期刊文献+
共找到95,249篇文章
< 1 2 250 >
每页显示 20 50 100
Ion-modulation optoelectronic neuromorphic devices:mechanisms,characteristics,and applications 被引量:1
1
作者 Xiaohan Meng Runsheng Gao +1 位作者 Xiaojian Zhu Run-Wei Li 《Journal of Semiconductors》 2025年第2期24-36,共13页
The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorph... The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field. 展开更多
关键词 ion migration optoelectronic modulation optoelectronic device neuromorphic computing artificial vision system
在线阅读 下载PDF
Synaptic devices based on silicon carbide for neuromorphic computing 被引量:1
2
作者 Boyu Ye Xiao Liu +2 位作者 Chao Wu Wensheng Yan Xiaodong Pi 《Journal of Semiconductors》 2025年第2期38-51,共14页
To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the vario... To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the various materials inves-tigated for the fabrication of synaptic devices,silicon carbide(SiC)has emerged as a preferred choices due to its high electron mobility,superior thermal conductivity,and excellent thermal stability,which exhibits promising potential for neuromorphic applications in harsh environments.In this review,the recent progress in SiC-based synaptic devices is summarized.Firstly,an in-depth discussion is conducted regarding the categories,working mechanisms,and structural designs of these devices.Subse-quently,several application scenarios for SiC-based synaptic devices are presented.Finally,a few perspectives and directions for their future development are outlined. 展开更多
关键词 silicon carbide wide bandgap semiconductors synaptic devices neuromorphic computing high temperature
在线阅读 下载PDF
Recent Advances in Artificial Sensory Neurons:Biological Fundamentals,Devices,Applications,and Challenges
3
作者 Shuai Zhong Lirou Su +4 位作者 Mingkun Xu Desmond Loke Bin Yu Yishu Zhang Rong Zhao 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期168-216,共49页
Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantage... Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons. 展开更多
关键词 Artificial intelligence Emerging devices Artificial sensory neurons Spiking neural networks Neuromorphic sensing
在线阅读 下载PDF
Kali Pi—A Miniature Ultra-Portable Penetration Testing Device
4
作者 Ahmed Bin Ali 《Journal of Information Security》 2025年第1期101-113,共13页
Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant... Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant on traditional laptops and computers, which, while portable, lack true ultra-portability. This paper explores the potential impact of developing a dedicated, ultra-portable, low-cost device for on-the-go penetration testing. Such a device could replicate the core functionalities of advanced penetration testing tools, including those found in Kali Linux, within a compact form factor that fits easily into a pocket. By offering the convenience and portability akin to a smartphone, this innovative device could redefine the way penetration testers operate, enabling them to carry essential tools wherever they go and ensuring they are always prepared to conduct security assessments efficiently. This approach aims to revolutionize penetration testing by merging high functionality with unparalleled portability. 展开更多
关键词 Penetration Testing Portable device CYBERSECURITY Raspberry Pi
在线阅读 下载PDF
Preliminary Study on Irradiation Device of Fission Molybdenum-Technetium Production Based on China Advanced Research Reactor
5
作者 Shi Shi Zhou Yidong 《Journal of Electronic Research and Application》 2025年第1期141-146,共6页
As a multipurpose research reactor,fission molybdenum-technetium irradiation production is one of the wide applications of China Advanced Research Reactor CARR.The goal of this study is to achieve“online loading and ... As a multipurpose research reactor,fission molybdenum-technetium irradiation production is one of the wide applications of China Advanced Research Reactor CARR.The goal of this study is to achieve“online loading and unloading”of the target during fission molybdenum-99(99Mo)to technetium-99m(99mTc)irradiation production without affecting the normal reactor operation and other irradiation channels,which will make CARR more efficient in performing irradiation tasks.This paper introduces the design principles,requirements and concept structural design of the irradiation device of fission 99Mo-99mTc. 展开更多
关键词 CARR Molybdenum-technetium production Irradiation device
在线阅读 下载PDF
Performance Control and Application of ZnO-Based P-N Junction Piezoelectric Devices
6
作者 Xudong Shen Dongying Liu Li Zhao 《Journal of Electronic Research and Application》 2025年第1期81-87,共7页
Zinc oxide(ZnO),as a broadband gap semiconductor material,exhibits unique physical and chemical properties that make it highly suitable for optoelectronics,piezoelectric devices,and gas-sensitive sensors,showing signi... Zinc oxide(ZnO),as a broadband gap semiconductor material,exhibits unique physical and chemical properties that make it highly suitable for optoelectronics,piezoelectric devices,and gas-sensitive sensors,showing significant potential for various applications.This paper focuses on the regulation and application of ZnO-based p-n junctions and piezoelectric devices.It discusses in detail the preparation of ZnO materials,the construction of p-n junctions,the optimization of piezoelectric device performance,and its application in various fields.By employing different preparation methods and strategies,high-quality ZnO thin films can be grown,and effective control of p-type conductivity achieved.This study provides both a theoretical foundation and technical support for controlling the performance of ZnO-based piezoelectric devices,as well as paving new pathways for the broader application of ZnO materials. 展开更多
关键词 ZNO p-n junction Piezoelectric device Performance control APPLICATION
在线阅读 下载PDF
An Efficient and Flexible Bifunctional Dual-Band Electrochromic Device Integrating with Energy Storage
7
作者 Zekun Huang Yutao Peng +7 位作者 Jing Zhao Shengliang Zhang Penglu Qi Xianlin Qu Fuqiang Yan Bing Ding Yimin Xuan Xiaogang Zhang 《Nano-Micro Letters》 2025年第4期419-434,共16页
Dual-band electrochromic devices capable of the spectral-selective modulation of visible(VIS)light and near-infrared(NIR)can notably reduce the energy consumption of buildings and improve the occupants’visual and the... Dual-band electrochromic devices capable of the spectral-selective modulation of visible(VIS)light and near-infrared(NIR)can notably reduce the energy consumption of buildings and improve the occupants’visual and thermal comfort.However,the low optical modulation and poor durability of these devices severely limit its practical applications.Herein,we demonstrate an efficient and flexible bifunctional dual-band electrochromic device which not only shows excellent spectral-selective electrochromic performance with a high optical modulation and a long cycle life,but also displays a high capacitance and a high energy recycling efficiency of 51.4%,integrating energy-saving with energy-storage.The nanowires structure and abundant oxygen-vacancies of oxygen-deficient tungsten oxide nanowires endows it high flexibility and a high optical modulation of 73.1%and 85.3%at 633 and 1200 nm respectively.The prototype device assembled can modulate the VIS light and NIR independently and effectively through three distinct modes with a long cycle life(3.3%capacity loss after 10,000 cycles)and a high energy-saving performance(8.8℃lower than the common glass).Furthermore,simulations also demonstrate that our device outperforms the commercial low-emissivity glass in terms of energy-saving in most climatic zones around the world.Such windows represent an intriguing potential technology to improve the building energy efficiency. 展开更多
关键词 Electrochromic Dual-band electrochromic devices Spectral-selective modulation FLEXIBLE Energy storage
在线阅读 下载PDF
Factors associated with medical device-related pressure ulcers occurrence in hospital setting:a systematic review protocol
8
作者 Stefano Trapassi Guya Piemonte +7 位作者 Enrico Lumini Lorenzo Righi Christian Ramacciani Isemann Mecheroni Silvana Luisa Bertò Stefania Francioni Fulvia Marini Giovanni Becattini 《Frontiers of Nursing》 2025年第1期13-18,共6页
Objective: To identify the principal factors associated with the occurrence and development of medical device-related pressure injuries (MDRPI) in adults admitted to hospitals. MDRPI, a peculiar subtype of pressure in... Objective: To identify the principal factors associated with the occurrence and development of medical device-related pressure injuries (MDRPI) in adults admitted to hospitals. MDRPI, a peculiar subtype of pressure injuries (PI), result from the pression exerted by devices (or their fixation systems) applied for diagnostic and therapeutic purposes. MDRPI represent a serious problem for patients and healthcare systems. Understanding potential risk factors is an important step in implementing effective interventions. Methods: In this study, we will perform a systematic review;if possible, also a meta-analysis will be performed. The review will follow the preferred reporting items for systematic reviews and meta-analyses (PRISMA) reporting guidelines for systematic reviews. A rigorous literature search will be conducted both in electronic databases (Medline/PubMed, Embase, CINAHL, Web of Science, Scopus, Cochrane Library) to identify studies published since 2000 and in gray literature for unpublished studies. Pairs of researchers will identify relevant evidence, extract data, and assess risk of bias independently in each eligible study. Factors associated with the occurrence of MDRPI are considered the primary outcome. Secondary outcomes are prevalence and incidence of MDRPI, length of hospital stay, infections, and death. The evidence will be synthesized using the GRADE methodology. Results: Results are not currently available as this is a protocol for a systematic review. Conclusions: This systematic review will identify evidence on risk factors for developing MDRPI. We are confident that the results of this review will help to improve clinical practice and guide future research. 展开更多
关键词 INCIDENCE medical devices pressure injury pressure ulcer PREVALENCE risk factor
在线阅读 下载PDF
On MANTA vascular closure devices following veno arterial extracorporeal membrane oxygenation:Effectiveness and complications
9
作者 Alexander E Berezin 《World Journal of Cardiology》 2025年第3期1-6,共6页
MANTA vascular closure device is an alternative vascular access closure device that is predominantly designed for large bore arteriotomy procedures.Its implementation to reduce morbidity and mortality following percut... MANTA vascular closure device is an alternative vascular access closure device that is predominantly designed for large bore arteriotomy procedures.Its implementation to reduce morbidity and mortality following percutaneous procedures including peripheral veno-arterial(VA)-extracorporeal membrane oxygenation(ECMO)in critically ill patients with various severe clinical conditions such as refractory cardiogenic shock remains to be under scientific discussion.The use of the MANTA vascular closure device leads to a sufficient reduction in a number of post-decannulation complications such as bleeding,vascular complications,inflammatory reactions and major amputation.Furthermore,the technical success of percutaneous decannulation of VA-ECMO with the MANTA vascular closure device appears to be safe and effective.It has been reported that MANTA vascular closure device exerted a strict similarity with other vascular surgical systems in safe profile regardless of the indication for its utilization.Overall,the immobilized patients achieved a favorable recovery outcome with MANTA including safe decannulation and low risk of vascular complications.The authors suggest the use of pulse wave distal Doppler technology for early detection of these clinically relevant complications.In conclusion,MANTA vascular closure device seems to be safe and effective technical approach to provide low-risk vascular assess for a long time for severe sick individuals. 展开更多
关键词 Veno-arterial extracorporeal membrane oxygenation DECANNULATION Vascular complications MANTA vascular closure device
在线阅读 下载PDF
Experimental investigation on high heat flux plasma parameters of HIT-PSI device in argon discharges
10
作者 Tao HUANG Qiuyue NIE +7 位作者 Cheng CHEN Lin NIE Wei ZHAO Tao JIANG Yang LIU Xu ZHAO Feng LI Xiaogang WANG 《Plasma Science and Technology》 2025年第1期118-127,共10页
Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must m... Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must maintain stable performance under relatively high temperatures and other harsh plasma conditions,making studies of their thermal and ablation resistance critical.Recently,a low-cost,low-energy-storage for superconducting magnets,and compact linear device,HIT-PSI,has been designed and constructed at Harbin Institute of Technology(HIT)to investigate the interaction between stable high heat flux plasma and PFMs/PFCs in scrape-off-layer(SOL)and divertor regions,as well as spacecraft surface materials.The parameters of the argon plasma beam of HIT-PSI are diagnosed using a water-cooled planar Langmuir probe and emission spectroscopy.As magnetic field rises to 2 T,the argon plasma beam generated by a cascaded arc source achieves high density exceeding 1.2×10^(21)m^(-3)at a distance of 25 cm from the source with electron temperature surpassing 4 eV,where the particle flux reaches 10^(24)m^(-2)s^(-1),and the heat flux loaded on the graphite target measured by infrared camera reaches 4 MW/m^(2).Combined with probe and emission spectroscopy data,the transport characteristics of the argon plasma beam are analyzed. 展开更多
关键词 linear plasma device plasma-material interaction high heat flux high particle flux
在线阅读 下载PDF
Research Progress on Microfluidic Paper-based Analytical Devices for Point-of-care Testing
11
作者 ZHANG Yuji XU Ruicheng SHAN Dan 《激光生物学报》 2025年第1期1-11,共11页
Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by... Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided. 展开更多
关键词 point-of-care testing microfluidic paper-based analytical devices SENSOR personalized medical treatment portable diagnostic equipment
在线阅读 下载PDF
Miniature tunable Airy beam optical meta-device 被引量:5
12
作者 Jing Cheng Zhang Mu Ku Chen +6 位作者 Yubin Fan Qinmiao Chen Shufan Chen Jin Yao Xiaoyuan Liu Shumin Xiao Din Ping Tsai 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第2期5-12,共8页
Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to ins... Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to insufficient compactness and integration feasibility,or they require enhanced tunability to enable real-time dynamic manipulation of the propagation trajectory.In this work,we present a novel method that utilizes a dual metasurface system to surpass these limitations,significantly enhancing the practical potential of the Airy beam.Our approach involves encoding a cubic phase profile and two off-axis Fresnel lens phase profiles across the two metasurfaces.The validity of the proposed strategy has been confirmed through simulation and experimental results.The proposed meta-device addresses the existing limitations and lays the foundation for broadening the applicability of Airy beams across diverse domains,encompassing light-sheet microscopy,laser fabrication,optical tweezers,etc. 展开更多
关键词 metasurface miniature device tunable Airy beam tunable meta-device
在线阅读 下载PDF
An Environment‑Tolerant Ion‑Conducting Double‑Network Composite Hydrogel for High‑Performance Flexible Electronic Devices 被引量:4
13
作者 Wenchao Zhao Haifeng Zhou +3 位作者 Wenkang Li Manlin Chen Min Zhou Long Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期352-369,共18页
High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use i... High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications. 展开更多
关键词 Ionic liquids Double-network hydrogels Temperature tolerance Multifunctionality Flexible electronic devices
在线阅读 下载PDF
Recent developments in selective laser processes for wearable devices 被引量:2
14
作者 Youngchan Kim Eunseung Hwang +3 位作者 Chang Kai Kaichen Xu Heng Pan Sukjoon Hong 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期517-547,共31页
Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to d... Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices. 展开更多
关键词 Selective laser process Wearable device Transformative approach Laser-induced graphene Ablation SINTERING Synthesis
在线阅读 下载PDF
In Situ Atomic Reconstruction Engineering Modulating Graphene-Like MXene-Based Multifunctional Electromagnetic Devices Covering Multi-Spectrum 被引量:2
15
作者 Ting‑Ting Liu Qi Zheng +4 位作者 Wen‑Qiang Cao Yu‑Ze Wang Min Zhang Quan‑Liang Zhao Mao‑Sheng Cao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期247-261,共15页
With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispec... With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispectral response of materials is a challenging and meaningful scientific question.In this study,MXene/TiO_(2)hybrids with tunable conduction loss and polarization relaxation are fabricated by in situ atomic reconstruction engineering.More importantly,MXene/TiO_(2)hybrids exhibit adjustable spectral responses in the GHz,infrared and visible spectrums,and several EM devices are constructed based on this.An antenna array provides excellent EM energy harvesting in multiple microwave bands,with|S11|up to−63.2 dB,and can be tuned by the degree of bending.An ultra-wideband bandpass filter realizes a passband of about 5.4 GHz and effectively suppresses the transmission of EM signals in the stopband.An infrared stealth device has an emissivity of less than 0.2 in the infrared spectrum at wavelengths of 6-14μm.This work can provide new inspiration for the design and development of multifunctional,multi-spectrum EM devices. 展开更多
关键词 Graphene-like MXene hybrids Multi-spectral response Multi-function antenna Ultra-wideband bandpass filter Electromagnetic device
在线阅读 下载PDF
Process,Material,and Regulatory Considerations for 3D Printed Medical Devices and Tissue Constructs 被引量:1
16
作者 Wei Long Ng Jia An Chee Kai Chua 《Engineering》 SCIE EI CAS CSCD 2024年第5期146-166,共21页
Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising techniqu... Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising technique for the fabrication of personalized medical devices or even patient-specific tissue constructs.Each type of 3D printing technique has its unique advantages and limitations,and the selection of a suitable 3D printing technique is highly dependent on its intended application.In this review paper,we present and highlight some of the critical processes(printing parameters,build orientation,build location,and support structures),material(batch-to-batch consistency,recycling,protein adsorption,biocompatibility,and degradation properties),and regulatory considerations(sterility and mechanical properties)for 3D printing of personalized medical devices.The goal of this review paper is to provide the readers with a good understanding of the various key considerations(process,material,and regulatory)in 3D printing,which are critical for the fabrication of improved patient-specific 3D printed medical devices and tissue constructs. 展开更多
关键词 3D printing BIOPRINTING BIOFABRICATION Medical devices Tissue constructs
在线阅读 下载PDF
A mixed-coordination electron trapping-enabled high-precision touch-sensitive screen for wearable devices 被引量:1
17
作者 Xi Zhang Junchi Ma +5 位作者 Hualin Deng Jinming Zhong Kaichen Xu Qiang Wu Bo Wen Dongfeng Diao 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期413-427,共15页
Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.Howev... Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.However,when stacked with flexible substrates to form multilayered capacitive touching sensors,these materials often suffer from substrate delamination in response to deformation;this is due to the materials having different Young’s modulus values.Delamination results in failure to offer accurate touch screen recognition.In this work,we demonstrate an induced charge-based mutual capacitive touching sensor capable of high-precision touch sensing.This is enabled by electron trapping and polarization effects related to mixed-coordinated bonding between copper nanoparticles and vertically grown graphene nanosheets.Here,we used an electron cyclotron resonance system to directly fabricate graphene-metal nanofilms(GMNFs)using carbon and copper,which are firmly adhered to flexible substrates.After being subjected to 3000 bending actions,we observed almost no change in touch sensitivity.The screen interaction system,which has a signal-to-noise ratio of 41.16 dB and resolution of 650 dpi,was tested using a handwritten Chinese character recognition trial and achieved an accuracy of 94.82%.Taken together,these results show the promise of touch-sensitive screens that use directly fabricated GMNFs for wearable devices. 展开更多
关键词 Flexible touch-sensitive screen Graphene-metal nanofilms Mixed coordination Wearable device
在线阅读 下载PDF
Application value research of swallowing treatment device combined with swallowing rehabilitation training in the treatment of swallowing disorders after stroke 被引量:2
18
作者 Huan Xu Mei Chen +4 位作者 Yu-Li Wu Ya-Fen Lu Xin Wang Wei Jiang Yuan-Ying Zhang 《World Journal of Clinical Cases》 SCIE 2024年第21期4618-4625,共8页
BACKGROUND Stroke is a common disabling disease,whether it is ischemic stroke or hemorrhagic stroke,both can result in neuronal damage,leading to various manifestations of neurological dysfunction.AIM To explore of th... BACKGROUND Stroke is a common disabling disease,whether it is ischemic stroke or hemorrhagic stroke,both can result in neuronal damage,leading to various manifestations of neurological dysfunction.AIM To explore of the application value of swallowing treatment device combined with swallowing rehabilitation training in the treatment of swallowing disorders after stroke.METHODS This study selected 86 patients with swallowing disorders after stroke admitted to our rehabilitation department from February 2022 to December 2023 as research subjects.They were divided into a control group(n=43)and an observation group(n=43)according to the treatment.The control group received swallowing rehabilitation training,while the observation group received swallowing treatment device in addition to the training.Both groups underwent continuous intervention for two courses of treatment.RESULTS The total effective rate in the observation group(93.02%)was higher than that in the control group(76.74%)(P=0.035).After intervention,the oral transit time,swallowing response time,pharyngeal transit time,and laryngeal closure time decreased in both groups compared to before intervention.In the observation group,the oral transit time,swallowing response time,and pharyngeal transit time were shorter than those in the control group after intervention.However,the laryngeal closure time after intervention in the observation group was compared with that in the control group(P=0.142).After intervention,average amplitude value and duration of the genioglossus muscle group during empty swallowing and swallowing 5 mL of water are reduced compared to before intervention in both groups.After intervention,the scores of the chin-tuck swallowing exercise and the Standardized Swallowing Assessment are both reduced compared to pre-intervention levels in both groups.However,the observation group scores lower than the control group after intervention.Additionally,the Functional Oral Intake Scale scores of both groups are increased after intervention compared to pre-intervention levels,with the observation group scoring higher than the control group after intervention(P<0.001).The cumulative incidence of complications in the observation group is 9.30%,which is lower than the 27.91%in the control group(P=0.027).CONCLUSION The combination of swallowing therapy equipment with swallowing rehabilitation training can improve the muscle movement level of the genioglossus muscle group,enhance swallowing function,and prevent the occurrence of swallowing-related complications after stroke. 展开更多
关键词 Swallowing therapy device Swallowing rehabilitation training STROKE Swallowing disorder Swallowing function
在线阅读 下载PDF
Clinical efficacy and mechanism study of mid-frequency anti-snoring device in treating moderate obstructive sleep apnea-hypopnea syndrome 被引量:1
19
作者 Bao Qian Zhan-Jun Chen +3 位作者 Yong-Sheng Wang Xiao-Yan Hu Xiao-Biao Hu Yong-Hua Zheng 《World Journal of Clinical Cases》 SCIE 2024年第5期942-950,共9页
BACKGROUND Obstructive sleep apnea-hypopnea syndrome(OSAHS)is primarily caused by airway obstruction due to narrowing and blockage in the nasal and nasopha-ryngeal,oropharyngeal,soft palate,and tongue base areas.The m... BACKGROUND Obstructive sleep apnea-hypopnea syndrome(OSAHS)is primarily caused by airway obstruction due to narrowing and blockage in the nasal and nasopha-ryngeal,oropharyngeal,soft palate,and tongue base areas.The mid-frequency anti-snoring device is a new technology based on sublingual nerve stimulation.Its principle is to improve the degree of oropharyngeal airway stenosis in OSAHS patients under mid-frequency wave stimulation.Nevertheless,there is a lack of clinical application and imaging evidence.METHODS We selected 50 patients diagnosed with moderate OSAHS in our hospital between July 2022 and August 2023.They underwent a 4-wk treatment regimen involving the mid-frequency anti-snoring device during nighttime sleep.Following the treatment,we monitored and assessed the sleep apnea quality of life index and Epworth Sleepiness Scale scores.Additionally,we performed computed tomo-graphy scans of the oropharynx in the awake state,during snoring,and while using the mid-frequency anti-snoring device.Cross-sectional area measurements in different states were taken at the narrowest airway point in the soft palate posterior and retrolingual areas.RESULTS Compared to pretreatment measurements,patients exhibited a significant reduction in the apnea-hypopnea index,the percentage of time with oxygen saturation below 90%,snoring frequency,and the duration of the most prolonged apnea event.The lowest oxygen saturation showed a notable increase,and both sleep apnea quality of life index and Epworth Sleepiness Scale scores improved.Oropharyngeal computed tomography scans revealed that in OSAHS patients cross-sectional areas of the oropharyngeal airway in the soft palate posterior area and retrolingual area decreased during snoring compared to the awake state.Conversely,during mid-frequency anti-snoring device treatment,these areas increased compared to snoring.CONCLUSION The mid-frequency anti-snoring device demonstrates the potential to enhance various sleep parameters in patients with moderate OSAHS,thereby improving their quality of life and reducing daytime sleepiness.These therapeutic effects are attributed to the device’s ability to ameliorate the narrowing of the oropharynx in OSAHS patients. 展开更多
关键词 Mid-frequency anti-snoring device Obstructive sleep apnea-hypopnea syndrome Sleep monitoring Oropharyngeal computed tomography Curative effect
在线阅读 下载PDF
Liquid Metal Grid Patterned Thin Film Devices Toward Absorption‑Dominant and Strain‑Tunable Electromagnetic Interference Shielding 被引量:1
20
作者 Yuwen Wei Priyanuj Bhuyan +9 位作者 Suk Jin Kwon Sihyun Kim Yejin Bae Mukesh Singh Duy Thanh Tran Minjeong Ha Kwang‑Un Jeong Xing Ma Byeongjin Park Sungjune Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期541-553,共13页
The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflect... The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflective conductive materials can effectively shield EMI,they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously.Herein,soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented.The devices consist of liquid metal(LM)layer and LM grid-patterned layer separated by a thin elastomeric film,fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer.The devices demonstrate high electromagnetic shielding effectiveness(SE)(SE_(T) of up to 75 dB)with low reflectance(SER of 1.5 dB at the resonant frequency)owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures.Remarkably,the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain(resonant frequency shift from 81.3 to 71.3 GHz@33%strain)and is also capable of retaining shielding effectiveness even after multiple strain cycles.This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics. 展开更多
关键词 Absorption-dominant electromagnetic interference shielding Liquid metals Soft and stretchable electronics Thin film devices Tunable electromagnetic interference shielding
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部