In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential r...In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)methodology.The proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the attributes.DE optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each alternative.Then the score values of alternatives are computed based on the aggregated q-RLDFVs.An alternative with the maximum score value is selected as a better one.The applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning management.Moreover,we have validated the proposed approach with a numerical example.Finally,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments.展开更多
Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust...Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.展开更多
The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) a...The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) and thecorrelation of each sub fuzzy system, the uncertainty of the HFS’s deep structure increases. For the HFS, a largenumber of studies mainly use fixed structures, which cannot be selected automatically. To solve this problem, thispaper proposes a novel approach for constructing the incremental HFS. During system design, the deep structureand the rule base of the HFS are encoded separately. Subsequently, the deep structure is adaptively mutated basedon the fitness value, so as to realize the diversity of deep structures while ensuring reasonable competition amongthe structures. Finally, the differential evolution (DE) is used to optimize the deep structure of HFS and theparameters of antecedent and consequent simultaneously. The simulation results confirm the effectiveness of themodel. Specifically, the root mean square errors in the Laser dataset and Friedman dataset are 0.0395 and 0.0725,respectively with rule counts of rules is 8 and 12, respectively.When compared to alternative methods, the resultsindicate that the proposed method offers improvements in accuracy and rule counts.展开更多
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3...Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.展开更多
Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then...Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then Ru3+was introduced for ion exchange,and the porous Ru-doped Co_(3)O_(4)/rGO(Ru-Co_(3)O_(4)/rGO)composite electrocatalyst was prepared by annealing.The phase structure,morphology,and valence state of the catalyst were analyzed by X-ray powder diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).In 1 mol·L^(-1)KOH,the oxygen evolution reaction(OER)performance of the catalyst was measured by linear sweep voltammetry,cyclic voltammetry,and chronoamperometry.The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer.At the same time,rGO as a carbon carrier can improve the electrical conductivity of Ru-Co_(3)O_(4)particles,and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst.The results showed that the electrochemical performance of Ru-Co_(3)O_(4)/rGO was much better than that of Co_(3)O_(4)/rGO,and the overpotential of Ru-Co_(3)O_(4)/rGO was 363.5 mV at the current density of 50 mA·cm^(-2).展开更多
Introduction: Influenza A (Flu A) and B (Flu B) viruses are responsible for severe acute respiratory infections (SARI) worldwide, with a morbidity of 5 million and mortality of 29,000 - 650,000 deaths per year. Influe...Introduction: Influenza A (Flu A) and B (Flu B) viruses are responsible for severe acute respiratory infections (SARI) worldwide, with a morbidity of 5 million and mortality of 29,000 - 650,000 deaths per year. Influenza B viruses are an important cause of respiratory infections in humans, but they tend to be underappreciated due to the predominance of Influenza A. No molecular study on Influenza B has been carried out in the DRC. This study was conducted to document the molecular evolution of the hemagglutinin (HA) gene in the circulating Influenza B strains over the eight consecutive epidemic seasons (from 2015 to 2022). Methods: Samples were collected from outpatient cases suspected of influenza-like illness (ILI) and in all hospitalized patients with SARI from January 2015 to December 2022. Molecular analysis was done to determine influenza type and subtype, and then segments encoding the HA gene of Influenza B viruses were performed. Results: Of 8497 samples collected and tested, 639 (7.5%) were positive for influenza viruses, including 389 (60.8%) for Influenza A viruses and 248 (38,8%) for Influenza B viruses. Of the positive Influenza B samples, 91 were sequenced, including 26 belonging to the B/Yamagata lineage and 65 to the B/Victoria lineage. The HA gene of Influenza B viruses circulating in the DRC showed deletions in the HA1 region. Molecular analysis of Influenza B viruses reflects the genetic diversity of Influenza B/Yam virus clades (Y2, Y3, Y3V1A) alternating with Influenza B/Victoria virus clades (V1A, V1A.3) depending on the year and influenza seasons. The phylogenetic analysis of these Influenza B strains shows compatibility with the corresponding vaccine strains that the WHO had validated for each influenza season. Conclusion: This study underscores the importance of continuous molecular surveillance of Influenza B viruses in the DRC to understand their epidemiology and evolutionary dynamics. Identifying mutations, such as HA deletions, is critical for assessing their impact on transmissibility vaccine efficacy and guiding effective vaccination and control strategies.展开更多
Streptococcus pneumoniae is a known notorious cause of invasive pneumococcal diseases as well as asymptomatic host carriage. Efforts have been made to curb this infectious organism through various vaccine strategies. ...Streptococcus pneumoniae is a known notorious cause of invasive pneumococcal diseases as well as asymptomatic host carriage. Efforts have been made to curb this infectious organism through various vaccine strategies. However, its several strains and serotypes have necessitated various vaccine schedules and updates in the USA and globally. The evolution in pneumococcal vaccine schedules is not without challenges, such as cost, vaccine hesitancy, uptake and global disparities. This narrative review synopsizes the history of the Pneumococcal Vaccine and changes in its schedules in the last two decades based on published data. We focused on the impact of pneumococcal vaccination on invasive pneumococcal diseases, historical limitations, current challenges and future directions. Despite advancements in vaccination against S. pneumoniae infections, some pertinent issues exist that need to be swiftly fixed, to reduce national and thus global burden of pneumococcal diseases.展开更多
Fractional-order time-delay differential equations can describe many complex physical phenomena with memory or delay effects, which are widely used in the fields of cell biology, control systems, signal processing, et...Fractional-order time-delay differential equations can describe many complex physical phenomena with memory or delay effects, which are widely used in the fields of cell biology, control systems, signal processing, etc. Therefore, it is of great significance to study fractional-order time-delay differential equations. In this paper, we discuss a finite volume element method for a class of fractional-order neutral time-delay differential equations. By introducing an intermediate variable, the fourth-order problem is transformed into a system of equations consisting of two second-order partial differential equations. The L1 formula is used to approximate the time fractional order derivative terms, and the finite volume element method is used in space. A fully discrete format of the equations is established, and we prove the existence, uniqueness, convergence and stability of the solution. Finally, the validity of the format is verified by numerical examples.展开更多
The rapid development and widespread adoption of massive open online courses(MOOCs)have indeed had a significant impact on China’s education curriculum.However,the problem of fake reviews and ratings on the platform ...The rapid development and widespread adoption of massive open online courses(MOOCs)have indeed had a significant impact on China’s education curriculum.However,the problem of fake reviews and ratings on the platform has seriously affected the authenticity of course evaluations and user trust,requiring effective anomaly detection techniques for screening.The textual characteristics of MOOCs reviews,such as varying lengths and diverse emotional tendencies,have brought complexity to text analysis.Traditional rule-based analysis methods are often inadequate in dealing with such unstructured data.We propose a Differential Privacy-Enabled Text Convolutional Neural Network(DP-TextCNN)framework,aiming to achieve high-precision identification of outliers in MOOCs course reviews and ratings while protecting user privacy.This framework leverages the advantages of Convolutional Neural Networks(CNN)in text feature extraction and combines differential privacy techniques.It balances data privacy protection with model performance by introducing controlled random noise during the data preprocessing stage.By embedding differential privacy into the model training process,we ensure the privacy security of the framework when handling sensitive data,while maintaining a high recognition accuracy.Experimental results indicate that the DP-TextCNN framework achieves an exceptional accuracy of over 95%in identifying fake reviews on the dataset,this outcome not only verifies the applicability of differential privacy techniques in TextCNN but also underscores its potential in handling sensitive educational data.Additionally,we analyze the specific impact of differential privacy parameters on framework performance,offering theoretical support and empirical analysis to strike an optimal balance between privacy protection and framework efficiency.展开更多
Myocarditis is a serious cardiovascular ailment that can lead to severe consequences if not promptly treated.It is triggered by viral infections and presents symptoms such as chest pain and heart dysfunction.Early det...Myocarditis is a serious cardiovascular ailment that can lead to severe consequences if not promptly treated.It is triggered by viral infections and presents symptoms such as chest pain and heart dysfunction.Early detection is crucial for successful treatment,and cardiac magnetic resonance imaging(CMR)is a valuable tool for identifying this condition.However,the detection of myocarditis using CMR images can be challenging due to low contrast,variable noise,and the presence of multiple high CMR slices per patient.To overcome these challenges,the approach proposed incorporates advanced techniques such as convolutional neural networks(CNNs),an improved differential evolution(DE)algorithm for pre-training,and a reinforcement learning(RL)-based model for training.Developing this method presented a significant challenge due to the imbalanced classification of the Z-Alizadeh Sani myocarditis dataset from Omid Hospital in Tehran.To address this,the training process is framed as a sequential decision-making process,where the agent receives higher rewards/penalties for correctly/incorrectly classifying the minority/majority class.Additionally,the authors suggest an enhanced DE algorithm to initiate the backpropagation(BP)process,overcoming the initialisation sensitivity issue of gradient-based methods like back-propagation during the training phase.The effectiveness of the proposed model in diagnosing myocarditis is demonstrated through experimental results based on standard performance metrics.Overall,this method shows promise in expediting the triage of CMR images for automatic screening,facilitating early detection and successful treatment of myocarditis.展开更多
When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on ...When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on optimizing the furnace temperature curve under varying settings of reflow oven zone temperatures and conveyor belt speeds.To address this,the research sequentially develops a heat transfer model for reflow soldering,an optimization model for reflow furnace conditions using the differential evolution algorithm,and an evaluation and decision model combining the differential evolution algorithm with the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method.This approach aims to determine the optimal furnace temperature curve,zone temperatures of the reflow oven,and the conveyor belt speed.展开更多
Transition metal-based nanomaterials have emerged as promising electrocatalysts for oxygen evolution reaction(OER).Considerable research efforts have shown that self-reconstruction occurs on these nanomaterials under ...Transition metal-based nanomaterials have emerged as promising electrocatalysts for oxygen evolution reaction(OER).Considerable research efforts have shown that self-reconstruction occurs on these nanomaterials under operating conditions of OER process.However,most of them undergo incomplete reconstruction with limited thickness of reconstruction layer,leading to low component utilization and arduous exploration of real catalytic mechanism.Herein,we identify the dynamic behaviors in complete reconstruction of Co-based complexes during OER.The hollow phytic acid(PA)cross-linked CoFe-based complex nanoboxes with porous nanowalls are designed because of their good electrolyte penetration and mass transport ability,in favor of the fast and complete reconstruction.A series of experiment characterizations demonstrate that the reconstruction process includes the fast substitution of PA by OH-to form Co(Fe)(OH)xand subsequent potential-driven oxidation to Co(Fe)OOH.The obtained CoFeOOH delivers a low overpotential of 290 mV at a current density of 10 mA cm^(-2)and a long-term stability.The experiment results together with theory calculations reveal that the Fe incorporation can result in the electron rearrangement of reconstructed CoFeOOH and optimization of their electronic structure,accounting for the enhanced OER activity.The work provides new insights into complete reconstruction of metal-based complexes during OER and offers guidelines for rational design of high-performance electrocatalysts.展开更多
In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Ther...In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Therefore,the fluid evolution characteristics and rock fracture behavior during jet impingement were studied.The results indicate that the breaking process of high-temperature rock by jet impact can be divided into four stages:initial fluid-solid contact stage,intense thermal exchange stage,perforation and fracturing stage,and crack propagation and penetration stage.With the increase of rock temperature,the jet reflection angles and the time required for complete cooling of the impact surface significantly decrease,while the number of cracks and crack propagation rate significantly increase,and the rock breaking critical time is shortened by up to 34.5%.Based on numerical simulation results,it was found that the center temperature of granite at 400℃ rapidly decreased from 390 to 260℃ within 0.7 s under jet impact.In addition,a critical temperature and critical heat flux prediction model considering the staged breaking of hot rocks was established.These findings provide valuable insights to guide the water jet technology assisted deep ground hot rock excavation project.展开更多
Birdsong is an important secondary sexual trait which may vary between but also within species.Intraspecific variation is generally studied either on the geographical or on the temporal scale;most of the studies explo...Birdsong is an important secondary sexual trait which may vary between but also within species.Intraspecific variation is generally studied either on the geographical or on the temporal scale;most of the studies exploring the variation of song over time,however,focused on species with rather simple songs.In this study,we explored the temporal changes in song of a complex songster,the Thrush Nightingale(Luscinia luscinia),recorded after 33 years(in 1986 and 2019)at the same locality in south-eastern Finland.Our analysis revealed a complete turnover of song types over the study period,with no song type shared between the two recording years.In contrast,40%of the originally recorded syllable types were still found in the repertoires of recently recorded males.Their song type repertoires were significantly smaller but the songs themselves were on average longer compared to the 1986 recordings.Repertoires of both syllables and song types were more shared between males recorded in 1986 than between those from 2019.We discuss the processes that may have contributed to these temporal changes in song and call for more detailed studies of song evolution in wild populations.展开更多
Designing highly active and stable electrocatalysts of oxygen evolution reaction(OER)is one of the crucial challenges.In this study,a novel OER electrocatalyst,NiFe-MIL-53 modified with ultra-low rhodium(Rh@NiFe-MIL-5...Designing highly active and stable electrocatalysts of oxygen evolution reaction(OER)is one of the crucial challenges.In this study,a novel OER electrocatalyst,NiFe-MIL-53 modified with ultra-low rhodium(Rh@NiFe-MIL-53),is successfully prepared via the hydrothermal method.In-situ Raman spectroscopy and electrochemical impedance spectroscopy reveal that the doped Rh accelerates the phase transformation of NiFe-MIL-53 and the in-situ formed Rh@NiFeOOH is the actual active species.More importantly,the enhanced reversibility of electrochemical reconstruction between NiFeOOH and NiFe(OH)_(2)after doping Rh is beneficial for improving the electrochemical stability of the catalyst.X-ray photoelectron spectroscopy spectra show the strong electronic interaction between single-atom Rh and Ni/Fe in Rh@NiFeOOH.Furthermore,theoretical calculations confirm that the integration of single-atom Rh into the NiFeOOH successfully reduces the band gap,regulates the d-band center(εd),accelerates the charge transfer,and optimizes the adsorption behavior of oxygen-containing intermediates,thereby lowering the energy barrier of rate-determining steps.Consequently,the optimized Rh@NiFe-MIL-53 exhibits excellent OER activity(240 mV)with a small Tafel slope of 48.2 mV dec^(-1)and long-term durability(over1270 h at 10 m A cm^(-2)and 110 h at 200 mA cm^(-2)).This work presents a new perspective on designing highly efficient OER electrocatalysts.展开更多
Sechium edule(chayote)is an important vegetable crop belonging to the Cucurbitaceae family.To decipher the chayote genome,a highquality chromosome-level chayote genome was obtained by genome sequencing and bioinformat...Sechium edule(chayote)is an important vegetable crop belonging to the Cucurbitaceae family.To decipher the chayote genome,a highquality chromosome-level chayote genome was obtained by genome sequencing and bioinformatic analysis.The total length was612.91 Mb,and 25755 genes were detected in the chayote genome.The contig N50 was more than 20.01 Mb,and the scaffold N50 was over47.11 Mb.Of the genome,60.35%were composed of repetitive sequences,and 31.18%of genome sequences belonged to long-terminal repeats.A global alignment of homologous regions in chayote and other Cucurbitaceae plant genomes was constructed using grape as a reference.Based on this genome-wide and global alignment map,researchers can easily identify homologous collinear genes of the studied genomes in most Cucurbitaceae species.Twenty-five chayote accessions were divided into two subgroups based on phylogenetic tree,population structure analysis,and principal component analysis using genome re-sequencing data.The chayote genome,re-sequencing dataset,and comprehensive genomic analysis will accelerate comparative and functional genomic analysis of chayote and other Cucurbitaceae species in the future.展开更多
Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wil...Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wild C.oleifera can serve as a case for studying the molecular bases of adaptive evolution to freezing stress.Here,47 wild C.oleifera from 11 natural distribution sites in China and 4 relative species of C.oleifera were selected for genome sequencing.“Min Temperature of Coldest Month”(BIO6)had the highest comprehensive contribution to wild C.oleifera distribution.The population genetic structure of wild C.oleifera could be divided into two groups:in cold winter(BIO6≤0℃)and warm winter(BIO6>0℃)areas.Wild C.oleifera in cold winter areas might have experienced stronger selection pressures and population bottlenecks with lower N_(e) than those in warm winter areas.155 singlenucleotide polymorphisms(SNPs)were significantly correlated with the key bioclimatic variables(106 SNPs significantly correlated with BIO6).Twenty key SNPs and 15 key copy number variation regions(CNVRs)were found with genotype differentiation>50%between the two groups of wild C.oleifera.Key SNPs in cis-regulatory elements might affect the expression of key genes associated with freezing tolerance,and they were also found within a CNVR suggesting interactions between them.Some key CNVRs in the exon regions were closely related to the differentially expressed genes under freezing stress.The findings suggest that rich SNPs and CNVRs in polyploid trees may contribute to the adaptive evolution to freezing stress.展开更多
Feeding behavior is regulated by a complex network of endogenous neuropeptides.In chordates,this role is suggested to be under the control of diverse factors including thyrotropin-releasing hormone(TRH).However,whethe...Feeding behavior is regulated by a complex network of endogenous neuropeptides.In chordates,this role is suggested to be under the control of diverse factors including thyrotropin-releasing hormone(TRH).However,whether this regulatory activity of TRH is functionally conserved in non-chordate metazoans,and to what extent this process is underpinned by interactions of TRH with other neuropeptides such as cholecystokinin(CCK,known as a satiety signal),remain unclear.This study investigated the TRH signaling system in the echinoderm Apostichopus japonicus.Bioinformatic analyses and ligand-binding assays identified a functional TRH receptor(AjTRHR)that activated signaling via the MAPK/ERK1/2pathways.Experimental administration of TRH significantly reduced feeding activity,while up-regulating CCK expression.RNA interference(RNAi)experiments confirmed that both CCK and TRH are essential components of satiety signaling,working synergistically to mediate feeding inhibition.Evolutionary analysis of TRHtype peptides revealed greater conservation of the short isoform of TRH compared to the long isoform,probably driven by strong selection acting on the functional redundancy.These findings provide compelling evidence of a TRH-mediated signaling system in non-chordate deuterostomes,expandingourunderstandingof neuropeptide-regulated feeding mechanisms in marine invertebrates.展开更多
Exploring the spatial evolution patterns of land use in creative urban tourism complexes provides theoretical and decision-making support to foster creative tourism projects.This study focuses on the Hangzhou Leisure ...Exploring the spatial evolution patterns of land use in creative urban tourism complexes provides theoretical and decision-making support to foster creative tourism projects.This study focuses on the Hangzhou Leisure Expo Garden as a case study,utilizing a land use change index model to analyze the spatial evolution characteristics and dynamic processes of creative urban tourism complexes,as well as to explore their spatial differentiation mechanisms.The analysis indicates that Hangzhou Leisure Expo Garden,initially a derelict industrial area dominated by production and residential land use,has evolved into a creative urban tourism complex with tourism comprehensive service land at its core,going through the pattern evolution processes of“constrained sprawl,”“intensive expansion,”and“random integration.”From the perspective of tourism human-land relationships,the formation of land use evolution patterns in creative urban tourism complexes results from various stakeholders(government,tourism enterprises,residents,tourists,etc.),as humanistic factors,continuously adapting to specific urban spaces,which are considered as geographical elements and have locational advantages and are oriented towards economic and social values.Based on the acquisition of stakeholder interests,the transformation of resource-disadvantaged areas into tourism advantage areas is facilitated,thereby achieving the re-creation of tourism creative space and promoting intensive spatial growth.展开更多
Preexisting cracks inside tight sandstones are one of the most important properties for controlling the mechanical and seepage behaviors.During the cyclic loading process,the rock generally exhibits obvious memorabili...Preexisting cracks inside tight sandstones are one of the most important properties for controlling the mechanical and seepage behaviors.During the cyclic loading process,the rock generally exhibits obvious memorability and irreversible plastic deformation,even in the linear elastic stage.The assessment of the evolution of preexisting cracks under hydrostatic pressure loading and unloading processes is helpful in understanding the mechanism of plastic deformation.In this study,ultrasonic measurements were conducted on two tight sandstone specimens with different bedding orientations subjected to hydrostatic loading and unloading processes.The P-wave velocity was characterized by a similar response with the volumetric strain to the hydrostatic pressure and showed different strain sensitivities at different loading and unloading stages.A numerical model based on the discrete element method(DEM)was proposed to quantitatively clarify the evolution of the crack distribution under different hydrostatic pressures.The numerical model was verified by comparing the evolution of the measured P-wave velocities on two anisotropic specimens.The irreversible plastic deformation that occurred during the hydrostatic unloading stage was mainly due to the permanent closure of plastic-controlled cracks.The closure and reopening of cracks with a small aspect ratio account for the major microstructure evolution during the hydrostatic loading and unloading processes.Such evolution of microcracks is highly dependent on the stress path.The anisotropy of the crack distribution plays an important role in the magnitude and strain sensitivity of the P-wave velocity under stress conditions.The study can provide insight into the microstructure evolution during cyclic loading and unloading processes.展开更多
文摘In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)methodology.The proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the attributes.DE optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each alternative.Then the score values of alternatives are computed based on the aggregated q-RLDFVs.An alternative with the maximum score value is selected as a better one.The applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning management.Moreover,we have validated the proposed approach with a numerical example.Finally,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments.
基金supported in part by the National Key Research and Development Program of China(2021YFC2902703)the National Natural Science Foundation of China(62173078,61773105,61533007,61873049,61873053,61703085,61374147)。
文摘Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.
基金the Sichuan Science and Technology Program(2021ZYD0016).
文摘The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) and thecorrelation of each sub fuzzy system, the uncertainty of the HFS’s deep structure increases. For the HFS, a largenumber of studies mainly use fixed structures, which cannot be selected automatically. To solve this problem, thispaper proposes a novel approach for constructing the incremental HFS. During system design, the deep structureand the rule base of the HFS are encoded separately. Subsequently, the deep structure is adaptively mutated basedon the fitness value, so as to realize the diversity of deep structures while ensuring reasonable competition amongthe structures. Finally, the differential evolution (DE) is used to optimize the deep structure of HFS and theparameters of antecedent and consequent simultaneously. The simulation results confirm the effectiveness of themodel. Specifically, the root mean square errors in the Laser dataset and Friedman dataset are 0.0395 and 0.0725,respectively with rule counts of rules is 8 and 12, respectively.When compared to alternative methods, the resultsindicate that the proposed method offers improvements in accuracy and rule counts.
基金Research Institute for Smart Energy(CDB2)the grant from the Research Institute for Advanced Manufacturing(CD8Z)+4 种基金the grant from the Carbon Neutrality Funding Scheme(WZ2R)at The Hong Kong Polytechnic Universitysupport from the Hong Kong Polytechnic University(CD9B,CDBZ and WZ4Q)the National Natural Science Foundation of China(22205187)Shenzhen Municipal Science and Technology Innovation Commission(JCYJ20230807140402006)Start-up Foundation for Introducing Talent of NUIST and Natural Science Foundation of Jiangsu Province of China(BK20230426).
文摘Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.
文摘Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then Ru3+was introduced for ion exchange,and the porous Ru-doped Co_(3)O_(4)/rGO(Ru-Co_(3)O_(4)/rGO)composite electrocatalyst was prepared by annealing.The phase structure,morphology,and valence state of the catalyst were analyzed by X-ray powder diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).In 1 mol·L^(-1)KOH,the oxygen evolution reaction(OER)performance of the catalyst was measured by linear sweep voltammetry,cyclic voltammetry,and chronoamperometry.The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer.At the same time,rGO as a carbon carrier can improve the electrical conductivity of Ru-Co_(3)O_(4)particles,and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst.The results showed that the electrochemical performance of Ru-Co_(3)O_(4)/rGO was much better than that of Co_(3)O_(4)/rGO,and the overpotential of Ru-Co_(3)O_(4)/rGO was 363.5 mV at the current density of 50 mA·cm^(-2).
文摘Introduction: Influenza A (Flu A) and B (Flu B) viruses are responsible for severe acute respiratory infections (SARI) worldwide, with a morbidity of 5 million and mortality of 29,000 - 650,000 deaths per year. Influenza B viruses are an important cause of respiratory infections in humans, but they tend to be underappreciated due to the predominance of Influenza A. No molecular study on Influenza B has been carried out in the DRC. This study was conducted to document the molecular evolution of the hemagglutinin (HA) gene in the circulating Influenza B strains over the eight consecutive epidemic seasons (from 2015 to 2022). Methods: Samples were collected from outpatient cases suspected of influenza-like illness (ILI) and in all hospitalized patients with SARI from January 2015 to December 2022. Molecular analysis was done to determine influenza type and subtype, and then segments encoding the HA gene of Influenza B viruses were performed. Results: Of 8497 samples collected and tested, 639 (7.5%) were positive for influenza viruses, including 389 (60.8%) for Influenza A viruses and 248 (38,8%) for Influenza B viruses. Of the positive Influenza B samples, 91 were sequenced, including 26 belonging to the B/Yamagata lineage and 65 to the B/Victoria lineage. The HA gene of Influenza B viruses circulating in the DRC showed deletions in the HA1 region. Molecular analysis of Influenza B viruses reflects the genetic diversity of Influenza B/Yam virus clades (Y2, Y3, Y3V1A) alternating with Influenza B/Victoria virus clades (V1A, V1A.3) depending on the year and influenza seasons. The phylogenetic analysis of these Influenza B strains shows compatibility with the corresponding vaccine strains that the WHO had validated for each influenza season. Conclusion: This study underscores the importance of continuous molecular surveillance of Influenza B viruses in the DRC to understand their epidemiology and evolutionary dynamics. Identifying mutations, such as HA deletions, is critical for assessing their impact on transmissibility vaccine efficacy and guiding effective vaccination and control strategies.
文摘Streptococcus pneumoniae is a known notorious cause of invasive pneumococcal diseases as well as asymptomatic host carriage. Efforts have been made to curb this infectious organism through various vaccine strategies. However, its several strains and serotypes have necessitated various vaccine schedules and updates in the USA and globally. The evolution in pneumococcal vaccine schedules is not without challenges, such as cost, vaccine hesitancy, uptake and global disparities. This narrative review synopsizes the history of the Pneumococcal Vaccine and changes in its schedules in the last two decades based on published data. We focused on the impact of pneumococcal vaccination on invasive pneumococcal diseases, historical limitations, current challenges and future directions. Despite advancements in vaccination against S. pneumoniae infections, some pertinent issues exist that need to be swiftly fixed, to reduce national and thus global burden of pneumococcal diseases.
文摘Fractional-order time-delay differential equations can describe many complex physical phenomena with memory or delay effects, which are widely used in the fields of cell biology, control systems, signal processing, etc. Therefore, it is of great significance to study fractional-order time-delay differential equations. In this paper, we discuss a finite volume element method for a class of fractional-order neutral time-delay differential equations. By introducing an intermediate variable, the fourth-order problem is transformed into a system of equations consisting of two second-order partial differential equations. The L1 formula is used to approximate the time fractional order derivative terms, and the finite volume element method is used in space. A fully discrete format of the equations is established, and we prove the existence, uniqueness, convergence and stability of the solution. Finally, the validity of the format is verified by numerical examples.
文摘The rapid development and widespread adoption of massive open online courses(MOOCs)have indeed had a significant impact on China’s education curriculum.However,the problem of fake reviews and ratings on the platform has seriously affected the authenticity of course evaluations and user trust,requiring effective anomaly detection techniques for screening.The textual characteristics of MOOCs reviews,such as varying lengths and diverse emotional tendencies,have brought complexity to text analysis.Traditional rule-based analysis methods are often inadequate in dealing with such unstructured data.We propose a Differential Privacy-Enabled Text Convolutional Neural Network(DP-TextCNN)framework,aiming to achieve high-precision identification of outliers in MOOCs course reviews and ratings while protecting user privacy.This framework leverages the advantages of Convolutional Neural Networks(CNN)in text feature extraction and combines differential privacy techniques.It balances data privacy protection with model performance by introducing controlled random noise during the data preprocessing stage.By embedding differential privacy into the model training process,we ensure the privacy security of the framework when handling sensitive data,while maintaining a high recognition accuracy.Experimental results indicate that the DP-TextCNN framework achieves an exceptional accuracy of over 95%in identifying fake reviews on the dataset,this outcome not only verifies the applicability of differential privacy techniques in TextCNN but also underscores its potential in handling sensitive educational data.Additionally,we analyze the specific impact of differential privacy parameters on framework performance,offering theoretical support and empirical analysis to strike an optimal balance between privacy protection and framework efficiency.
文摘Myocarditis is a serious cardiovascular ailment that can lead to severe consequences if not promptly treated.It is triggered by viral infections and presents symptoms such as chest pain and heart dysfunction.Early detection is crucial for successful treatment,and cardiac magnetic resonance imaging(CMR)is a valuable tool for identifying this condition.However,the detection of myocarditis using CMR images can be challenging due to low contrast,variable noise,and the presence of multiple high CMR slices per patient.To overcome these challenges,the approach proposed incorporates advanced techniques such as convolutional neural networks(CNNs),an improved differential evolution(DE)algorithm for pre-training,and a reinforcement learning(RL)-based model for training.Developing this method presented a significant challenge due to the imbalanced classification of the Z-Alizadeh Sani myocarditis dataset from Omid Hospital in Tehran.To address this,the training process is framed as a sequential decision-making process,where the agent receives higher rewards/penalties for correctly/incorrectly classifying the minority/majority class.Additionally,the authors suggest an enhanced DE algorithm to initiate the backpropagation(BP)process,overcoming the initialisation sensitivity issue of gradient-based methods like back-propagation during the training phase.The effectiveness of the proposed model in diagnosing myocarditis is demonstrated through experimental results based on standard performance metrics.Overall,this method shows promise in expediting the triage of CMR images for automatic screening,facilitating early detection and successful treatment of myocarditis.
文摘When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on optimizing the furnace temperature curve under varying settings of reflow oven zone temperatures and conveyor belt speeds.To address this,the research sequentially develops a heat transfer model for reflow soldering,an optimization model for reflow furnace conditions using the differential evolution algorithm,and an evaluation and decision model combining the differential evolution algorithm with the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method.This approach aims to determine the optimal furnace temperature curve,zone temperatures of the reflow oven,and the conveyor belt speed.
基金National Natural Science Foundation of China(22478310,U21A20286 and 22206054)。
文摘Transition metal-based nanomaterials have emerged as promising electrocatalysts for oxygen evolution reaction(OER).Considerable research efforts have shown that self-reconstruction occurs on these nanomaterials under operating conditions of OER process.However,most of them undergo incomplete reconstruction with limited thickness of reconstruction layer,leading to low component utilization and arduous exploration of real catalytic mechanism.Herein,we identify the dynamic behaviors in complete reconstruction of Co-based complexes during OER.The hollow phytic acid(PA)cross-linked CoFe-based complex nanoboxes with porous nanowalls are designed because of their good electrolyte penetration and mass transport ability,in favor of the fast and complete reconstruction.A series of experiment characterizations demonstrate that the reconstruction process includes the fast substitution of PA by OH-to form Co(Fe)(OH)xand subsequent potential-driven oxidation to Co(Fe)OOH.The obtained CoFeOOH delivers a low overpotential of 290 mV at a current density of 10 mA cm^(-2)and a long-term stability.The experiment results together with theory calculations reveal that the Fe incorporation can result in the electron rearrangement of reconstructed CoFeOOH and optimization of their electronic structure,accounting for the enhanced OER activity.The work provides new insights into complete reconstruction of metal-based complexes during OER and offers guidelines for rational design of high-performance electrocatalysts.
基金supported by National Natural Science Foundation of China (No.U23A20597)National Major Science and Technology Project of China (No.2024ZD1003803)+1 种基金Chongqing Science Fund for Distinguished Young Scholars of Chongqing Municipality (No.CSTB2022NSCQ-JQX0028)Natural Science Foundation of Chongqing (No.CSTB2024NSCQ-MSX0503)。
文摘In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Therefore,the fluid evolution characteristics and rock fracture behavior during jet impingement were studied.The results indicate that the breaking process of high-temperature rock by jet impact can be divided into four stages:initial fluid-solid contact stage,intense thermal exchange stage,perforation and fracturing stage,and crack propagation and penetration stage.With the increase of rock temperature,the jet reflection angles and the time required for complete cooling of the impact surface significantly decrease,while the number of cracks and crack propagation rate significantly increase,and the rock breaking critical time is shortened by up to 34.5%.Based on numerical simulation results,it was found that the center temperature of granite at 400℃ rapidly decreased from 390 to 260℃ within 0.7 s under jet impact.In addition,a critical temperature and critical heat flux prediction model considering the staged breaking of hot rocks was established.These findings provide valuable insights to guide the water jet technology assisted deep ground hot rock excavation project.
文摘Birdsong is an important secondary sexual trait which may vary between but also within species.Intraspecific variation is generally studied either on the geographical or on the temporal scale;most of the studies exploring the variation of song over time,however,focused on species with rather simple songs.In this study,we explored the temporal changes in song of a complex songster,the Thrush Nightingale(Luscinia luscinia),recorded after 33 years(in 1986 and 2019)at the same locality in south-eastern Finland.Our analysis revealed a complete turnover of song types over the study period,with no song type shared between the two recording years.In contrast,40%of the originally recorded syllable types were still found in the repertoires of recently recorded males.Their song type repertoires were significantly smaller but the songs themselves were on average longer compared to the 1986 recordings.Repertoires of both syllables and song types were more shared between males recorded in 1986 than between those from 2019.We discuss the processes that may have contributed to these temporal changes in song and call for more detailed studies of song evolution in wild populations.
基金Natural Science Foundation of China(Grant No.NSFC-22072062,22202098)。
文摘Designing highly active and stable electrocatalysts of oxygen evolution reaction(OER)is one of the crucial challenges.In this study,a novel OER electrocatalyst,NiFe-MIL-53 modified with ultra-low rhodium(Rh@NiFe-MIL-53),is successfully prepared via the hydrothermal method.In-situ Raman spectroscopy and electrochemical impedance spectroscopy reveal that the doped Rh accelerates the phase transformation of NiFe-MIL-53 and the in-situ formed Rh@NiFeOOH is the actual active species.More importantly,the enhanced reversibility of electrochemical reconstruction between NiFeOOH and NiFe(OH)_(2)after doping Rh is beneficial for improving the electrochemical stability of the catalyst.X-ray photoelectron spectroscopy spectra show the strong electronic interaction between single-atom Rh and Ni/Fe in Rh@NiFeOOH.Furthermore,theoretical calculations confirm that the integration of single-atom Rh into the NiFeOOH successfully reduces the band gap,regulates the d-band center(εd),accelerates the charge transfer,and optimizes the adsorption behavior of oxygen-containing intermediates,thereby lowering the energy barrier of rate-determining steps.Consequently,the optimized Rh@NiFe-MIL-53 exhibits excellent OER activity(240 mV)with a small Tafel slope of 48.2 mV dec^(-1)and long-term durability(over1270 h at 10 m A cm^(-2)and 110 h at 200 mA cm^(-2)).This work presents a new perspective on designing highly efficient OER electrocatalysts.
基金supported by the National Natural Science Foundation of China Project(Grant No.32260097)the National Guidance Foundation for Local Science and Technology Development of China(Grant No.[2023]009)the Natural Science Foundation for Distinguished Young Scholars of Hebei(Grant No.C2022209010)。
文摘Sechium edule(chayote)is an important vegetable crop belonging to the Cucurbitaceae family.To decipher the chayote genome,a highquality chromosome-level chayote genome was obtained by genome sequencing and bioinformatic analysis.The total length was612.91 Mb,and 25755 genes were detected in the chayote genome.The contig N50 was more than 20.01 Mb,and the scaffold N50 was over47.11 Mb.Of the genome,60.35%were composed of repetitive sequences,and 31.18%of genome sequences belonged to long-terminal repeats.A global alignment of homologous regions in chayote and other Cucurbitaceae plant genomes was constructed using grape as a reference.Based on this genome-wide and global alignment map,researchers can easily identify homologous collinear genes of the studied genomes in most Cucurbitaceae species.Twenty-five chayote accessions were divided into two subgroups based on phylogenetic tree,population structure analysis,and principal component analysis using genome re-sequencing data.The chayote genome,re-sequencing dataset,and comprehensive genomic analysis will accelerate comparative and functional genomic analysis of chayote and other Cucurbitaceae species in the future.
基金funded by the National Natural Science Foundation of China(grant no.32270238 and 31870311).
文摘Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wild C.oleifera can serve as a case for studying the molecular bases of adaptive evolution to freezing stress.Here,47 wild C.oleifera from 11 natural distribution sites in China and 4 relative species of C.oleifera were selected for genome sequencing.“Min Temperature of Coldest Month”(BIO6)had the highest comprehensive contribution to wild C.oleifera distribution.The population genetic structure of wild C.oleifera could be divided into two groups:in cold winter(BIO6≤0℃)and warm winter(BIO6>0℃)areas.Wild C.oleifera in cold winter areas might have experienced stronger selection pressures and population bottlenecks with lower N_(e) than those in warm winter areas.155 singlenucleotide polymorphisms(SNPs)were significantly correlated with the key bioclimatic variables(106 SNPs significantly correlated with BIO6).Twenty key SNPs and 15 key copy number variation regions(CNVRs)were found with genotype differentiation>50%between the two groups of wild C.oleifera.Key SNPs in cis-regulatory elements might affect the expression of key genes associated with freezing tolerance,and they were also found within a CNVR suggesting interactions between them.Some key CNVRs in the exon regions were closely related to the differentially expressed genes under freezing stress.The findings suggest that rich SNPs and CNVRs in polyploid trees may contribute to the adaptive evolution to freezing stress.
基金supported by the National Natural Science Foundation of China (42276103)。
文摘Feeding behavior is regulated by a complex network of endogenous neuropeptides.In chordates,this role is suggested to be under the control of diverse factors including thyrotropin-releasing hormone(TRH).However,whether this regulatory activity of TRH is functionally conserved in non-chordate metazoans,and to what extent this process is underpinned by interactions of TRH with other neuropeptides such as cholecystokinin(CCK,known as a satiety signal),remain unclear.This study investigated the TRH signaling system in the echinoderm Apostichopus japonicus.Bioinformatic analyses and ligand-binding assays identified a functional TRH receptor(AjTRHR)that activated signaling via the MAPK/ERK1/2pathways.Experimental administration of TRH significantly reduced feeding activity,while up-regulating CCK expression.RNA interference(RNAi)experiments confirmed that both CCK and TRH are essential components of satiety signaling,working synergistically to mediate feeding inhibition.Evolutionary analysis of TRHtype peptides revealed greater conservation of the short isoform of TRH compared to the long isoform,probably driven by strong selection acting on the functional redundancy.These findings provide compelling evidence of a TRH-mediated signaling system in non-chordate deuterostomes,expandingourunderstandingof neuropeptide-regulated feeding mechanisms in marine invertebrates.
文摘Exploring the spatial evolution patterns of land use in creative urban tourism complexes provides theoretical and decision-making support to foster creative tourism projects.This study focuses on the Hangzhou Leisure Expo Garden as a case study,utilizing a land use change index model to analyze the spatial evolution characteristics and dynamic processes of creative urban tourism complexes,as well as to explore their spatial differentiation mechanisms.The analysis indicates that Hangzhou Leisure Expo Garden,initially a derelict industrial area dominated by production and residential land use,has evolved into a creative urban tourism complex with tourism comprehensive service land at its core,going through the pattern evolution processes of“constrained sprawl,”“intensive expansion,”and“random integration.”From the perspective of tourism human-land relationships,the formation of land use evolution patterns in creative urban tourism complexes results from various stakeholders(government,tourism enterprises,residents,tourists,etc.),as humanistic factors,continuously adapting to specific urban spaces,which are considered as geographical elements and have locational advantages and are oriented towards economic and social values.Based on the acquisition of stakeholder interests,the transformation of resource-disadvantaged areas into tourism advantage areas is facilitated,thereby achieving the re-creation of tourism creative space and promoting intensive spatial growth.
基金supported by the National Natural Science Foundation of China(Grant No.U2244215)the Knowledge Innovation Program of Wuhan-Basic Research(Grant No.2022010801010159)the Major Project of Inner Mongolia Science and Technology(Grant No.2021ZD0034).
文摘Preexisting cracks inside tight sandstones are one of the most important properties for controlling the mechanical and seepage behaviors.During the cyclic loading process,the rock generally exhibits obvious memorability and irreversible plastic deformation,even in the linear elastic stage.The assessment of the evolution of preexisting cracks under hydrostatic pressure loading and unloading processes is helpful in understanding the mechanism of plastic deformation.In this study,ultrasonic measurements were conducted on two tight sandstone specimens with different bedding orientations subjected to hydrostatic loading and unloading processes.The P-wave velocity was characterized by a similar response with the volumetric strain to the hydrostatic pressure and showed different strain sensitivities at different loading and unloading stages.A numerical model based on the discrete element method(DEM)was proposed to quantitatively clarify the evolution of the crack distribution under different hydrostatic pressures.The numerical model was verified by comparing the evolution of the measured P-wave velocities on two anisotropic specimens.The irreversible plastic deformation that occurred during the hydrostatic unloading stage was mainly due to the permanent closure of plastic-controlled cracks.The closure and reopening of cracks with a small aspect ratio account for the major microstructure evolution during the hydrostatic loading and unloading processes.Such evolution of microcracks is highly dependent on the stress path.The anisotropy of the crack distribution plays an important role in the magnitude and strain sensitivity of the P-wave velocity under stress conditions.The study can provide insight into the microstructure evolution during cyclic loading and unloading processes.