A Single-Buffered (SB) router is a router where only one stage of shared buffering is sandwiched between two interconnects in comparison of a Combined Input and Output Queued (CIOQ) router where a central switch f...A Single-Buffered (SB) router is a router where only one stage of shared buffering is sandwiched between two interconnects in comparison of a Combined Input and Output Queued (CIOQ) router where a central switch fabric is sandwiched between two stages of buffering. The notion of SB routers was firstly proposed by the High-Performance Networking Group (HPNG) of Stanford University, along with two promising designs of SB routers: one of which was Parallel Shared Memory (PSM) router and the other was Distributed Shared Memory (DSM) router. Admittedly, the work of HPNG deserved full credit, but all results presented by them appeared to relay on a Centralized Memory Management Algorithm (CMMA) which was essentially impractical because of the high processing and communication complexity. This paper attempts to make a scalable high-speed SB router completely practical by introducing a fully distributed architecture for managing the shared memory of SB routers. The resulting SB router is called as a Virtual Output and Input Queued (VOIQ) router. Furthermore, the scheme of VOIQ routers can not only eliminate the need for the CMMA scheduler, thus allowing a fully distributed implementation with low processing and commu- nication complexity, but also provide QoS guarantees and efficiently support variable-length packets in this paper. In particular, the results of performance testing and the hardware implementation of our VOIQ-based router (NDSC~ SR1880-TTM series) are illustrated at the end of this paper. The proposal of this paper is the first distributed scheme of how to design and implement SB routers publicized till now.展开更多
Computation offloading enables mobile devices to execute rich applications by using the abundant computing resources of powerful server systems. The distributed shared memory based (DSM-based) computation offloading a...Computation offloading enables mobile devices to execute rich applications by using the abundant computing resources of powerful server systems. The distributed shared memory based (DSM-based) computation offloading approach is expected to be especially popular in the near future because it can dynamically migrate running threads to computing nodes and does not require any modifications of existing applications to do so. The current DSM-based computation offloading scheme, however, has focused on efficiently offloading computationally intensive applications and has not considered the significant performance degradation caused by processing the I/O requests issued by offloaded threads. Because most mobile applications are interactive and thus yield frequent I/O requests, efficient handling of I/O operations is critically important. In this paper, we quantitatively analyze the performance degradation caused by I/O processing in DSM-based computation offloading schemes using representative commodity applications. To remedy the performance degradation, we apply a remote I/O scheme based on remote device support to computation offloading. The proposed approach improves the execution time by up to 43.6% and saves up to 17.7% of energy consumption in comparison with the existing offloading schemes. Selective compression of the remote I/O scheme reduces the network traffic by up to 53.5%.展开更多
基金the National High-Tech Research and De-velopment Program of China (863 Program) (2003AA103510, 2004AA103130, 2005AA121210).
文摘A Single-Buffered (SB) router is a router where only one stage of shared buffering is sandwiched between two interconnects in comparison of a Combined Input and Output Queued (CIOQ) router where a central switch fabric is sandwiched between two stages of buffering. The notion of SB routers was firstly proposed by the High-Performance Networking Group (HPNG) of Stanford University, along with two promising designs of SB routers: one of which was Parallel Shared Memory (PSM) router and the other was Distributed Shared Memory (DSM) router. Admittedly, the work of HPNG deserved full credit, but all results presented by them appeared to relay on a Centralized Memory Management Algorithm (CMMA) which was essentially impractical because of the high processing and communication complexity. This paper attempts to make a scalable high-speed SB router completely practical by introducing a fully distributed architecture for managing the shared memory of SB routers. The resulting SB router is called as a Virtual Output and Input Queued (VOIQ) router. Furthermore, the scheme of VOIQ routers can not only eliminate the need for the CMMA scheduler, thus allowing a fully distributed implementation with low processing and commu- nication complexity, but also provide QoS guarantees and efficiently support variable-length packets in this paper. In particular, the results of performance testing and the hardware implementation of our VOIQ-based router (NDSC~ SR1880-TTM series) are illustrated at the end of this paper. The proposal of this paper is the first distributed scheme of how to design and implement SB routers publicized till now.
文摘Computation offloading enables mobile devices to execute rich applications by using the abundant computing resources of powerful server systems. The distributed shared memory based (DSM-based) computation offloading approach is expected to be especially popular in the near future because it can dynamically migrate running threads to computing nodes and does not require any modifications of existing applications to do so. The current DSM-based computation offloading scheme, however, has focused on efficiently offloading computationally intensive applications and has not considered the significant performance degradation caused by processing the I/O requests issued by offloaded threads. Because most mobile applications are interactive and thus yield frequent I/O requests, efficient handling of I/O operations is critically important. In this paper, we quantitatively analyze the performance degradation caused by I/O processing in DSM-based computation offloading schemes using representative commodity applications. To remedy the performance degradation, we apply a remote I/O scheme based on remote device support to computation offloading. The proposed approach improves the execution time by up to 43.6% and saves up to 17.7% of energy consumption in comparison with the existing offloading schemes. Selective compression of the remote I/O scheme reduces the network traffic by up to 53.5%.