期刊文献+
共找到377篇文章
< 1 2 19 >
每页显示 20 50 100
SEFormer:A Lightweight CNN-Transformer Based on Separable Multiscale Depthwise Convolution and Efficient Self-Attention for Rotating Machinery Fault Diagnosis 被引量:1
1
作者 Hongxing Wang Xilai Ju +1 位作者 Hua Zhu Huafeng Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期1417-1437,共21页
Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained promine... Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained prominence as a central focus of research in the field of fault diagnosis by strong fault feature extraction ability and end-to-end fault diagnosis efficiency.Recently,utilizing the respective advantages of convolution neural network(CNN)and Transformer in local and global feature extraction,research on cooperating the two have demonstrated promise in the field of fault diagnosis.However,the cross-channel convolution mechanism in CNN and the self-attention calculations in Transformer contribute to excessive complexity in the cooperative model.This complexity results in high computational costs and limited industrial applicability.To tackle the above challenges,this paper proposes a lightweight CNN-Transformer named as SEFormer for rotating machinery fault diagnosis.First,a separable multiscale depthwise convolution block is designed to extract and integrate multiscale feature information from different channel dimensions of vibration signals.Then,an efficient self-attention block is developed to capture critical fine-grained features of the signal from a global perspective.Finally,experimental results on the planetary gearbox dataset and themotor roller bearing dataset prove that the proposed framework can balance the advantages of robustness,generalization and lightweight compared to recent state-of-the-art fault diagnosis models based on CNN and Transformer.This study presents a feasible strategy for developing a lightweight rotating machinery fault diagnosis framework aimed at economical deployment. 展开更多
关键词 CNN-Transformer separable multiscale depthwise convolution efficient self-attention fault diagnosis
在线阅读 下载PDF
基于GADF-MDSC的特大型轴承深度迁移故障诊断方法
2
作者 姜烨飞 王华 +2 位作者 潘裕斌 王天祥 傅航 《振动与冲击》 EI CSCD 北大核心 2024年第19期10-18,共9页
针对工程应用中特大型轴承运行工况复杂以及故障数据匮乏,导致其故障特征提取不全面的问题,提出了一种基于格拉姆角差场-多尺度深度可分离卷积(Gramian angular difference field-multi-scale depthwise separable convolutions,GADF-MD... 针对工程应用中特大型轴承运行工况复杂以及故障数据匮乏,导致其故障特征提取不全面的问题,提出了一种基于格拉姆角差场-多尺度深度可分离卷积(Gramian angular difference field-multi-scale depthwise separable convolutions,GADF-MDSC)的特大型轴承深度迁移智能诊断方法。首先,构建GADF-MDSC故障诊断网络,该网络分为三大模块:图像转换、特征提取、输出部分。图像转换模块采用GADF编码方式将振动信号转换为二维图像;特征提取模块通过MDSC提取综合故障特征信息,并利用双向门控循环单元筛选融合特征;输出部分由Softmax函数预测轴承故障类型的概率分布。然后,利用源域数据预训练模型,将预训练模型权重参数作为目标域训练模型初始化参数,冻结除底层外的所有参数,使用目标域数据微调模型,实现深度迁移故障诊断任务。最后,通过两种特大型轴承试验对深度迁移模型进行验证。试验结果表明,所提方法在目标域样本仅有5.00%的条件下,仍能保证较高的跨工况精度,达到86.04%,且迁移效果优于其他方法。 展开更多
关键词 特大型轴承 故障诊断 迁移学习 格拉姆角差场(GADF) 多尺度深度可分离卷积(Mdsc)
在线阅读 下载PDF
基于DSConvBiGRU网络和热电堆阵列的动态手势识别方法
3
作者 顾亮 于莲芝 《计量学报》 CSCD 北大核心 2024年第6期795-805,共11页
提出了适用于嵌入式系统并融合深度可分离卷积神经网络与双向门控循环单元的DSConvBiGRU网络模型,将其用于动态手势序列的分类,设计并实现了一种使用低分辨率热电堆阵列传感器的动态手势识别解决方案,构建了动态手势数据集并在公开网站... 提出了适用于嵌入式系统并融合深度可分离卷积神经网络与双向门控循环单元的DSConvBiGRU网络模型,将其用于动态手势序列的分类,设计并实现了一种使用低分辨率热电堆阵列传感器的动态手势识别解决方案,构建了动态手势数据集并在公开网站发布,完成了预训练网络模型在Raspberry Pi边缘端的部署。系统对传感器输出的连续20个温度矩阵进行区间映射、背景减除、Lanczos插值和Otsu二值化预处理得到单个动态手势序列,再由预训练的DSConvBiGRU网络进行分类。实验结果表明:网络模型在测试集上识别准确率为99.291%,在边缘端预处理耗时5.513 ms,推理耗时8.231 ms,该系统满足低功耗、高精度和实时性的设计需求。 展开更多
关键词 机器视觉 光电检测 动态手势识别 热电堆阵列 深度可分离卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于MHSA⁃EDSCNet混合模型的运动想象多任务分类研究
4
作者 张圆 乔晓艳 《测试技术学报》 2024年第6期652-660,共9页
运动想象脑电信号解码是脑机接口技术的关键环节。针对传统深度学习方法难以获得脑电全局信息,提出多头自注意力(MHSA)机制结合改进的深度可分离卷积网络(EDSCNet)模型,用于运动想象多任务分类。首先,通过滤波器组共空间模式提取不同子... 运动想象脑电信号解码是脑机接口技术的关键环节。针对传统深度学习方法难以获得脑电全局信息,提出多头自注意力(MHSA)机制结合改进的深度可分离卷积网络(EDSCNet)模型,用于运动想象多任务分类。首先,通过滤波器组共空间模式提取不同子带共空间模式空域特征,准确获取运动想象脑电的细粒度特征信息;其次,利用一维卷积改进深度可分离卷积网络,进一步提取脑电局部空间信息和空间关联信息,并结合多头自注意力机制,更好地捕捉运动想象脑电特征的全局空间信息,增强特征表征能力,提高多任务分类准确率,同时可减少模型参数和计算量;最后,在BCI Competition IV2a运动想象脑电数据集对该模型进行验证和评估,并对左手、右手、双脚和舌头四类运动想象任务脑电特征进行可视化。结果表明:模型在两个运动想象四类任务数据集,分别获得95.35%和96.87%的平均分类准确率以及0.9379和0.9586的Kappa系数。模型特征可视化对大脑不同的运动想象任务能够显著区分,并且模型对所有被试表现出一致的性能。 展开更多
关键词 脑电信号 深度可分离卷积 滤波器组共空间模式 多头自注意力
在线阅读 下载PDF
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification 被引量:1
5
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight convolutional Neural Network depthwise Dilated separable convolution Hierarchical Multi-Scale Feature Fusion
在线阅读 下载PDF
A Novel Fall Detection Framework Using Skip-DSCGAN Based on Inertial Sensor Data
6
作者 Kun Fang Julong Pan +1 位作者 Lingyi Li Ruihan Xiang 《Computers, Materials & Continua》 SCIE EI 2024年第1期493-514,共22页
With the widespread use of Internet of Things(IoT)technology in daily life and the considerable safety risks of falls for elderly individuals,research on IoT-based fall detection systems has gainedmuch attention.This ... With the widespread use of Internet of Things(IoT)technology in daily life and the considerable safety risks of falls for elderly individuals,research on IoT-based fall detection systems has gainedmuch attention.This paper proposes an IoT-based spatiotemporal data processing framework based on a depthwise separable convolution generative adversarial network using skip-connection(Skip-DSCGAN)for fall detection.The method uses spatiotemporal data from accelerometers and gyroscopes in inertial sensors as input data.A semisupervised learning approach is adopted to train the model using only activities of daily living(ADL)data,which can avoid data imbalance problems.Furthermore,a quantile-based approach is employed to determine the fall threshold,which makes the fall detection frameworkmore robust.This proposed fall detection framework is evaluated against four other generative adversarial network(GAN)models with superior anomaly detection performance using two fall public datasets(SisFall&MobiAct).The test results show that the proposed method achieves better results,reaching 96.93% and 92.75% accuracy on the above two test datasets,respectively.At the same time,the proposed method also achieves satisfactory results in terms ofmodel size and inference delay time,making it suitable for deployment on wearable devices with limited resources.In addition,this paper also compares GAN-based semisupervised learning methods with supervised learning methods commonly used in fall detection.It clarifies the advantages of GAN-based semisupervised learning methods in fall detection. 展开更多
关键词 Fall detection skip-connection depthwise separable convolution generative adversarial networks inertial sensor
在线阅读 下载PDF
基于改进YOLO模型的轻量化脑电图肌电伪影检测方法
7
作者 孙鸽 林卫红 +1 位作者 娄洪伟 韩金波 《中国生物医学工程学报》 北大核心 2025年第1期124-128,共5页
脑电图(EEG)已经成为神经科学领域的重要工具,基于人工智能的脑电图分析在脑神经疾病、运动想象和情绪识别方面有广泛应用。然而,EEG的应用受到低信噪比的限制,特别是癫痫诊断中肌电(EMG)伪影降低了异常放电特征波形的识别准确率,且现... 脑电图(EEG)已经成为神经科学领域的重要工具,基于人工智能的脑电图分析在脑神经疾病、运动想象和情绪识别方面有广泛应用。然而,EEG的应用受到低信噪比的限制,特别是癫痫诊断中肌电(EMG)伪影降低了异常放电特征波形的识别准确率,且现有算法难以实现快速且准确的伪影检测。本研究对YOLO算法进行改进,以深度可分离卷积作为骨干网络,对网络的输入数据、结果矩阵和损失函数进行调整,以适应多导联的EEG数据,提出了一种基于改进YOLO模型的轻量化脑电图肌电伪影检测方法。利用临床采集和公开数据集的伪影标注数据(共4711条)对模型进行训练和测试,其mAP@0.5和mAP@0.5:0.95分别达到了93.7%和79.8%,检测速度为31.0 ms/帧。结果显示,该方法在检测精度和推理速度上优于传统YOLO模型和其他先进算法。同时提升了EEG信号的信噪比,从而可有效改善EEG在临床判读和智能识别过程中的应用效率和准确性。 展开更多
关键词 脑电图 肌电伪影 YOLO 深度可分离卷积
在线阅读 下载PDF
基于YOLOv5s的轻量化森林火灾探测算法
8
作者 刘惠临 方琼 +3 位作者 江宇 魏华章 王涛 张树川 《中国安全科学学报》 北大核心 2025年第1期75-83,共9页
为解决当前基于深度学习的森林火灾探测算法存在结构复杂、规模庞大,且难以兼顾检测精度和效率的问题,提出一种基于YOLOv5s的轻量化森林火灾探测算法。首先,采用优化的背景差分技术消除背景图像中类火物体的干扰,减少分析图像所需的时间... 为解决当前基于深度学习的森林火灾探测算法存在结构复杂、规模庞大,且难以兼顾检测精度和效率的问题,提出一种基于YOLOv5s的轻量化森林火灾探测算法。首先,采用优化的背景差分技术消除背景图像中类火物体的干扰,减少分析图像所需的时间;其次,设计分组混洗策略优化常规卷积,并在特征提取的C3模块中融入高效通道注意力(ECA)机制和深度可分离卷积,增强图像特征提取与融合能力的同时有效降低模型的参数量;然后,采用动态非单调聚焦机制优化Wise-交并比(WIOU)损失函数,减少低质量样本产生的有害梯度;最后,在构建的森林火灾数据集上将所提算法与其他算法做充分的试验对比。结果表明:所提算法在各类场景均展现出良好的泛化性,对火焰目标的检测精度达到86.1%,较标准YOLOv5s检测精度提升2.7%,检测速度提升11.4%,有效降低了火灾误报率,增强了模型的检测性能。 展开更多
关键词 YOLOv5s 轻量化 森林火灾探测 深度可分离卷积 注意力 Wise-交并比(WIOU)
在线阅读 下载PDF
基于GADF和CWT并行输入模型的滚动轴承智能诊断研究
9
作者 张小丽 和飞翔 +2 位作者 梁旺 李敏 王保建 《湖南大学学报(自然科学版)》 北大核心 2025年第2期98-108,共11页
滚动轴承运行工况的变化与噪声干扰等随机不确定性因素会导致网络特征提取不完整,从而无法捕捉故障突变等局部奇异信息.针对上述问题,提出一种并行二维深度可分离残差神经网络(parallel two-dimensional depthwise separable residual n... 滚动轴承运行工况的变化与噪声干扰等随机不确定性因素会导致网络特征提取不完整,从而无法捕捉故障突变等局部奇异信息.针对上述问题,提出一种并行二维深度可分离残差神经网络(parallel two-dimensional depthwise separable residual neural network,P2DDSResNet)模型,通过格拉姆角分场(Gramian angular difference field,GADF)和连续小波变换(continuous wavelet transform,CWT)将振动信号转变为二维时频图像,保留了完整的时频域信息.采用深度可分离卷积替代残差模块中的普通卷积,增强特征学习能力,从而使模型具有更强的特征提取能力,以解决在高噪声和变工况环境中故障诊断效果不佳的问题.采用滚动轴承故障模拟试验台获取的数据对其进行试验分析并与其他卷积神经网络方法对比,结果表明,优化后的算法模型具有良好的泛化性和准确率. 展开更多
关键词 故障诊断 深度可分离卷积 滚动轴承 残差神经网络 特征提取
在线阅读 下载PDF
基于生成对抗网络的航拍路面阴影去除
10
作者 韩建峰 金聪颖 +1 位作者 宋丽丽 赵悦辰 《电光与控制》 北大核心 2025年第2期86-92,共7页
采用无人机航拍采集路面图像,可有效提高路面健康状况检测的效率。然而,无人机航拍图像因航拍角度和日照变化的影响,产生的长阴影会掩盖路面破损信息,影响破损检测的准确性。针对这一问题,提出一种基于生成对抗网络(GAN)的航拍路面阴影... 采用无人机航拍采集路面图像,可有效提高路面健康状况检测的效率。然而,无人机航拍图像因航拍角度和日照变化的影响,产生的长阴影会掩盖路面破损信息,影响破损检测的准确性。针对这一问题,提出一种基于生成对抗网络(GAN)的航拍路面阴影去除算法,在生成对抗网络中引入多尺度特征提取模块,以增强图像信息特征提取能力;同时,在判别网络结构中采用深度可分离卷积,有效降低模型对非阴影区域的敏感性,提高判别网络的鉴别效果;此外,构建不同路面和光照条件下的航拍路面阴影数据集,提升模型泛化能力及鲁棒性。实验结果表明,所提算法获得的无阴影结果图像在多个无参考图像质量评估指标上均有所提升,能够提高路面破损检测识别的准确性和完整性。 展开更多
关键词 航拍路面 阴影去除 多尺度特征提取 深度可分离卷积
在线阅读 下载PDF
基于自注意力机制的高分遥感影像语义分割
11
作者 杨军 张金影 康玥 《哈尔滨工程大学学报》 北大核心 2025年第2期344-354,共11页
针对遥感影像多尺度特征提取困难、上下文信息利用不足的问题,本文结合自注意力机制和深度可分离卷积提出一种线性多头自注意力网络模型,适用于高分辨率遥感影像语义分割。在自注意力模块之前引入深度可分离卷积,减少计算量的同时有助... 针对遥感影像多尺度特征提取困难、上下文信息利用不足的问题,本文结合自注意力机制和深度可分离卷积提出一种线性多头自注意力网络模型,适用于高分辨率遥感影像语义分割。在自注意力模块之前引入深度可分离卷积,减少计算量的同时有助于捕获局部特征;在编码器分支中提出线性的多头自注意力模块以降低模型的计算复杂度;设计一个解码器来恢复特征图分辨率,通过级联操作整合各层级的特征并生成高分辨率的语义分割结果。所提算法在ISPRS Vaihingen和Potsdam数据集上的分割结果的mF1分别达到了90.77%和92.36%,与目前主流算法相比,不透水表面、建筑、低矮植物、树木类的分割准确率及总体分割准确率均有提高。本文算法构建的线性多头自注意力网络是一种高效的高分辨率遥感影像语义分割模型。 展开更多
关键词 高分辨率遥感影像 多头自注意力 深度可分离卷积 语义分割 特征提取 卷积神经网络 编码器 解码器
在线阅读 下载PDF
一种基于ASPPUnet的道路裂缝检测模型
12
作者 曹一冰 张江水 +1 位作者 张政 赵鑫科 《测绘科学技术学报》 2025年第1期49-56,共8页
为了更加精确高效地对道路裂缝进行分割提取,提出一种基于多尺度特征与上下文信息融合的ASPPUnet道路裂缝检测模型。ASPPUnet通过U形编码解码器进行多尺度特征的提取,通过引入ASPP模块进行不同范围上下文信息的融合;同时模型还引入了深... 为了更加精确高效地对道路裂缝进行分割提取,提出一种基于多尺度特征与上下文信息融合的ASPPUnet道路裂缝检测模型。ASPPUnet通过U形编码解码器进行多尺度特征的提取,通过引入ASPP模块进行不同范围上下文信息的融合;同时模型还引入了深度可分离卷积模块,用以实现模型的轻量化;采用融合Dice和交叉熵的损失函数,均衡模型的查全率和查准率;采用动态数据集增广方法,使得模型在小数据集上也能实现良好的检测效果。通过与Unet等模型的实验对比可以看出,ASPPUnet拥有更好的检测效果和可塑性,具有较好的应用价值。 展开更多
关键词 裂缝检测 图像分割 深度可分离卷积 损失函数 ASPP模块 Unet模型
在线阅读 下载PDF
基于深度可分离卷积混合网络模型的地浸采铀注液量预测研究
13
作者 刘志锋 唐俊贤 +1 位作者 林芝宁 周义朋 《铀矿冶》 2025年第1期9-17,共9页
地浸采铀作为铀矿的绿色开采技术,在生产运行中产生海量数据,利用这些海量数据进行大数据分析和趋势预测,能够提升技术人员制定生产计划的可靠性。目前采用的基于编码器-解码器结构的时序预测模型,由于存在注意力机制,导致计算复杂、内... 地浸采铀作为铀矿的绿色开采技术,在生产运行中产生海量数据,利用这些海量数据进行大数据分析和趋势预测,能够提升技术人员制定生产计划的可靠性。目前采用的基于编码器-解码器结构的时序预测模型,由于存在注意力机制,导致计算复杂、内存消耗大。本研究提出深度可分离卷积混合模型,通过动态序列分割模块降低固定分割带来的语义破坏,通过深度可分离卷积混合模块降低模型运行时间并捕获局部和全局特征。结果表明,深度可分离卷积混合网络模型的均方误差(Mean Square Error,MSE)与平均绝对误差(Mean Absolute Error,MAE)相较于时间序列分块自注意力模型(Patch Time Series Transformer,PatchTST)分别降低了1.04%和4.13%,提出的动态序列分割模块的MSE与MAE相较于原有模型分别降低了7.32%和5.03%;在性能对比分析上,深度可分离卷积混合模型的训练速度相较于趋势季节分解线性模型(Decomposition Linear,DLinear)提高了59.91%。建立的模型能够准确预测采区生产运行中硫酸注液量的变化趋势,改善了现有预测模型针对地浸铀矿数据集存在的运行时间长、运行内存大、数据拟合差的问题,可为地浸铀矿生产决策提供理论和实践参考。 展开更多
关键词 地浸采铀 注液量预测 深度可分离卷积 预测模型
在线阅读 下载PDF
基于改进YOLOv8的轻量化鱼苗检测算法:FD-YOLO
14
作者 王泽宇 徐慧英 +3 位作者 朱信忠 黄晓 梁佳杰 李琛 《计算机工程》 北大核心 2025年第4期327-338,共12页
基于深度学习的鱼苗检测在水产养殖中的应用为自动化和精确化管理提供了可能。针对鱼苗检测中设备性能低、实时性要求高等问题,提出一种改进YOLOv8的轻量化鱼苗检测算法FD-YOLO。将快速网络(FasterNet)替换YOLOv8原CSPDarkNet特征提取网... 基于深度学习的鱼苗检测在水产养殖中的应用为自动化和精确化管理提供了可能。针对鱼苗检测中设备性能低、实时性要求高等问题,提出一种改进YOLOv8的轻量化鱼苗检测算法FD-YOLO。将快速网络(FasterNet)替换YOLOv8原CSPDarkNet特征提取网络,采用局部卷积(PConv)减少冗余计算和内存访问。在特征融合中引入深度可分离卷积(DWConv),将标准卷积过程分解为相对简单的深度卷积和逐点卷积两个步骤并行处理,进一步减少模型的复杂性和计算资源消耗。使用Focal-EIoU作为模型损失函数,提高检测精度,使得模型更具鲁棒性。实验结果表明,改进后的检测模型参数量和计算量大幅降低,模型参数量下降了91%,计算量下降了85%,在CPU上的推理速度加快了3倍。改进后的鱼苗检测算法能更好地兼顾高精度和实时性之间的平衡,便于部署在资源有限的硬件平台上。 展开更多
关键词 目标检测 鱼苗检测 轻量化 局部卷积 深度可分离卷积
在线阅读 下载PDF
基于深度学习的时空特征融合网络入侵检测模型研究
15
作者 李聪聪 袁子龙 滕桂法 《信息安全研究》 北大核心 2025年第2期122-129,共8页
随着网络攻击日益增多,网络入侵检测系统在维护网络安全方面也越来越重要.目前多数研究采用深度学习的方法进行网络入侵检测,但未充分从多个角度利用流量的特征,同时存在实验数据集过于陈旧的问题.提出了一种并行结构的DSC-Inception-Bi... 随着网络攻击日益增多,网络入侵检测系统在维护网络安全方面也越来越重要.目前多数研究采用深度学习的方法进行网络入侵检测,但未充分从多个角度利用流量的特征,同时存在实验数据集过于陈旧的问题.提出了一种并行结构的DSC-Inception-BiLSTM网络,使用最新的数据集评估所设计的网络模型.该模型包括网络流量图像和文本异常流量检测2个分支,分别通过改进的卷积神经网络和循环神经网络提取流量的空间特征和时序特征.最后通过融合时空特征实现网络入侵检测.实验结果表明,在CIC-IDS2017,CSE-CIC-IDS2018,CIC-DDoS2019这3个数据集上,该模型分别达到了99.96%,99.19%,99.95%的准确率,能够对异常流量进行高精度分类,满足入侵检测系统的要求. 展开更多
关键词 网络入侵检测 深度学习 特征融合 深度可分离卷积 INCEPTION
在线阅读 下载PDF
基于单序列到多序列的轻量级非侵入式负荷监测
16
作者 陈文权 吴青华 +1 位作者 季天瑶 李梦诗 《电测与仪表》 北大核心 2025年第1期167-175,共9页
非侵入式负荷监测(non-intrusive load monitoring,NILM)能让用户以一种低成本的方式获取家庭中各用电器的耗电情况,有利于推动实现碳中和,提升需求侧管理能力。针对一般NILM算法面对的负荷分解误差和模型计算成本间的矛盾,提出了一种... 非侵入式负荷监测(non-intrusive load monitoring,NILM)能让用户以一种低成本的方式获取家庭中各用电器的耗电情况,有利于推动实现碳中和,提升需求侧管理能力。针对一般NILM算法面对的负荷分解误差和模型计算成本间的矛盾,提出了一种基于单序列到多序列的轻量级NILM模型。模型采取基于深度可分离卷积的全卷积结构,并利用卷积核不同通道的特征提取能力实现了多输出,极大减少了模型的参数量和计算时间;然后通过引入通道注意力机制,为不同通道的特征赋予权重,降低模型的负荷分解误差。在数据处理上,利用模糊C均值聚类将电器分为单运行状态和多运行状态两类,分别采取功率估计和状态估计两种方式以降低分解误差。模型在REFIT数据集上进行了验证,实验表明模型能在大幅度减少计算成本的同时保持较低的分解误差。 展开更多
关键词 非侵入式负荷监测 多输出 深度可分离卷积 通道注意力机制 模糊C均值聚类
在线阅读 下载PDF
基于Kurtogram与DSCN的滚动轴承故障诊断方法 被引量:4
17
作者 古莹奎 刘平 +1 位作者 林忠海 邱光琦 《中国安全科学学报》 CAS CSCD 北大核心 2021年第6期99-105,共7页
为揭示不同轴承故障类型的特征,提高故障诊断的精度与效率,提出一种基于Kurtogram与深可分卷积神经网络(DSCN)相结合的轴承故障诊断方法。在利用原始振动信号生成Kurtogram的基础上,通过DSCN学习和识别不同故障模式下Kurtogram的图形特... 为揭示不同轴承故障类型的特征,提高故障诊断的精度与效率,提出一种基于Kurtogram与深可分卷积神经网络(DSCN)相结合的轴承故障诊断方法。在利用原始振动信号生成Kurtogram的基础上,通过DSCN学习和识别不同故障模式下Kurtogram的图形特征,自动提取优势特征并进行故障分类。结果表明:相对于其他故障诊断方法,提出的方法在测试集上的识别精确度较高,可达到97.28%;同时,DSCN在降低参数量及提高训练速度上具有明显优势。 展开更多
关键词 滚动轴承 Kurtogram 深可分卷积神经网络(dscN) 故障诊断 混淆矩阵
在线阅读 下载PDF
基于AD-YOLOX-Nano的茶叶嫩芽识别算法
18
作者 高芳征 温鑫 +3 位作者 黄家才 陈光明 金少宇 赵雪迪 《中国农机化学报》 北大核心 2025年第1期178-184,F0002,共8页
为解决茶叶嫩芽识别困难,提高自然环境下茶叶嫩芽识别的精确性和鲁棒性,提出一种融入注意力机制和深度可分离卷积的改进型YOLOX-Nano(AD-YOLOX-Nano)茶叶嫩芽识别算法。该算法以YOLOX-Nano模型为基础,采用CSPDarkNet作为主干网络,通过在... 为解决茶叶嫩芽识别困难,提高自然环境下茶叶嫩芽识别的精确性和鲁棒性,提出一种融入注意力机制和深度可分离卷积的改进型YOLOX-Nano(AD-YOLOX-Nano)茶叶嫩芽识别算法。该算法以YOLOX-Nano模型为基础,采用CSPDarkNet作为主干网络,通过在CSPDarkNet网络中引入深度可分离卷积(Depthwise Separable Convolution)来减少特征提取工作量,并将卷积注意力模块(Convolutional Block Attention Module)融入到YOLOX-Nano网络的特征金字塔中,学习不同通道的特征相关性,增强网络的深度信息传递,提高模型在不同场景下对茶叶嫩芽的识别能力。结果表明:AD-YOLOX-Nano算法的平均精度AP值和F_(1)值分别为85.6%和86%,相较于同环境下YOLOX-Nano算法,该算法的模型大小基本保持不变,但其AP值和F_(1)值分别提高2.7%和3%。与常用的YOLOv5-S、YOLOv4和Faster R-CNN等目标检测算法相比,该AD-YOLOX-Nano算法模型大小仅为它们的1/7,但AP值分别提高5.4%、5.5%和6.28%。所提算法在模型轻量化和检测精度方面优势显著,为茶叶智能化采摘的嵌入式硬件部署提供有效解决方案。 展开更多
关键词 茶叶嫩芽识别 AD-YOLOX-Nano算法 注意力机制 深度可分离卷积
在线阅读 下载PDF
基于三维深度分离网络的PET双示踪剂混合图像分离方法
19
作者 唐大洋 胡德斌 +8 位作者 齐宏亮 孙浩 韩彦江 李翰威 张新明 潘智林 喻文杰 路利军 陈宏文 《中国医学物理学杂志》 2025年第2期160-166,共7页
目的:提出一种基于三维深度分离网络方法用于^(18)F-FDG和^(18)F-FAPIPET双示踪剂混合图像分离成像。方法:收集120例同一患者在不同时间单独扫描的^(18)F-FDG和^(18)F-FAPIPET图像,本研究采用模拟的形式生成PET双示踪剂混合图像,首先对... 目的:提出一种基于三维深度分离网络方法用于^(18)F-FDG和^(18)F-FAPIPET双示踪剂混合图像分离成像。方法:收集120例同一患者在不同时间单独扫描的^(18)F-FDG和^(18)F-FAPIPET图像,本研究采用模拟的形式生成PET双示踪剂混合图像,首先对同一患者两种PET示踪剂图像进行配准保证空间位置匹配,然后对配准的PET图像进行前向投影生成弦图数据,将两种弦图数据累加得到混合弦图数据,随后采用最大似然期望法重建得到PET双示踪剂混合图像,输入到基于3DDSN架构的网络进行分离成像,从而得到两种单示踪剂的PET图像。结果:本文提出的方法相较于3DCNN方法,分离得到的^(18)F-FDG图像与真实^(18)F-FDG图像的结构相似性指数(SSIM)提升0.87%,峰值信噪比(PSNR)提升11.8%,归一化均方根误差(NRMSE)减小52%。分离得到的^(18)F-FAPI图像与真实^(18)F-FAPI图像的SSIM提升1.1%,PSNR提升17.0%,NRMSE减小51%。结论:本文方法可以很好地应用在PET双示踪剂同时成像上,减少患者的扫描次数、时间和金钱成本,为临床医生提供更精准和更丰富的诊断信息。 展开更多
关键词 正电子发射断层成像 双示踪剂成像 图像配准 深度分离网络 深度学习
在线阅读 下载PDF
基于YOLOv6的未佩戴安全帽小目标检测方法研究
20
作者 马学友 李锋 于守健 《电脑与信息技术》 2025年第1期1-5,26,共6页
在施工环境下,检查工人是否佩戴安全帽是确保工作场所安全的重要任务,但传统方法费时费力。为解决这一问题,以YOLOv6作为基础模型进行改进。首先,采用深度可分离卷积(Depthwise Separable Convolution,DSC)对标准卷积进行修改,加速模型... 在施工环境下,检查工人是否佩戴安全帽是确保工作场所安全的重要任务,但传统方法费时费力。为解决这一问题,以YOLOv6作为基础模型进行改进。首先,采用深度可分离卷积(Depthwise Separable Convolution,DSC)对标准卷积进行修改,加速模型的识别速度,使其更适用于实时应用。其次,引入高效通道注意力(Efficient Channel Attention,ECA)模块,通过增强模型在特定区域的关注度,提高对小目标的识别精度。实验证明,改进的YOLOv6方法相较原始的YOLOv6,在识别速度上提高了24 ms,在识别精度上提升了2.1%,对施工环境下未佩戴安全帽的检测具有重要的实际意义。 展开更多
关键词 安全帽 小目标 YOLOv6 深度可分离卷积 高效通道注意力
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部