期刊文献+
共找到145篇文章
< 1 2 8 >
每页显示 20 50 100
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification 被引量:1
1
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight convolutional Neural network depthwise Dilated separable Convolution Hierarchical Multi-Scale Feature Fusion
在线阅读 下载PDF
基于GADF和CWT并行输入模型的滚动轴承智能诊断研究
2
作者 张小丽 和飞翔 +2 位作者 梁旺 李敏 王保建 《湖南大学学报(自然科学版)》 北大核心 2025年第2期98-108,共11页
滚动轴承运行工况的变化与噪声干扰等随机不确定性因素会导致网络特征提取不完整,从而无法捕捉故障突变等局部奇异信息.针对上述问题,提出一种并行二维深度可分离残差神经网络(parallel two-dimensional depthwise separable residual n... 滚动轴承运行工况的变化与噪声干扰等随机不确定性因素会导致网络特征提取不完整,从而无法捕捉故障突变等局部奇异信息.针对上述问题,提出一种并行二维深度可分离残差神经网络(parallel two-dimensional depthwise separable residual neural network,P2DDSResNet)模型,通过格拉姆角分场(Gramian angular difference field,GADF)和连续小波变换(continuous wavelet transform,CWT)将振动信号转变为二维时频图像,保留了完整的时频域信息.采用深度可分离卷积替代残差模块中的普通卷积,增强特征学习能力,从而使模型具有更强的特征提取能力,以解决在高噪声和变工况环境中故障诊断效果不佳的问题.采用滚动轴承故障模拟试验台获取的数据对其进行试验分析并与其他卷积神经网络方法对比,结果表明,优化后的算法模型具有良好的泛化性和准确率. 展开更多
关键词 故障诊断 深度可分离卷积 滚动轴承 残差神经网络 特征提取
在线阅读 下载PDF
基于自注意力机制的高分遥感影像语义分割
3
作者 杨军 张金影 康玥 《哈尔滨工程大学学报》 北大核心 2025年第2期344-354,共11页
针对遥感影像多尺度特征提取困难、上下文信息利用不足的问题,本文结合自注意力机制和深度可分离卷积提出一种线性多头自注意力网络模型,适用于高分辨率遥感影像语义分割。在自注意力模块之前引入深度可分离卷积,减少计算量的同时有助... 针对遥感影像多尺度特征提取困难、上下文信息利用不足的问题,本文结合自注意力机制和深度可分离卷积提出一种线性多头自注意力网络模型,适用于高分辨率遥感影像语义分割。在自注意力模块之前引入深度可分离卷积,减少计算量的同时有助于捕获局部特征;在编码器分支中提出线性的多头自注意力模块以降低模型的计算复杂度;设计一个解码器来恢复特征图分辨率,通过级联操作整合各层级的特征并生成高分辨率的语义分割结果。所提算法在ISPRS Vaihingen和Potsdam数据集上的分割结果的mF1分别达到了90.77%和92.36%,与目前主流算法相比,不透水表面、建筑、低矮植物、树木类的分割准确率及总体分割准确率均有提高。本文算法构建的线性多头自注意力网络是一种高效的高分辨率遥感影像语义分割模型。 展开更多
关键词 高分辨率遥感影像 多头自注意力 深度可分离卷积 语义分割 特征提取 卷积神经网络 编码器 解码器
在线阅读 下载PDF
基于Kurtogram与DSCN的滚动轴承故障诊断方法 被引量:4
4
作者 古莹奎 刘平 +1 位作者 林忠海 邱光琦 《中国安全科学学报》 CAS CSCD 北大核心 2021年第6期99-105,共7页
为揭示不同轴承故障类型的特征,提高故障诊断的精度与效率,提出一种基于Kurtogram与深可分卷积神经网络(DSCN)相结合的轴承故障诊断方法。在利用原始振动信号生成Kurtogram的基础上,通过DSCN学习和识别不同故障模式下Kurtogram的图形特... 为揭示不同轴承故障类型的特征,提高故障诊断的精度与效率,提出一种基于Kurtogram与深可分卷积神经网络(DSCN)相结合的轴承故障诊断方法。在利用原始振动信号生成Kurtogram的基础上,通过DSCN学习和识别不同故障模式下Kurtogram的图形特征,自动提取优势特征并进行故障分类。结果表明:相对于其他故障诊断方法,提出的方法在测试集上的识别精确度较高,可达到97.28%;同时,DSCN在降低参数量及提高训练速度上具有明显优势。 展开更多
关键词 滚动轴承 Kurtogram 深可分卷积神经网络(dscn) 故障诊断 混淆矩阵
在线阅读 下载PDF
基于深度学习的时空特征融合网络入侵检测模型研究
5
作者 李聪聪 袁子龙 滕桂法 《信息安全研究》 北大核心 2025年第2期122-129,共8页
随着网络攻击日益增多,网络入侵检测系统在维护网络安全方面也越来越重要.目前多数研究采用深度学习的方法进行网络入侵检测,但未充分从多个角度利用流量的特征,同时存在实验数据集过于陈旧的问题.提出了一种并行结构的DSC-Inception-Bi... 随着网络攻击日益增多,网络入侵检测系统在维护网络安全方面也越来越重要.目前多数研究采用深度学习的方法进行网络入侵检测,但未充分从多个角度利用流量的特征,同时存在实验数据集过于陈旧的问题.提出了一种并行结构的DSC-Inception-BiLSTM网络,使用最新的数据集评估所设计的网络模型.该模型包括网络流量图像和文本异常流量检测2个分支,分别通过改进的卷积神经网络和循环神经网络提取流量的空间特征和时序特征.最后通过融合时空特征实现网络入侵检测.实验结果表明,在CIC-IDS2017,CSE-CIC-IDS2018,CIC-DDoS2019这3个数据集上,该模型分别达到了99.96%,99.19%,99.95%的准确率,能够对异常流量进行高精度分类,满足入侵检测系统的要求. 展开更多
关键词 网络入侵检测 深度学习 特征融合 深度可分离卷积 INCEPTION
在线阅读 下载PDF
基于三维深度分离网络的PET双示踪剂混合图像分离方法
6
作者 唐大洋 胡德斌 +8 位作者 齐宏亮 孙浩 韩彦江 李翰威 张新明 潘智林 喻文杰 路利军 陈宏文 《中国医学物理学杂志》 2025年第2期160-166,共7页
目的:提出一种基于三维深度分离网络方法用于^(18)F-FDG和^(18)F-FAPIPET双示踪剂混合图像分离成像。方法:收集120例同一患者在不同时间单独扫描的^(18)F-FDG和^(18)F-FAPIPET图像,本研究采用模拟的形式生成PET双示踪剂混合图像,首先对... 目的:提出一种基于三维深度分离网络方法用于^(18)F-FDG和^(18)F-FAPIPET双示踪剂混合图像分离成像。方法:收集120例同一患者在不同时间单独扫描的^(18)F-FDG和^(18)F-FAPIPET图像,本研究采用模拟的形式生成PET双示踪剂混合图像,首先对同一患者两种PET示踪剂图像进行配准保证空间位置匹配,然后对配准的PET图像进行前向投影生成弦图数据,将两种弦图数据累加得到混合弦图数据,随后采用最大似然期望法重建得到PET双示踪剂混合图像,输入到基于3DDSN架构的网络进行分离成像,从而得到两种单示踪剂的PET图像。结果:本文提出的方法相较于3DCNN方法,分离得到的^(18)F-FDG图像与真实^(18)F-FDG图像的结构相似性指数(SSIM)提升0.87%,峰值信噪比(PSNR)提升11.8%,归一化均方根误差(NRMSE)减小52%。分离得到的^(18)F-FAPI图像与真实^(18)F-FAPI图像的SSIM提升1.1%,PSNR提升17.0%,NRMSE减小51%。结论:本文方法可以很好地应用在PET双示踪剂同时成像上,减少患者的扫描次数、时间和金钱成本,为临床医生提供更精准和更丰富的诊断信息。 展开更多
关键词 正电子发射断层成像 双示踪剂成像 图像配准 深度分离网络 深度学习
在线阅读 下载PDF
基于解耦注意力与幻影卷积的轻量级人体姿态估计
7
作者 陈俊颖 郭士杰 陈玲玲 《计算机应用》 北大核心 2025年第1期223-233,共11页
随着轻量级网络的发展,人体姿态估计任务得以在计算资源有限的设备上执行,然而,提升精度变得更具有挑战性。这些挑战主要源于网络复杂度与计算资源的矛盾,导致模型在简化时牺牲了表示能力。针对上述问题,提出一种基于解耦注意力和幻影... 随着轻量级网络的发展,人体姿态估计任务得以在计算资源有限的设备上执行,然而,提升精度变得更具有挑战性。这些挑战主要源于网络复杂度与计算资源的矛盾,导致模型在简化时牺牲了表示能力。针对上述问题,提出一种基于解耦注意力和幻影卷积的轻量级人体姿态估计网络(DGLNet)。具体来说,DGLNet以小型高分辨率网络(Small HRNet)模型为基础架构,通过引入解耦注意力机制构建DFDbottleneck模块;采用shuffleblock的结构对基础模块进行重新设计,即用轻量级幻影卷积替代计算量大的点卷积,并利用解耦注意力机制增强模块性能,从而构建DGBblock模块;此外,用幻影卷积和解耦注意力重新构建的深度可分离卷积模块来替代原过渡层模块,从而构建GSCtransition模块,进一步减少计算量并增强特征交互性和提高性能。在COCO验证集上的实验结果显示,DGLNet优于轻量级高分辨率网络(Lite-HRNet),在计算量和参数量不增加的情况下,最高精度达到了71.9%;与常见的轻量级姿态估计网络MobileNetV2和ShuffleNetV2相比,DGLNet在仅使用21.2%和25.0%的计算量情况下分别实现了4.6和8.3个百分点的精度提升;在AP^(50)的评价标准上,DGLNet超过了大型高分辨率网络(HRNet)的同时计算量和参数量远小于HRNet。 展开更多
关键词 人体姿态估计 轻量级网络 注意力机制 幻影卷积 深度可分离卷积模块
在线阅读 下载PDF
不平衡数据下面向包粒度应用层负载的轻量化入侵检测模型
8
作者 杨毅铭 陈世平 《小型微型计算机系统》 北大核心 2025年第2期465-473,共9页
网络入侵检测是一种重要的网络安全方案.目前网络入侵检测模型都有较高精确度,但是模型复杂,参数量和计算量较大.针对该问题,设计了一种新的基于包粒度应用层负载的网络入侵检测一维卷积轻量模型.本文首先对UNSWNB15数据集的原始流量文... 网络入侵检测是一种重要的网络安全方案.目前网络入侵检测模型都有较高精确度,但是模型复杂,参数量和计算量较大.针对该问题,设计了一种新的基于包粒度应用层负载的网络入侵检测一维卷积轻量模型.本文首先对UNSWNB15数据集的原始流量文件进行包粒度应用层负载数据提取,构造一维灰度特征向量.在此基础上,本文提出一种由新的一维深度可分离卷积残差模块组成,融入了全局上下文注意力机制(Global Context Attention Module)的一维卷积轻量模型Fast Payload,并进行了针对性的模型优化和可行性论证.Fast Payload模型在UNSWNB15数据集上的9分类任务中宏平均准确率达到82.433%,加权平均精确率达到90.820%,均高于对比模型;同时,该模型计算量和参数量均低于对比模型.其次本文提出了二阶段类别平衡损失函数GHM2StageLoss,有效解决了数据集的类别不平衡问题,相比其他类别平衡损失函数,效果更好.为方便后续研究的复现,本研究开源部分源代码,网址为https://github.com/sadantange/FastPayload. 展开更多
关键词 入侵检测 一维卷积神经网络 深度可分离卷积 全局上下文注意力机制 类别平衡
在线阅读 下载PDF
一种新型DSCNN-GRU结构的减速机轴承故障诊断方法 被引量:9
9
作者 汪洋 郭利进 《机械科学与技术》 CSCD 北大核心 2020年第2期258-266,共9页
结合深度学习理论,将一维卷积神经网络运用于振动信号故障诊断,相较于传统方法,提取特征简单且高效。为进一步优化一维卷积结构,弥补其在信号所有位置的寻找模式,联系周期内的故障特征,提出一种新型DSCNN-GRU网络。该模型融合了深度可... 结合深度学习理论,将一维卷积神经网络运用于振动信号故障诊断,相较于传统方法,提取特征简单且高效。为进一步优化一维卷积结构,弥补其在信号所有位置的寻找模式,联系周期内的故障特征,提出一种新型DSCNN-GRU网络。该模型融合了深度可分离卷积的轻量快捷,降低了一维卷积结构参数;加入门控机制,可记忆分析故障点的信号特征,联系周期内的信号关系,更好地捕捉信号故障特征,提升对时间序列的敏感性。提出一种跟踪梯度优化Adam算法,解决模型随时间窗振荡问题。通过采集的减速机滚动轴承数据研究表明,该算法平均故障识别率可达94%以上,分类效果明显,泛化能力强。 展开更多
关键词 卷积神经网络 深度可分离卷积 门控机制 故障诊断 滚动轴承
在线阅读 下载PDF
基于SE-DSCNN的MMC开关管故障诊断方法 被引量:8
10
作者 曾昭瑢 何怡刚 《电力自动化设备》 EI CSCD 北大核心 2022年第5期104-111,共8页
为了实现模块化多电平变换器(MMC)子模块开关管的故障诊断,提出了一种基于挤压-激励模块的深度可分离卷积神经网络(SE-DSCNN)。该网络直接利用原始电容电压数据,不需要任何的特征提取算法,能够自动提取隐藏在原始数据中的深层特征,结合... 为了实现模块化多电平变换器(MMC)子模块开关管的故障诊断,提出了一种基于挤压-激励模块的深度可分离卷积神经网络(SE-DSCNN)。该网络直接利用原始电容电压数据,不需要任何的特征提取算法,能够自动提取隐藏在原始数据中的深层特征,结合挤压-激励模块以突出通道域中具有代表性的特征,利用深度可分离卷积(DSC)来减少网络的计算量。利用滑动时间窗口将数据分段并归一化后输入提前训练好的最优模型中,模型输出预测标签。通过与其他人工特征提取方法及深度学习方法进行对比,结果表明模型参数量比具有相同卷积层数的标准卷积神经网络(CNN)减少了70.92%左右。所提方法在已有样本片段上的分类准确率及不同故障时期的诊断正确率均达99%及以上,诊断单个样本片段所需的时间约为0.34 ms,不但能区分故障早期的耦合性特征,还能实现准确、可靠、高效、快速的故障诊断。 展开更多
关键词 MMC 开关管故障 挤压-激励模块 深度可分离卷积神经网络 故障诊断
在线阅读 下载PDF
Probability-Based Channel Pruning for Depthwise Separable Convolutional Networks 被引量:1
11
作者 Han-Li Zhao Kai-Jie Shi +4 位作者 Xiao-Gang Jin Ming-Liang Xu Hui Huang Wang-Long Lu Ying Liu 《Journal of Computer Science & Technology》 SCIE EI CSCD 2022年第3期584-600,共17页
Channel pruning can reduce memory consumption and running time with least performance damage,and is one of the most important techniques in network compression.However,existing channel pruning methods mainly focus on ... Channel pruning can reduce memory consumption and running time with least performance damage,and is one of the most important techniques in network compression.However,existing channel pruning methods mainly focus on the pruning of standard convolutional networks,and they rely intensively on time-consuming fine-tuning to achieve the performance improvement.To this end,we present a novel efficient probability-based channel pruning method for depthwise separable convolutional networks.Our method leverages a new simple yet effective probability-based channel pruning criterion by taking the scaling and shifting factors of batch normalization layers into consideration.A novel shifting factor fusion technique is further developed to improve the performance of the pruned networks without requiring extra time-consuming fine-tuning.We apply the proposed method to five representative deep learning networks,namely MobileNetV1,MobileNetV2,ShuffleNetV1,ShuffleNetV2,and GhostNet,to demonstrate the efficiency of our pruning method.Extensive experimental results and comparisons on publicly available CIFAR10,CIFAR100,and ImageNet datasets validate the feasibility of the proposed method. 展开更多
关键词 network compression channel pruning depthwise separable convolution batch normalization
原文传递
Lightweight and highly robust memristor-based hybrid neural networks for electroencephalogram signal processing
12
作者 童霈文 徐晖 +5 位作者 孙毅 汪泳州 彭杰 廖岑 王伟 李清江 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期582-590,共9页
Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor ... Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor one-resistor(1T1R)memristor arrays is limited by the non-ideality of the devices,which prevents the hardware implementation of large and complex networks.In this work,we propose the depthwise separable convolution and bidirectional gate recurrent unit(DSC-BiGRU)network,a lightweight and highly robust hybrid neural network based on 1T1R arrays that enables efficient processing of EEG signals in the temporal,frequency and spatial domains by hybridizing DSC and BiGRU blocks.The network size is reduced and the network robustness is improved while ensuring the network classification accuracy.In the simulation,the measured non-idealities of the 1T1R array are brought into the network through statistical analysis.Compared with traditional convolutional networks,the network parameters are reduced by 95%and the network classification accuracy is improved by 21%at a 95%array yield rate and 5%tolerable error.This work demonstrates that lightweight and highly robust networks based on memristor arrays hold great promise for applications that rely on low consumption and high efficiency. 展开更多
关键词 MEMRISTOR LIGHTWEIGHT ROBUST hybrid neural networks depthwise separable convolution bidirectional gate recurrent unit(BiGRU) one-transistor one-resistor(1T1R)arrays
在线阅读 下载PDF
煤矿工业物联网设备识别模型 被引量:1
13
作者 郝秦霞 李慧敏 《工矿自动化》 CSCD 北大核心 2024年第3期99-107,共9页
煤矿工业物联网(IIoT)设备计算与存储资源受限,易遭受非法网络入侵,造成敏感数据泄露或恶意篡改,威胁煤矿生产安全。精准识别煤矿IIoT设备可实现有效管理并维护设备正常运转,提高设备安全防护能力,然而现有设备识别算法存在特征构造复... 煤矿工业物联网(IIoT)设备计算与存储资源受限,易遭受非法网络入侵,造成敏感数据泄露或恶意篡改,威胁煤矿生产安全。精准识别煤矿IIoT设备可实现有效管理并维护设备正常运转,提高设备安全防护能力,然而现有设备识别算法存在特征构造复杂、内存与计算需求较高导致难以部署在资源受限的煤矿IIoT设备中等问题。针对上述问题,提出了一种煤矿IIoT设备识别模型。首先,对支持TCP/IP协议传输的流量数据进行流量切分、无关字段去除、去重、定长字段截取操作后转换为IDX格式存储;其次,使用卷积块注意力模块(CBAM)优化深度可分离卷积(DSC),从而搭建轻量级DSC−CBAM模型来过滤Non−IIoT设备;然后,利用带有阶段惩罚的Wasserstein生成对抗网络(WGAN−GP)扩充流量较少的煤矿IIoT设备数据,达到平衡偏移流量数据的目的;最后,在DSC−CBAM基础上引入多尺度特征融合(MFF)技术捕获浅层全局特征信息,并增加Mish激活函数提高模型训练稳定性,建立优化混合模态识别(MDCM)模型,实现煤矿IIoT设备精准识别。实验结果表明,该模型收敛速度快,准确率、召回率、精确率与F1−score指标均高达99.98%,且参数量小,能精准、高效识别煤矿IIoT设备。 展开更多
关键词 煤矿工业物联网 设备识别 深度可分离卷积 注意力机制 生成对抗网络
在线阅读 下载PDF
基于可分离卷积与小波变换融合的道路裂缝检测
14
作者 刘云清 吴越 +2 位作者 张琼 颜飞 陈姗姗 《计算机科学》 CSCD 北大核心 2024年第S02期304-312,共9页
针对目前对细小裂缝检测能力不强、分割精度低等问题,提出了一种改进的U-Net模型来检测路面裂缝,提高检测能力和分割精度。中文设计了新的模块MSDWBlock(Multi-Scale Depthwise Separable Convolutional Block),应用在编码器和解码器部... 针对目前对细小裂缝检测能力不强、分割精度低等问题,提出了一种改进的U-Net模型来检测路面裂缝,提高检测能力和分割精度。中文设计了新的模块MSDWBlock(Multi-Scale Depthwise Separable Convolutional Block),应用在编码器和解码器部分,通过深度可分离卷积增强模型的能力,扩大模型感受野,在跳跃连接部分引入了C2G注意力机制模块,提升模型对裂缝特征的感知能力;并引入了ASPP(Atrous Spatial Pyramid Pooling)和DWT(Discrete Wavelet Transformation)。ASPP通过在多个尺度上进行操作,有助于捕捉到裂缝的特征,而DWT能够减少卷积池化过程中的裂缝空间信息损失,保留裂缝边缘信息。这种结构设计使得网络更专注于裂缝的特征,从而提升了裂缝检测的准确性。通过实验证明所提模型显示出优于U-Net,Segnet,U2net等先进模型的精确性。在CFD数据集上mIoU,F1分别达到78.51%,0.868。这些成果表明,所提方法能有效提升道路裂缝检测的性能。 展开更多
关键词 裂缝检测 U-Net神经网络 深度可分离卷积 注意力机制 空间金字塔 小波变换
在线阅读 下载PDF
基于深度可分离卷积和残差注意力模块的车道线检测方法 被引量:2
15
作者 崔明义 冯治国 +2 位作者 代建琴 赵雪峰 袁森 《激光杂志》 CAS 北大核心 2024年第4期81-87,共7页
针对全天候条件下道路车道线视觉检测技术存在的算法结构复杂、参数数量较多等问题,提出一种基于深度可分离卷积和残差注意力模块的车道线检测方法,建立了LPINet网络模型。利用深度可分离卷积减小输入图像尺寸,设计三种不同结构的瓶颈... 针对全天候条件下道路车道线视觉检测技术存在的算法结构复杂、参数数量较多等问题,提出一种基于深度可分离卷积和残差注意力模块的车道线检测方法,建立了LPINet网络模型。利用深度可分离卷积减小输入图像尺寸,设计三种不同结构的瓶颈残差单元降低网络参数数量,引入ECANet注意力机制增加重要特征通道权重,提升车道线检测精度。在Tusimple数据集和GZUCDS自建数据集上的实验结果表明:在晴天场景下,LPINet网络车道线检测精度可达96.62%,且模型参数量降至1.64 MB,实现了轻量化设计;在雾天、雨天、夜晚和隧道复杂场景中进行了探索性研究,车道线检测精度达到93.86%,证明了方法的有效性。 展开更多
关键词 车道线检测 深度学习 残差网络 深度可分离卷积 注意力机制
在线阅读 下载PDF
基于改进YOLOv5的船舶多尺度SAR图像检测算法 被引量:3
16
作者 李生辉 李晓飞 +1 位作者 宋璋晗 王必祥 《数据采集与处理》 CSCD 北大核心 2024年第1期120-131,共12页
针对复杂场景下合成孔径雷达(Synthetic aperture radar, SAR)图像船舶目标像素尺度差异大和船舶密集排列造成目标漏检的问题,提出一种基于改进YOLOv5的船舶多尺度SAR图像检测算法。对于YOLOv5的颈部网络,采用双向特征金字塔结构(Bi-dir... 针对复杂场景下合成孔径雷达(Synthetic aperture radar, SAR)图像船舶目标像素尺度差异大和船舶密集排列造成目标漏检的问题,提出一种基于改进YOLOv5的船舶多尺度SAR图像检测算法。对于YOLOv5的颈部网络,采用双向特征金字塔结构(Bi-directional feature pyramid network, BiFPN)提升网络多尺度特征融合能力,并在其自下而上的特征融合支路中,基于深度可分离卷积(Depthwise separable convolution, DSC)和通道MLP构建EC-MLP(Enhanced channel-MLP)模块,从而丰富语义信息,提供更充分的船舶目标上下文特征;引入全局注意力机制(Global attention mechanism, GAM),使网络对输入特征进行针对性提取并运算,减少网络的信息丢失;此外,使用SIoU损失函数进一步提高网络的训练收敛速度和检测精度。在SSDD和HRSID数据集上与其他8种方法(Faster R-CNN、Libra R-CNN、FCOS、YOLOv5s、PP-YOLOv2、YOLOX-s、PP-YOLOE-s和YOLOv7-tiny)进行对比实验。实验结果表明:改进后算法在SSDD数据集上的AP50达到了96.7%,在HRSID数据集上AP50达到了95.6%,优于对比方法。 展开更多
关键词 合成孔径雷达 船舶目标检测 双向特征金字塔网络 深度可分离卷积 全局注意力机制
在线阅读 下载PDF
融合空间分割注意力的织物材质识别方法
17
作者 南科良 靳雁霞 +3 位作者 王松松 王婷 张晓竺 张壮威 《现代纺织技术》 北大核心 2024年第12期58-67,共10页
针对传统神经网络检测织物材质精确度低、检测速度慢的问题,提出一种融合空间分割注意力的织物材质识别算法。首先对多种材质的织物风吹视频进行分帧处理,得到织物图像。接着进行数据预处理,并采集织物图像的时序信息,利用欧氏距离计算... 针对传统神经网络检测织物材质精确度低、检测速度慢的问题,提出一种融合空间分割注意力的织物材质识别算法。首先对多种材质的织物风吹视频进行分帧处理,得到织物图像。接着进行数据预处理,并采集织物图像的时序信息,利用欧氏距离计算织物图像中同一像素点在时间前后的位移量,将织物图像进行区域划分。将处理后的图像输入到注意力网络中进行特征提取,采取深度可分离卷积(DSC)替代普通卷积,以减少网络参数与计算量,增强网络的特征提取能力。然后在每个卷积层后引入空间分割注意力模块(SPAM)来增强重要特征,防止特征图信息丢失过多,提升网络精度。最后通过全局平均池化层和softmax层实现织物材质的识别。结果表明:所提出的织物材质识别算法能够快速、有效地对织物材质进行分类识别,准确率达到93.9%,单张图片检测时间为83.14 ms,在保证识别精度的同时具有较强的实时性。 展开更多
关键词 织物材质识别 空间分割注意力模块 区域划分 卷积神经网络 深度可分离卷积
在线阅读 下载PDF
基于注意力特征融合的漏磁缺陷识别方法 被引量:2
18
作者 郭磊 丁疆强 +1 位作者 李智文 李洪伟 《沈阳工业大学学报》 CAS 北大核心 2024年第2期212-218,共7页
针对漏磁缺陷识别率低、检测速度慢等问题,提出了一种基于注意力特征融合的漏磁缺陷识别方法。所提算法以CenterNet为基础进行修改,主干网络选取了一种轻量级网络PP-LCNet,相较于现在流行的主干特征提取网络既保证了低计算量又保证了高... 针对漏磁缺陷识别率低、检测速度慢等问题,提出了一种基于注意力特征融合的漏磁缺陷识别方法。所提算法以CenterNet为基础进行修改,主干网络选取了一种轻量级网络PP-LCNet,相较于现在流行的主干特征提取网络既保证了低计算量又保证了高精度。采用注意力网络CBAM主动学习低层特征中的重要信息并与高层特征进行融合,使模型同时获得低层细粒度信息与高层语义信息,进而提升小缺陷识别的准确率。结果表明,当IOU大于0.5时,所提算法的准确率为94.3%,推理时间为9.6 ms。 展开更多
关键词 注意力机制 缺陷识别 深度学习 深度可分离卷积 特征融合 轻量级网络 漏磁 目标检测
在线阅读 下载PDF
基于RISC-Ⅴ的深度可分离卷积神经网络加速器
19
作者 曹希彧 陈鑫 魏同权 《计算机学报》 EI CAS CSCD 北大核心 2024年第11期2536-2551,共16页
人工智能时代,RISC-Ⅴ作为一种新兴的开源精简指令集架构,因其低功耗、模块化、开放性和灵活性等优势,使之成为一种能够适应不断发展的深度学习模型和算法的新平台.但是在硬件资源及功耗受限环境下,基础的RISC-Ⅴ处理器架构无法满足卷... 人工智能时代,RISC-Ⅴ作为一种新兴的开源精简指令集架构,因其低功耗、模块化、开放性和灵活性等优势,使之成为一种能够适应不断发展的深度学习模型和算法的新平台.但是在硬件资源及功耗受限环境下,基础的RISC-Ⅴ处理器架构无法满足卷积神经网络对高性能计算的需求.为了解决这一问题,本文设计了一个基于RISC-Ⅴ的轻量化深度可分离卷积神经网络加速器,旨在弥补RISC-Ⅴ处理器的卷积计算能力的不足.该加速器支持深度可分离卷积中的两个关键算子,即深度卷积和点卷积,并能够通过共享硬件结构提高资源利用效率.深度卷积计算流水线采用了高效的Winograd卷积算法,并使用2×2数据块组合拼接成4×4数据片的方式来减少传输数据冗余.同时,通过拓展RISC-Ⅴ处理器端指令,使得加速器能够实现更灵活的配置和调用.实验结果表明,相较于基础的RISC-Ⅴ处理器,调用加速器后的点卷积和深度卷积计算取得了显著的加速效果,其中点卷积加速了104.40倍,深度卷积加速了123.63倍.与此同时,加速器的性能功耗比达到了8.7GOPS/W.本文的RISC-Ⅴ处理器结合加速器为资源受限环境下卷积神经网络的部署提供了一个高效可行的选择. 展开更多
关键词 神经网络 深度可分离卷积 RISC-Ⅴ Winograd快速卷积 硬件加速
在线阅读 下载PDF
面向配电网终端设备的数字孪生映射方法研究 被引量:2
20
作者 韩璟琳 冯喜春 +1 位作者 侯若松 刘洋 《计算机仿真》 2024年第2期141-145,共5页
提出了一种面向配电网终端设备的数字孪生映射方法,推动电网企业数字化转型和电力系统自动化,降低成本与安全风险。方法利用虚拟数字孪生空间映射电网物理设备,实现对区域配电网多类型设备故障的实时诊断。首先,对配电网终端设备数据进... 提出了一种面向配电网终端设备的数字孪生映射方法,推动电网企业数字化转型和电力系统自动化,降低成本与安全风险。方法利用虚拟数字孪生空间映射电网物理设备,实现对区域配电网多类型设备故障的实时诊断。首先,对配电网终端设备数据进行压缩转换和级联映射,提取感知终端监测信息与物理拓扑连接关系。其次,采用改进的轻量级Yolov4网络模型进行设备类型识别与分割,结合物理拓扑图进行数字孪生映射,形成设备孪生模型。最后,设计基于卷积注意力机制的状态评估模型,充分考虑区域设备关联与故障特征,实现对设备孪生模型的故障评估及物理空间设备的状态反馈。上述创新方法有望为电力行业带来更高效、安全的运行模式,推进电网智能化发展。 展开更多
关键词 数字孪生 轻量化网络 状态感知 智能电网 深度可分离卷积
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部