signal-to-Noise Ratio(SNR) of unknown emitter signal accurately.In order to resolve the disadvantages of present algorithm,a novel method is proposed in this letter.We extract and norma...It is important to estimate the Signal-to-Noise Ratio(SNR) of unknown emitter signal accurately.In order to resolve the disadvantages of present algorithm,a novel method is proposed in this letter.We extract and normalize the information of zero frequency of received signal by the Wigner-Vile Distribution(WVD) transformation and then get the approximate power of original signal by mathematic transformation,at last,we get the estimate value of SNR by the known account formula of SNR.Simulation results show that it is correct and feasible.展开更多
基金supported by the National Key Research and Development Plan of China under Grant(2016YFB0900600XXX)
文摘The modelling of the distribution transformer winding is the starting point and serves as important basis for the transformer characteristics analysis and the lightning pulse response prediction.A distributed parameters model can depict the winding characteristics accurately,but it requires complex calculations.Lumped parameter model requires less calculations,but its applicable frequency range is not wide.This paper studies the amplitude-frequency characteristics of the lightning wave,compares the transformer modelling methods and finally proposes a modified lumped parameter model,based on the above comparison.The proposed model minimizes the errors provoked by the lumped parameter approximation,and the hyperbolic functions of the distributed parameter model.By this modification it becomes possible to accurately describe the winding characteristics and rapidly obtain the node voltage response.The proposed model can provide theoretical and experimental support to lightning protection of the distribution transformer.
文摘The distribution transformer is the mainstay of the power system.Its internal temperature study is desirable for its safe operation in the power system.The purpose of the present study is to determine direct comprehensive thermal distribution in the distribution transformers for different loading conditions.To achieve this goal,the temperature distribution in the oil,core,and windings are studied at each loading.An experimental study is performed with a 10/0.38 kV,10 kVA oil–immersed transformer equipped with forty–two PT100 sensors(PTs)for temperature measurement installed inside during its manufacturing process.All possible locations for the hottest spot temperature(HST)are considered that made by finite element analysis(FEA)simulation and losses calculations.A resistive load is made to achieve 80%to 120%loading of the test transformer for this experiment.Working temperature is measured in each part of the transformer at all provided loading conditions.It is observed that temperature varies with loading throughout the transformer,and a detailed map of temperature is obtained in the whole test transformer.From these results,the HST stays in the critical section of the primary winding at all loading conditions.This work is helpful to understand the complete internal temperature layout and the location of the HST in distribution transformers.
基金supported by the science and technology project of China Southern Power Grid(No.GDKJXM20180152).
文摘In the current paper,which deals with the noise pollution excited by distribution transformers in the living area,a comprehensive treatment scheme is put forward for the purpose of reducing the sound pressure level emitting into the environment.In accordance with the associated test standard,the sound pressure levels of distribution transformer and surrounding environment are not only tested but analyzed as well.The measurements were carried out with the frequency analysis of the 1/3 octave resolution,with the center frequencies at 125 Hz,250 Hz,400 Hz,and 500 Hz.As illustrated,on the basis of the measurement results,the frequency of noise at 500 Hz of distribution transformer causes the major noise pollution in the surrounding environment.This measurement result is in line with the noise frequency characteristics of distribution transformer.There are two transmission routes of noise:(i)the noise excited by distribution transformer transmits by means of the wall of distribution room,and (ii)part of noise spreads through the ground of distribution room.Accordingly,acoustic shield and vibration isolation device are applied for the reduction of the low frequency noise emitted through the above two paths.Aimed at applying the appropriate acoustic material and vibration mounting,the evaluation of the noise reduction and vibration absorption is carried out in accordance with the sound and vibration insulation theory.Following the noise treatment,the transformer and environment noise are measured again.The corresponding findings shed light on the fact that the sound level satisfied the requirement of limits of the ordinance.The proposed noise treatment scheme can be applied to the existing power distribution facilities for controlling the sound levels that reach a point where it is comparatively more unobjectionable.
文摘To reduce distribution transformer losses and carbon dioxide emissions, in recent years, the major countries in the world have issued mandatory standards for high-energy efficiency in distribution transformers. In 2013,China has carried out a new standard GB 20052-2013. To meet the update of the standard and energy efficiency,it is important to enhance the magnetic properties of core materials. The new products B18R065 and B20R070 which are developed by Baosteel, are successfully used for grade 1 energy efficiency distribution transformers. And Baosteel becomes one of the companies which can supply both the 0.20 mm and the 0.18 mm gauge grain oriented electrical steels (GOES) in the world. The development principle, material properties, and transformer performance of B18R065 and B20R070 were introduced,which were expected to be a useful reference for materials selection by transformer manufacturers.
文摘A de-centralised load management technique exploiting the flexibility in the charging of Electric Vehicles (EVs) is presented. Two charging regimes are assumed. The Controlled Charging Regime (CCR) between 16:30 hours and 06:00 hours of the next day and the Uncontrolled Charging Regime (UCR) between 06:00 hours and 16:30 hours of the same day. During the CCR, the charging of EVs is coordinated and controlled by means of a wireless two-way communication link between EV Smart Charge Controllers (EVSCCs) at EV owners’ premises and the EV Load Controller (EVLC) at the local LV distribution substation. The EVLC sorts the EVs batteries in ascending order of their states of charge (SoC) and sends command signals for charging to as many EVs as the transformer could allow at that interval based on the condition of the transformer as analysed by the Distribution Transformer Monitor (DTM). A real and typical urban LV area distribution network in Great Britain (GB) is used as the case study. The technique is applied on</span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">the LV area when its transformer is carrying the future load demand of the area on a typical winter weekday in the year 2050. To achieve the load management, load demand of the LV area network is decomposed into Non-EV <span>load and EV load. The load on the transformer is managed by varying the EV load in an optimisation objective function which maximises the capacity uti</span>lisation of the transformer subject to operational constraints and non-disruption of daily trips of EV owners. Results show that with the proposed load management technique, LV distribution networks could accommodate high uptake of EVs without compromising the useful normal life expectancy of distribution transformers before the need for capacity reinforcement.
文摘Owning to the rapid economy development in China and sharp increase of energyconsumption in recent years, energy shortage is increasingly apparent and becoming an importantobstacle to the sustainable development of our economy. With the aim to relieve the problem ofenergy shortage, the State Development and Reform Commission places the great emphasis ofenergy-saving work on improving energy efficiency of industrial energy-consuming products inenergy-saving work. The General Administration of Quality Supervision, Inspection and Quarantine ofthe People's Republic of China (AQSIQ) has issued and implemented two energy efficiency standardsfor three-phase induction motors and displacement air compressor, and will soon issue another twoenergy efficiency standards for clean- water centrifugal pumps and ventilation fans. The transformeris a kind of electric equipment widely used in many industries in national economy, with featuresof great amount of use, long period of operation and tremendous potential of energy-saving. So, itis necessary to develop the standard of energy efficiency for distribution transformers.
文摘A transformer is an essential but expensive power delivery equipment for a distribution utility.In many distribution utilities worldwide,a sizable percentage of transformers are near the end of their designed life.At the same time,distribution utilities are adopting smart inverter-based distributed solar photovoltaic(SPV)systems to maximize renewable generation.The central objective of this paper is to propose a methodology to quantify the effect of smart inverter-based distributed SPV systems on the aging of distribution transformers.The proposed method is first tested on a modified IEEE-123 node distribution feeder.After that,the procedure is applied to a practical distribution system,i.e.,the Indian Institute of Technology(IIT)Roorkee campus,India.The transformer aging models,alongside advanced control functionalities of grid-tied smart inverter-based SPV systems,are implemented in MATLAB.The open-source simulation tool(OpenDSS)is used to model distribution networks.To analyze effectiveness of various inverter functionalities,time-series simulations are performed using exponential load models,considering daily load curves from multiple seasons,load types,current harmonics,etc.Findings show replacing a traditional inverter with a smart inverter-based SPV system can enable local reactive power generation and may extend the life of a distribution transformer.Simulation results demonstrate,simply by incorporating smart inverter-based SPV systems,transformer aging is reduced by 15%to 22%in comparison to SPV systems operating with traditional inverters.
基金supported by the State Grid Science and Technology Project from State Grid Corporation of China(B626KY190004)the Key Research and Development Project of Shaanxi Province in 2018(No.2018ZDCXL-GY-07-05)。
文摘Hybrid distribution transformers(HDTs)have better performance than traditional distribution transformers in improving power quality through reducing harmonics,unbalance,voltage fluctuations and low power factors in future smart power distribution systems.In order to increase the service life and reliability of hybrid distribution transformers,this paper proposes a remote management system using LoRa technology based on fuzzy logic.HDT based on a fuzzy logic judgment system(FLJS)replaces the Boolean logic with fuzzy logic and several power quality problems including power factors,load-side current harmonics and voltage unbalance are considered,as well as grid-side voltage deviation and unbalance.This management system can dynamically adjust the working states of HDT according to the output results of the FLJS to reduce the use time of power electronic devices.Due to the application of LoRa,this management system can remotely adjust the parameters of the FLJS in real time for different distribution network nodes to avoid frequent switching of HDT working states.In addition,it is able to remotely monitor the real-time working states and fault states of HDT to reduce recovery time and maintenance costs in case of HDT failure.Finally,simulation and experimental results are presented to verify the effectiveness of the proposed management system for HDT.
文摘The steady-state calculations are performed using IEC guidelines to determine the hot spot temperatures of distribution and power transformers in the worst projected Finnish environment due to long summer periods. Moreover, the effect of increase in winding resistance due to increase in ambient temperatures has been taken into account. The primary objective of the research is to investigate the possible extreme circumstances due to climate change. It is concluded that the power and distribution transformers should be progressively de-rated under such circumstances for their safe operations, which will not only prove cost-effective for utilities but also improve the reliability of the power supply to their valued customers in the challenging future smart grid environment.
文摘At present, an automatic-mechanic contact tap-changer is widely used in power system, but it can not frequently operate. In addition, arc will occur when the switch changes. In order to solve these two problems, this paper presented an automatic on-load voltage-regulating distributing transformer which employed non-contact solid-state relay as tap-changer, and mainly introduced its structure, basic principal, design method of each key link and experimental results. Laboratory simulation experiments informed that the scheme was feasible. It was a smooth and effective experiment device, which was practical in application.
基金supported by the State Key Laboratory of Coal Resources and Safe Mining (No. SKLCRSM10X04)the National Natural Science Foundation of China ((No. 21243006)+1 种基金the Foundation of Ministry of Education of China ((No. 02019)the Priority Academic Program Development of Jiangsu Higher Education Institutions (No.SZBF2011-6-B35)
文摘In order to study temperature field distribution in burnt surrounding rock and to determine ranges of burnt surrounding rock, coal-wall coking cycle and heat influence in the underground coal gasification(UCG) stope, based on the Laplace transform and inversion formula, we studied the temperature analytical solution of one-dimensional unsteady heat conduction for multi-layer overlying strata under the first and the forth kinds of boundary conditions, and we also carried out a numerical simulation of twodimensional unsteady heat conduction by the COMSOL multiphysics. The results show that when the boundary temperature of surrounding rock has a linear decrease because of a directional movement of heat source in the UCG flame working face, the temperature in surrounding rock increases first and then decreases with time, the peak of temperature curve decreases gradually and its position moves inside surrounding rock from the boundary. In the surrounding rock of UCG stope, there is an envelope curve of temperature curve clusters. We analyzed the influence of thermophysical parameters on envelope curves and put forward to take envelope curve as the calculation basis for ranges of burnt surrounding rock, coal-wall coking cycle and heat influence. Finally, the concrete numerical values are given by determining those judgement standards and temperature thresholds, which basically tally with the field geophysical prospecting results.
基金supported in part by the National Natural Science Foundation of China(No.52177071).
文摘Medium-voltage distribution systems(MVDSs)mainly consist of a feeder head,lines,distribution transformers,and the equivalent load or power supply interfaced with the distribution transformers.The information of such load or power supply can be measured via the three-wattmeter method(THM)and the two-wattmeter method(TWM).The measurements can be used to perform the control of the power supply and simulate the characteristics of the load,so the models of the load and the power supply need to consider the measurement characteristics.Existing research works on three-phase power flow(PF)just consider the measurement characteristics of THM.Hence,the PF equation of the bus measured via TWM is firstly built.Based on conventional measurements,an accurate and general model of the grounded and ungrounded slack bus is proposed.Furthermore,the influence arising from the connection type and angle shift of distribution transformers on the admittance matrix is considered,and thus a general three-phase transformer model is summarized,which is applicable for all the transformers mentioned herein.Finally,Newton's method is adopted to solve the PF calculation,and the performance of the proposed PF model is demonstrated through designed tests.
文摘In the period 2003-2011, lightning over-voltages accounted for about 47% of the total number of distribution transformer failures observed in the service area ofAES Sul, a power company that operates in the state of Rio Grande doSul, in South Brazil. This paper presents the results of an investigation on the influence of the distance between transformer and MV arresters on the surges at the transformer windings caused by direct strikes to the MV network. The analysis, performed through simulations using the Alternative Transients Program, shows that in general higher voltages are produced by subsequent strokes. Although in relation to the primary side the surges transferred to the secondary are much less affected by the distance between transformers and primary arresters, such distance should always be kept as short as possible in order to reduce the probability of occurrence of transformer failures due to over-voltages at the MV bushings.
基金the National Basic Research Program of China,the National Natural Science Foundation of China,the open research fund of National Mobile Communications Research Laboratory,Southeast University,the Postdoctoral Science Foundation of Jiangsu Province,the University Natural Science Research Program of Jiangsu Province,the Basic Research Program of Jiangsu Province (Natural Science Foundation)
文摘Wireless Sensor Networks(WSN) are mainly characterized by a potentially large number of distributed sensor nodes which collectively transmit information about sensed events to the sink.In this paper,we present a Distributed Wavelet Basis Generation(DWBG) algorithm performing at the sink to obtain the distributed wavelet basis in WSN.And on this basis,a Wavelet Transform-based Distributed Compressed Sensing(WTDCS) algorithm is proposed to compress and reconstruct the sensed data with spatial correlation.Finally,we make a detailed analysis of relationship between reconstruction performance and WTDCS algorithm parameters such as the compression ratio,the channel Signal-to-Noise Ratio(SNR),the observation noise power and the correlation decay parameter by simulation.The simulation results show that WTDCS can achieve high performance in terms of energy and reconstruction accuracy,as compared to the conventional distributed wavelet transform algorithm.
文摘It is important to estimate the Signal-to-Noise Ratio(SNR) of unknown emitter signal accurately.In order to resolve the disadvantages of present algorithm,a novel method is proposed in this letter.We extract and normalize the information of zero frequency of received signal by the Wigner-Vile Distribution(WVD) transformation and then get the approximate power of original signal by mathematic transformation,at last,we get the estimate value of SNR by the known account formula of SNR.Simulation results show that it is correct and feasible.