Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,...Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular.展开更多
The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera im...The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error.展开更多
AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hos...AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hospital from Spetember to December 2022 were included,and 13470 infrared pupil images were collected for the study.All infrared images for pupil segmentation were labeled using the Labelme software.The computation of pupil diameter is divided into four steps:image pre-processing,pupil identification and localization,pupil segmentation,and diameter calculation.Two major models are used in the computation process:the modified YoloV3 and Deeplabv 3+models,which must be trained beforehand.RESULTS:The test dataset included 1348 infrared pupil images.On the test dataset,the modified YoloV3 model had a detection rate of 99.98% and an average precision(AP)of 0.80 for pupils.The DeeplabV3+model achieved a background intersection over union(IOU)of 99.23%,a pupil IOU of 93.81%,and a mean IOU of 96.52%.The pupil diameters in the test dataset ranged from 20 to 56 pixels,with a mean of 36.06±6.85 pixels.The absolute error in pupil diameters between predicted and actual values ranged from 0 to 7 pixels,with a mean absolute error(MAE)of 1.06±0.96 pixels.CONCLUSION:This study successfully demonstrates a robust infrared image-based pupil diameter measurement algorithm,proven to be highly accurate and reliable for clinical application.展开更多
The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on ...The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades.展开更多
BACKGROUND Bleeding is one of the major complications after endoscopic submucosal dissection(ESD)in early gastric cancer(EGC)patients.There are limited studies on estimating the bleeding risk after ESD using an artifi...BACKGROUND Bleeding is one of the major complications after endoscopic submucosal dissection(ESD)in early gastric cancer(EGC)patients.There are limited studies on estimating the bleeding risk after ESD using an artificial intelligence system.AIM To derivate and verify the performance of the deep learning model and the clinical model for predicting bleeding risk after ESD in EGC patients.METHODS Patients with EGC who underwent ESD between January 2010 and June 2020 at the Samsung Medical Center were enrolled,and post-ESD bleeding(PEB)was investigated retrospectively.We split the entire cohort into a development set(80%)and a validation set(20%).The deep learning and clinical model were built on the development set and tested in the validation set.The performance of the deep learning model and the clinical model were compared using the area under the curve and the stratification of bleeding risk after ESD.RESULTS A total of 5629 patients were included,and PEB occurred in 325 patients.The area under the curve for predicting PEB was 0.71(95%confidence interval:0.63-0.78)in the deep learning model and 0.70(95%confidence interval:0.62-0.77)in the clinical model,without significant difference(P=0.730).The patients expected to the low-(<5%),intermediate-(≥5%,<9%),and high-risk(≥9%)categories were observed with actual bleeding rate of 2.2%,3.9%,and 11.6%,respectively,in the deep learning model;4.0%,8.8%,and 18.2%,respectively,in the clinical model.CONCLUSION A deep learning model can predict and stratify the bleeding risk after ESD in patients with EGC.展开更多
Every day,websites and personal archives create more and more photos.The size of these archives is immeasurable.The comfort of use of these huge digital image gatherings donates to their admiration.However,not all of ...Every day,websites and personal archives create more and more photos.The size of these archives is immeasurable.The comfort of use of these huge digital image gatherings donates to their admiration.However,not all of these folders deliver relevant indexing information.From the outcomes,it is dif-ficult to discover data that the user can be absorbed in.Therefore,in order to determine the significance of the data,it is important to identify the contents in an informative manner.Image annotation can be one of the greatest problematic domains in multimedia research and computer vision.Hence,in this paper,Adap-tive Convolutional Deep Learning Model(ACDLM)is developed for automatic image annotation.Initially,the databases are collected from the open-source system which consists of some labelled images(for training phase)and some unlabeled images{Corel 5 K,MSRC v2}.After that,the images are sent to the pre-processing step such as colour space quantization and texture color class map.The pre-processed images are sent to the segmentation approach for efficient labelling technique using J-image segmentation(JSEG).Thefinal step is an auto-matic annotation using ACDLM which is a combination of Convolutional Neural Network(CNN)and Honey Badger Algorithm(HBA).Based on the proposed classifier,the unlabeled images are labelled.The proposed methodology is imple-mented in MATLAB and performance is evaluated by performance metrics such as accuracy,precision,recall and F1_Measure.With the assistance of the pro-posed methodology,the unlabeled images are labelled.展开更多
Seasonal location and intensity changes in the western Pacific subtropical high(WPSH)are important factors dominating the synoptic weather and the distribution and magnitude of precipitation in the rain belt over East...Seasonal location and intensity changes in the western Pacific subtropical high(WPSH)are important factors dominating the synoptic weather and the distribution and magnitude of precipitation in the rain belt over East Asia.Therefore,this article delves into the forecast of the western Pacific subtropical high index during typhoon activity by adopting a hybrid deep learning model.Firstly,the predictors,which are the inputs of the model,are analysed based on three characteristics:the first is the statistical discipline of the WPSH index anomalies corresponding to the three types of typhoon paths;the second is the correspondence of distributions between sea surface temperature,850 hPa zonal wind(u),meridional wind(v),and 500 hPa potential height field;and the third is the numerical sensitivity experiment,which reflects the evident impact of variations in the physical field around the typhoon to the WPSH index.Secondly,the model is repeatedly trained through the backward propagation algorithm to predict the WPSH index using 2011–2018 atmospheric variables as the input of the training set.The model predicts the WPSH index after 6 h,24 h,48 h,and 72 h.The validation set using independent data in 2019 is utilized to illustrate the performance.Finally,the model is improved by changing the CNN2D module to the DeCNN module to enhance its ability to predict images.Taking the 2019 typhoon“Lekima”as an example,it shows the promising performance of this model to predict the 500 hPa potential height field.展开更多
This study employs nine distinct deep learning models to categorize 12,444 blood cell images and automatically extract from them relevant information with an accuracy that is beyond that achievable with traditional te...This study employs nine distinct deep learning models to categorize 12,444 blood cell images and automatically extract from them relevant information with an accuracy that is beyond that achievable with traditional techniques.The work is intended to improve current methods for the assessment of human health through measurement of the distribution of four types of blood cells,namely,eosinophils,neutrophils,monocytes,and lymphocytes,known for their relationship with human body damage,inflammatory regions,and organ illnesses,in particular,and with the health of the immune system and other hazards,such as cardiovascular disease or infections,more in general.The results of the experiments show that the deep learning models can automatically extract features from the blood cell images and properly classify them with an accuracy of 98%,97%,and 89%,respectively,with regard to the training,verification,and testing of the corresponding datasets.展开更多
Stock market trends forecast is one of the most current topics and a significant research challenge due to its dynamic and unstable nature.The stock data is usually non-stationary,and attributes are non-correlative to...Stock market trends forecast is one of the most current topics and a significant research challenge due to its dynamic and unstable nature.The stock data is usually non-stationary,and attributes are non-correlative to each other.Several traditional Stock Technical Indicators(STIs)may incorrectly predict the stockmarket trends.To study the stock market characteristics using STIs and make efficient trading decisions,a robust model is built.This paper aims to build up an Evolutionary Deep Learning Model(EDLM)to identify stock trends’prices by using STIs.The proposed model has implemented the Deep Learning(DL)model to establish the concept of Correlation-Tensor.The analysis of the dataset of three most popular banking organizations obtained from the live stock market based on the National Stock exchange(NSE)-India,a Long Short Term Memory(LSTM)is used.The datasets encompassed the trading days from the 17^(th) of Nov 2008 to the 15^(th) of Nov 2018.This work also conducted exhaustive experiments to study the correlation of various STIs with stock price trends.The model built with an EDLM has shown significant improvements over two benchmark ML models and a deep learning one.The proposed model aids investors in making profitable investment decisions as it presents trend-based forecasting and has achieved a prediction accuracy of 63.59%,56.25%,and 57.95%on the datasets of HDFC,Yes Bank,and SBI,respectively.Results indicate that the proposed EDLA with a combination of STIs can often provide improved results than the other state-of-the-art algorithms.展开更多
Classifying the visual features in images to retrieve a specific image is a significant problem within the computer vision field especially when dealing with historical faded colored images.Thus,there were lots of eff...Classifying the visual features in images to retrieve a specific image is a significant problem within the computer vision field especially when dealing with historical faded colored images.Thus,there were lots of efforts trying to automate the classification operation and retrieve similar images accurately.To reach this goal,we developed a VGG19 deep convolutional neural network to extract the visual features from the images automatically.Then,the distances among the extracted features vectors are measured and a similarity score is generated using a Siamese deep neural network.The Siamese model built and trained at first from scratch but,it didn’t generated high evaluation metrices.Thus,we re-built it from VGG19 pre-trained deep learning model to generate higher evaluation metrices.Afterward,three different distance metrics combined with the Sigmoid activation function are experimented looking for the most accurate method formeasuring the similarities among the retrieved images.Reaching that the highest evaluation parameters generated using the Cosine distance metric.Moreover,the Graphics Processing Unit(GPU)utilized to run the code instead of running it on the Central Processing Unit(CPU).This step optimized the execution further since it expedited both the training and the retrieval time efficiently.After extensive experimentation,we reached satisfactory solution recording 0.98 and 0.99 F-score for the classification and for the retrieval,respectively.展开更多
Alzheimer's disease(AD)is gradually increasing in prevalence and the complexity of its pathogenesis has led to a lengthy process of developing therapeutic drugs with limited success.Faced with this challenge,we pr...Alzheimer's disease(AD)is gradually increasing in prevalence and the complexity of its pathogenesis has led to a lengthy process of developing therapeutic drugs with limited success.Faced with this challenge,we proposed using a state-of-the-art drug screening algorithm to identify potential therapeutic compounds for AD from traditional Chinese medicine formulas with strong empirical support.We developed four deep neural network(DNN)models for AD drugs screening at the disease and target levels.The AD model was trained with compounds labeled for AD activity to predict active compounds at the disease level,while the acetylcholinesterase(AChE),monoamine oxidase-A(MAO-A),and 5-hydroxytryptamine 6(5-HT6)models were trained for specific AD targets.All four models performed excellently and were used to identify potential AD agents in the Kaixinsan(KXS)formula.High-scoring compounds underwent experimental validation at the enzyme,cellular,and animal levels.Compounds like 2,4-di-tert-butylphenol and elemicin showed significant binding and inhibitory effects on AChE and MAO-A.Additionally,13 compounds,includingα-asarone,penetrated the blood-brain barrier(BBB),indicating potential brain target binding,and eight compounds enhanced microglialβ-amyloid phagocytosis,aiding in clearing AD pathological substances.Our results demonstrate the effectiveness of deep learning models in developing AD therapies and provide a strong platform for AD drug discovery.展开更多
The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evalu...The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.展开更多
Skin cancer is a highly frequent kind of cancer.Early identification of a phenomenon significantly improves outcomes and mitigates the risk of fatalities.Melanoma,basal,and squamous cell carcinomas are well-recognized...Skin cancer is a highly frequent kind of cancer.Early identification of a phenomenon significantly improves outcomes and mitigates the risk of fatalities.Melanoma,basal,and squamous cell carcinomas are well-recognized cutaneous malignancies.Malignant We can differentiate Melanoma from non-pigmented carcinomas like basal and squamous cell carcinoma.The research on developing automated skin cancer detection systems has primarily focused on pigmented malignant type melanoma.The limited availability of datasets with a wide range of lesion categories has hindered in-depth exploration of non-pigmented malignant skin lesions.The present study investigates the feasibility of automated methods for detecting pigmented skin lesions with potential malignancy.To diagnose skin lesions,medical professionals employ a two-step approach.Before detecting malignant types with other deep learning(DL)models,a preliminary step involves using a DL model to identify the skin lesions as either pigmented or non-pigmented.The performance assessments accurately assessed four distinct DL models:Long short-term memory(LSTM),Visual Geometry Group(VGG19),Residual Blocks(ResNet50),and AlexNet.The LSTM model exhibited higher classification accuracy compared to the other models used.The accuracy of LSTM for pigmented and non-pigmented,pigmented tumours and benign classes,and melanomas and pigmented nevus classes was 0.9491,0.9531,and 0.949,respectively.Automated computerized skin cancer detection promises to enhance diagnostic efficiency and precision significantly.展开更多
Deep learning (DL) has seen an exponential development in recent years, with major impact in many medical fields, especially in the field of medical image. The purpose of the work converges in determining the importan...Deep learning (DL) has seen an exponential development in recent years, with major impact in many medical fields, especially in the field of medical image. The purpose of the work converges in determining the importance of each component, describing the specificity and correlations of these elements involved in achieving the precision of interpretation of medical images using DL. The major contribution of this work is primarily to the updated characterisation of the characteristics of the constituent elements of the deep learning process, scientific data, methods of knowledge incorporation, DL models according to the objectives for which they were designed and the presentation of medical applications in accordance with these tasks. Secondly, it describes the specific correlations between the quality, type and volume of data, the deep learning patterns used in the interpretation of diagnostic medical images and their applications in medicine. Finally presents problems and directions of future research. Data quality and volume, annotations and labels, identification and automatic extraction of specific medical terms can help deep learning models perform image analysis tasks. Moreover, the development of models capable of extracting unattended features and easily incorporated into the architecture of DL networks and the development of techniques to search for a certain network architecture according to the objectives set lead to performance in the interpretation of medical images.展开更多
As the COVID-19 pandemic swept the globe,social media plat-forms became an essential source of information and communication for many.International students,particularly,turned to Twitter to express their struggles an...As the COVID-19 pandemic swept the globe,social media plat-forms became an essential source of information and communication for many.International students,particularly,turned to Twitter to express their struggles and hardships during this difficult time.To better understand the sentiments and experiences of these international students,we developed the Situational Aspect-Based Annotation and Classification(SABAC)text mining framework.This framework uses a three-layer approach,combining baseline Deep Learning(DL)models with Machine Learning(ML)models as meta-classifiers to accurately predict the sentiments and aspects expressed in tweets from our collected Student-COVID-19 dataset.Using the pro-posed aspect2class annotation algorithm,we labeled bulk unlabeled tweets according to their contained aspect terms.However,we also recognized the challenges of reducing data’s high dimensionality and sparsity to improve performance and annotation on unlabeled datasets.To address this issue,we proposed the Volatile Stopwords Filtering(VSF)technique to reduce sparsity and enhance classifier performance.The resulting Student-COVID Twitter dataset achieved a sophisticated accuracy of 93.21%when using the random forest as a meta-classifier.Through testing on three benchmark datasets,we found that the SABAC ensemble framework performed exceptionally well.Our findings showed that international students during the pandemic faced various issues,including stress,uncertainty,health concerns,financial stress,and difficulties with online classes and returning to school.By analyzing and summarizing these annotated tweets,decision-makers can better understand and address the real-time problems international students face during the ongoing pandemic.展开更多
Human hand detection in uncontrolled environments is a challenging visual recognition task due to numerous variations of hand poses and background image clutter.To achieve highly accurate results as well as provide re...Human hand detection in uncontrolled environments is a challenging visual recognition task due to numerous variations of hand poses and background image clutter.To achieve highly accurate results as well as provide real-time execution,we proposed a deep transfer learning approach over the state-of-the-art deep learning object detector.Our method,denoted as YOLOHANDS,is built on top of the You Only Look Once(YOLO)deep learning architecture,which is modified to adapt to the single class hand detection task.The model transfer is performed by modifying the higher convolutional layers including the last fully connected layer,while initializing lower non-modified layers with the generic pre-trained weights.To address robustness issues,we introduced a comprehensive augmentation procedure over the training image dataset,specifically adapted for the hand detection problem.Experimental evaluation of the proposed method,which is performed on a challenging public dataset,has demonstrated highly accurate results,comparable to the state-of-the-art methods.展开更多
Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particula...Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particularly in regions with limited diagnostic resources like Pakistan.This study aims to conduct an extensive comparative analysis of various machine learning classifiers for ASD detection using facial images to identify an accurate and cost-effective solution tailored to the local context.The research involves experimentation with VGG16 and MobileNet models,exploring different batch sizes,optimizers,and learning rate schedulers.In addition,the“Orange”machine learning tool is employed to evaluate classifier performance and automated image processing capabilities are utilized within the tool.The findings unequivocally establish VGG16 as the most effective classifier with a 5-fold cross-validation approach.Specifically,VGG16,with a batch size of 2 and the Adam optimizer,trained for 100 epochs,achieves a remarkable validation accuracy of 99% and a testing accuracy of 87%.Furthermore,the model achieves an F1 score of 88%,precision of 85%,and recall of 90% on test images.To validate the practical applicability of the VGG16 model with 5-fold cross-validation,the study conducts further testing on a dataset sourced fromautism centers in Pakistan,resulting in an accuracy rate of 85%.This reaffirms the model’s suitability for real-world ASD detection.This research offers valuable insights into classifier performance,emphasizing the potential of machine learning to deliver precise and accessible ASD diagnoses via facial image analysis.展开更多
Nitrogen(N)and potassium(K)are two key mineral nutrient elements involved in rice growth.Accurate diagnosis of N and K status is very important for the rational application of fertilizers at a specific rice growth sta...Nitrogen(N)and potassium(K)are two key mineral nutrient elements involved in rice growth.Accurate diagnosis of N and K status is very important for the rational application of fertilizers at a specific rice growth stage.Therefore,we propose a hybrid model for diagnosing rice nutrient levels at the early panicle initiation stage(EPIS),which combines a convolutional neural network(CNN)with an attention mechanism and a long short-term memory network(LSTM).The model was validated on a large set of sequential images collected by an unmanned aerial vehicle(UAV)from rice canopies at different growth stages during a two-year experiment.Compared with VGG16,AlexNet,GoogleNet,DenseNet,and inceptionV3,ResNet101 combined with LSTM obtained the highest average accuracy of 83.81%on the dataset of Huanghuazhan(HHZ,an indica cultivar).When tested on the datasets of HHZ and Xiushui 134(XS134,a japonica rice variety)in 2021,the ResNet101-LSTM model enhanced with the squeeze-and-excitation(SE)block achieved the highest accuracies of 85.38 and 88.38%,respectively.Through the cross-dataset method,the average accuracies on the HHZ and XS134 datasets tested in 2022 were 81.25 and 82.50%,respectively,showing a good generalization.Our proposed model works with the dynamic information of different rice growth stages and can efficiently diagnose different rice nutrient status levels at EPIS,which are helpful for making practical decisions regarding rational fertilization treatments at the panicle initiation stage.展开更多
It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using...It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using an identical reference.In this study,three physically reasonable DLMs are implemented for the forecasting of the sea surface temperature(SST),sea level anomaly(SLA),and sea surface velocity in the South China Sea.The DLMs are validated against both the testing dataset and the“OceanPredict”Class 4 dataset.Results show that the DLMs'RMSEs against the latter increase by 44%,245%,302%,and 109%for SST,SLA,current speed,and direction,respectively,compared to those against the former.Therefore,different references have significant influences on the validation,and it is necessary to use an identical and independent reference to intercompare the DLMs and OFSs.Against the Class 4 dataset,the DLMs present significantly better performance for SLA than the OFSs,and slightly better performances for other variables.The error patterns of the DLMs and OFSs show a high degree of similarity,which is reasonable from the viewpoint of predictability,facilitating further applications of the DLMs.For extreme events,the DLMs and OFSs both present large but similar forecast errors for SLA and current speed,while the DLMs are likely to give larger errors for SST and current direction.This study provides an evaluation of the forecast skills of commonly used DLMs and provides an example to objectively intercompare different DLMs.展开更多
With the massive success of deep networks,there have been signi-cant efforts to analyze cancer diseases,especially skin cancer.For this purpose,this work investigates the capability of deep networks in diagnosing a va...With the massive success of deep networks,there have been signi-cant efforts to analyze cancer diseases,especially skin cancer.For this purpose,this work investigates the capability of deep networks in diagnosing a variety of dermoscopic lesion images.This paper aims to develop and ne-tune a deep learning architecture to diagnose different skin cancer grades based on dermatoscopic images.Fine-tuning is a powerful method to obtain enhanced classication results by the customized pre-trained network.Regularization,batch normalization,and hyperparameter optimization are performed for ne-tuning the proposed deep network.The proposed ne-tuned ResNet50 model successfully classied 7-respective classes of dermoscopic lesions using the publicly available HAM10000 dataset.The developed deep model was compared against two powerful models,i.e.,InceptionV3 and VGG16,using the Dice similarity coefcient(DSC)and the area under the curve(AUC).The evaluation results show that the proposed model achieved higher results than some recent and robust models.展开更多
基金supported by the Project of Stable Support for Youth Team in Basic Research Field,CAS(grant No.YSBR-018)the National Natural Science Foundation of China(grant Nos.42188101,42130204)+4 种基金the B-type Strategic Priority Program of CAS(grant no.XDB41000000)the National Natural Science Foundation of China(NSFC)Distinguished Overseas Young Talents Program,Innovation Program for Quantum Science and Technology(2021ZD0300301)the Open Research Project of Large Research Infrastructures of CAS-“Study on the interaction between low/mid-latitude atmosphere and ionosphere based on the Chinese Meridian Project”.The project was supported also by the National Key Laboratory of Deep Space Exploration(Grant No.NKLDSE2023A002)the Open Fund of Anhui Provincial Key Laboratory of Intelligent Underground Detection(Grant No.APKLIUD23KF01)the China National Space Administration(CNSA)pre-research Project on Civil Aerospace Technologies No.D010305,D010301.
文摘Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular.
基金supported in part by the Gusu Innovation and Entrepreneurship Leading Talents in Suzhou City,grant numbers ZXL2021425 and ZXL2022476Doctor of Innovation and Entrepreneurship Program in Jiangsu Province,grant number JSSCBS20211440+6 种基金Jiangsu Province Key R&D Program,grant number BE2019682Natural Science Foundation of Jiangsu Province,grant number BK20200214National Key R&D Program of China,grant number 2017YFB0403701National Natural Science Foundation of China,grant numbers 61605210,61675226,and 62075235Youth Innovation Promotion Association of Chinese Academy of Sciences,grant number 2019320Frontier Science Research Project of the Chinese Academy of Sciences,grant number QYZDB-SSW-JSC03Strategic Priority Research Program of the Chinese Academy of Sciences,grant number XDB02060000.
文摘The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error.
文摘AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hospital from Spetember to December 2022 were included,and 13470 infrared pupil images were collected for the study.All infrared images for pupil segmentation were labeled using the Labelme software.The computation of pupil diameter is divided into four steps:image pre-processing,pupil identification and localization,pupil segmentation,and diameter calculation.Two major models are used in the computation process:the modified YoloV3 and Deeplabv 3+models,which must be trained beforehand.RESULTS:The test dataset included 1348 infrared pupil images.On the test dataset,the modified YoloV3 model had a detection rate of 99.98% and an average precision(AP)of 0.80 for pupils.The DeeplabV3+model achieved a background intersection over union(IOU)of 99.23%,a pupil IOU of 93.81%,and a mean IOU of 96.52%.The pupil diameters in the test dataset ranged from 20 to 56 pixels,with a mean of 36.06±6.85 pixels.The absolute error in pupil diameters between predicted and actual values ranged from 0 to 7 pixels,with a mean absolute error(MAE)of 1.06±0.96 pixels.CONCLUSION:This study successfully demonstrates a robust infrared image-based pupil diameter measurement algorithm,proven to be highly accurate and reliable for clinical application.
基金supported by the National Science Foundation of China(Grant Nos.52068049 and 51908266)the Science Fund for Distinguished Young Scholars of Gansu Province(No.21JR7RA267)Hongliu Outstanding Young Talents Program of Lanzhou University of Technology.
文摘The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades.
文摘BACKGROUND Bleeding is one of the major complications after endoscopic submucosal dissection(ESD)in early gastric cancer(EGC)patients.There are limited studies on estimating the bleeding risk after ESD using an artificial intelligence system.AIM To derivate and verify the performance of the deep learning model and the clinical model for predicting bleeding risk after ESD in EGC patients.METHODS Patients with EGC who underwent ESD between January 2010 and June 2020 at the Samsung Medical Center were enrolled,and post-ESD bleeding(PEB)was investigated retrospectively.We split the entire cohort into a development set(80%)and a validation set(20%).The deep learning and clinical model were built on the development set and tested in the validation set.The performance of the deep learning model and the clinical model were compared using the area under the curve and the stratification of bleeding risk after ESD.RESULTS A total of 5629 patients were included,and PEB occurred in 325 patients.The area under the curve for predicting PEB was 0.71(95%confidence interval:0.63-0.78)in the deep learning model and 0.70(95%confidence interval:0.62-0.77)in the clinical model,without significant difference(P=0.730).The patients expected to the low-(<5%),intermediate-(≥5%,<9%),and high-risk(≥9%)categories were observed with actual bleeding rate of 2.2%,3.9%,and 11.6%,respectively,in the deep learning model;4.0%,8.8%,and 18.2%,respectively,in the clinical model.CONCLUSION A deep learning model can predict and stratify the bleeding risk after ESD in patients with EGC.
文摘Every day,websites and personal archives create more and more photos.The size of these archives is immeasurable.The comfort of use of these huge digital image gatherings donates to their admiration.However,not all of these folders deliver relevant indexing information.From the outcomes,it is dif-ficult to discover data that the user can be absorbed in.Therefore,in order to determine the significance of the data,it is important to identify the contents in an informative manner.Image annotation can be one of the greatest problematic domains in multimedia research and computer vision.Hence,in this paper,Adap-tive Convolutional Deep Learning Model(ACDLM)is developed for automatic image annotation.Initially,the databases are collected from the open-source system which consists of some labelled images(for training phase)and some unlabeled images{Corel 5 K,MSRC v2}.After that,the images are sent to the pre-processing step such as colour space quantization and texture color class map.The pre-processed images are sent to the segmentation approach for efficient labelling technique using J-image segmentation(JSEG).Thefinal step is an auto-matic annotation using ACDLM which is a combination of Convolutional Neural Network(CNN)and Honey Badger Algorithm(HBA).Based on the proposed classifier,the unlabeled images are labelled.The proposed methodology is imple-mented in MATLAB and performance is evaluated by performance metrics such as accuracy,precision,recall and F1_Measure.With the assistance of the pro-posed methodology,the unlabeled images are labelled.
文摘Seasonal location and intensity changes in the western Pacific subtropical high(WPSH)are important factors dominating the synoptic weather and the distribution and magnitude of precipitation in the rain belt over East Asia.Therefore,this article delves into the forecast of the western Pacific subtropical high index during typhoon activity by adopting a hybrid deep learning model.Firstly,the predictors,which are the inputs of the model,are analysed based on three characteristics:the first is the statistical discipline of the WPSH index anomalies corresponding to the three types of typhoon paths;the second is the correspondence of distributions between sea surface temperature,850 hPa zonal wind(u),meridional wind(v),and 500 hPa potential height field;and the third is the numerical sensitivity experiment,which reflects the evident impact of variations in the physical field around the typhoon to the WPSH index.Secondly,the model is repeatedly trained through the backward propagation algorithm to predict the WPSH index using 2011–2018 atmospheric variables as the input of the training set.The model predicts the WPSH index after 6 h,24 h,48 h,and 72 h.The validation set using independent data in 2019 is utilized to illustrate the performance.Finally,the model is improved by changing the CNN2D module to the DeCNN module to enhance its ability to predict images.Taking the 2019 typhoon“Lekima”as an example,it shows the promising performance of this model to predict the 500 hPa potential height field.
基金supported by National Natural Science Foundation of China(NSFC)(Nos.61806087,61902158).
文摘This study employs nine distinct deep learning models to categorize 12,444 blood cell images and automatically extract from them relevant information with an accuracy that is beyond that achievable with traditional techniques.The work is intended to improve current methods for the assessment of human health through measurement of the distribution of four types of blood cells,namely,eosinophils,neutrophils,monocytes,and lymphocytes,known for their relationship with human body damage,inflammatory regions,and organ illnesses,in particular,and with the health of the immune system and other hazards,such as cardiovascular disease or infections,more in general.The results of the experiments show that the deep learning models can automatically extract features from the blood cell images and properly classify them with an accuracy of 98%,97%,and 89%,respectively,with regard to the training,verification,and testing of the corresponding datasets.
基金Funding is provided by Taif University Researchers Supporting Project Number(TURSP-2020/10),Taif University,Taif,Saudi Arabia.
文摘Stock market trends forecast is one of the most current topics and a significant research challenge due to its dynamic and unstable nature.The stock data is usually non-stationary,and attributes are non-correlative to each other.Several traditional Stock Technical Indicators(STIs)may incorrectly predict the stockmarket trends.To study the stock market characteristics using STIs and make efficient trading decisions,a robust model is built.This paper aims to build up an Evolutionary Deep Learning Model(EDLM)to identify stock trends’prices by using STIs.The proposed model has implemented the Deep Learning(DL)model to establish the concept of Correlation-Tensor.The analysis of the dataset of three most popular banking organizations obtained from the live stock market based on the National Stock exchange(NSE)-India,a Long Short Term Memory(LSTM)is used.The datasets encompassed the trading days from the 17^(th) of Nov 2008 to the 15^(th) of Nov 2018.This work also conducted exhaustive experiments to study the correlation of various STIs with stock price trends.The model built with an EDLM has shown significant improvements over two benchmark ML models and a deep learning one.The proposed model aids investors in making profitable investment decisions as it presents trend-based forecasting and has achieved a prediction accuracy of 63.59%,56.25%,and 57.95%on the datasets of HDFC,Yes Bank,and SBI,respectively.Results indicate that the proposed EDLA with a combination of STIs can often provide improved results than the other state-of-the-art algorithms.
基金The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4400271DSR01).
文摘Classifying the visual features in images to retrieve a specific image is a significant problem within the computer vision field especially when dealing with historical faded colored images.Thus,there were lots of efforts trying to automate the classification operation and retrieve similar images accurately.To reach this goal,we developed a VGG19 deep convolutional neural network to extract the visual features from the images automatically.Then,the distances among the extracted features vectors are measured and a similarity score is generated using a Siamese deep neural network.The Siamese model built and trained at first from scratch but,it didn’t generated high evaluation metrices.Thus,we re-built it from VGG19 pre-trained deep learning model to generate higher evaluation metrices.Afterward,three different distance metrics combined with the Sigmoid activation function are experimented looking for the most accurate method formeasuring the similarities among the retrieved images.Reaching that the highest evaluation parameters generated using the Cosine distance metric.Moreover,the Graphics Processing Unit(GPU)utilized to run the code instead of running it on the Central Processing Unit(CPU).This step optimized the execution further since it expedited both the training and the retrieval time efficiently.After extensive experimentation,we reached satisfactory solution recording 0.98 and 0.99 F-score for the classification and for the retrieval,respectively.
基金This work was supported by the Science and Technology Project of Haihe Laboratory of Modern Chinese Medicine,China(Grant No.:22HHZYSS00003)the Science and Technology Program of Tianjin,China(Grant No.:22ZYJDSS00100)The authors would like to thank the support from Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine,China(Grant No:ZYYCXTD-D-202002).
文摘Alzheimer's disease(AD)is gradually increasing in prevalence and the complexity of its pathogenesis has led to a lengthy process of developing therapeutic drugs with limited success.Faced with this challenge,we proposed using a state-of-the-art drug screening algorithm to identify potential therapeutic compounds for AD from traditional Chinese medicine formulas with strong empirical support.We developed four deep neural network(DNN)models for AD drugs screening at the disease and target levels.The AD model was trained with compounds labeled for AD activity to predict active compounds at the disease level,while the acetylcholinesterase(AChE),monoamine oxidase-A(MAO-A),and 5-hydroxytryptamine 6(5-HT6)models were trained for specific AD targets.All four models performed excellently and were used to identify potential AD agents in the Kaixinsan(KXS)formula.High-scoring compounds underwent experimental validation at the enzyme,cellular,and animal levels.Compounds like 2,4-di-tert-butylphenol and elemicin showed significant binding and inhibitory effects on AChE and MAO-A.Additionally,13 compounds,includingα-asarone,penetrated the blood-brain barrier(BBB),indicating potential brain target binding,and eight compounds enhanced microglialβ-amyloid phagocytosis,aiding in clearing AD pathological substances.Our results demonstrate the effectiveness of deep learning models in developing AD therapies and provide a strong platform for AD drug discovery.
基金supported by the National Natural Science Foundation of China(Grant Nos.42090054,41931295)the Natural Science Foundation of Hubei Province of China(2022CFA002)。
文摘The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.
文摘Skin cancer is a highly frequent kind of cancer.Early identification of a phenomenon significantly improves outcomes and mitigates the risk of fatalities.Melanoma,basal,and squamous cell carcinomas are well-recognized cutaneous malignancies.Malignant We can differentiate Melanoma from non-pigmented carcinomas like basal and squamous cell carcinoma.The research on developing automated skin cancer detection systems has primarily focused on pigmented malignant type melanoma.The limited availability of datasets with a wide range of lesion categories has hindered in-depth exploration of non-pigmented malignant skin lesions.The present study investigates the feasibility of automated methods for detecting pigmented skin lesions with potential malignancy.To diagnose skin lesions,medical professionals employ a two-step approach.Before detecting malignant types with other deep learning(DL)models,a preliminary step involves using a DL model to identify the skin lesions as either pigmented or non-pigmented.The performance assessments accurately assessed four distinct DL models:Long short-term memory(LSTM),Visual Geometry Group(VGG19),Residual Blocks(ResNet50),and AlexNet.The LSTM model exhibited higher classification accuracy compared to the other models used.The accuracy of LSTM for pigmented and non-pigmented,pigmented tumours and benign classes,and melanomas and pigmented nevus classes was 0.9491,0.9531,and 0.949,respectively.Automated computerized skin cancer detection promises to enhance diagnostic efficiency and precision significantly.
文摘Deep learning (DL) has seen an exponential development in recent years, with major impact in many medical fields, especially in the field of medical image. The purpose of the work converges in determining the importance of each component, describing the specificity and correlations of these elements involved in achieving the precision of interpretation of medical images using DL. The major contribution of this work is primarily to the updated characterisation of the characteristics of the constituent elements of the deep learning process, scientific data, methods of knowledge incorporation, DL models according to the objectives for which they were designed and the presentation of medical applications in accordance with these tasks. Secondly, it describes the specific correlations between the quality, type and volume of data, the deep learning patterns used in the interpretation of diagnostic medical images and their applications in medicine. Finally presents problems and directions of future research. Data quality and volume, annotations and labels, identification and automatic extraction of specific medical terms can help deep learning models perform image analysis tasks. Moreover, the development of models capable of extracting unattended features and easily incorporated into the architecture of DL networks and the development of techniques to search for a certain network architecture according to the objectives set lead to performance in the interpretation of medical images.
基金supported by the National Natural Science Foundation of China[Grant Number:92067106]the Ministry of Education of the People’s Republic of China[Grant Number:E-GCCRC20200309].
文摘As the COVID-19 pandemic swept the globe,social media plat-forms became an essential source of information and communication for many.International students,particularly,turned to Twitter to express their struggles and hardships during this difficult time.To better understand the sentiments and experiences of these international students,we developed the Situational Aspect-Based Annotation and Classification(SABAC)text mining framework.This framework uses a three-layer approach,combining baseline Deep Learning(DL)models with Machine Learning(ML)models as meta-classifiers to accurately predict the sentiments and aspects expressed in tweets from our collected Student-COVID-19 dataset.Using the pro-posed aspect2class annotation algorithm,we labeled bulk unlabeled tweets according to their contained aspect terms.However,we also recognized the challenges of reducing data’s high dimensionality and sparsity to improve performance and annotation on unlabeled datasets.To address this issue,we proposed the Volatile Stopwords Filtering(VSF)technique to reduce sparsity and enhance classifier performance.The resulting Student-COVID Twitter dataset achieved a sophisticated accuracy of 93.21%when using the random forest as a meta-classifier.Through testing on three benchmark datasets,we found that the SABAC ensemble framework performed exceptionally well.Our findings showed that international students during the pandemic faced various issues,including stress,uncertainty,health concerns,financial stress,and difficulties with online classes and returning to school.By analyzing and summarizing these annotated tweets,decision-makers can better understand and address the real-time problems international students face during the ongoing pandemic.
基金financed by the Ministry of Education,Science and Technological Development of the Republic of Serbia.
文摘Human hand detection in uncontrolled environments is a challenging visual recognition task due to numerous variations of hand poses and background image clutter.To achieve highly accurate results as well as provide real-time execution,we proposed a deep transfer learning approach over the state-of-the-art deep learning object detector.Our method,denoted as YOLOHANDS,is built on top of the You Only Look Once(YOLO)deep learning architecture,which is modified to adapt to the single class hand detection task.The model transfer is performed by modifying the higher convolutional layers including the last fully connected layer,while initializing lower non-modified layers with the generic pre-trained weights.To address robustness issues,we introduced a comprehensive augmentation procedure over the training image dataset,specifically adapted for the hand detection problem.Experimental evaluation of the proposed method,which is performed on a challenging public dataset,has demonstrated highly accurate results,comparable to the state-of-the-art methods.
文摘Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particularly in regions with limited diagnostic resources like Pakistan.This study aims to conduct an extensive comparative analysis of various machine learning classifiers for ASD detection using facial images to identify an accurate and cost-effective solution tailored to the local context.The research involves experimentation with VGG16 and MobileNet models,exploring different batch sizes,optimizers,and learning rate schedulers.In addition,the“Orange”machine learning tool is employed to evaluate classifier performance and automated image processing capabilities are utilized within the tool.The findings unequivocally establish VGG16 as the most effective classifier with a 5-fold cross-validation approach.Specifically,VGG16,with a batch size of 2 and the Adam optimizer,trained for 100 epochs,achieves a remarkable validation accuracy of 99% and a testing accuracy of 87%.Furthermore,the model achieves an F1 score of 88%,precision of 85%,and recall of 90% on test images.To validate the practical applicability of the VGG16 model with 5-fold cross-validation,the study conducts further testing on a dataset sourced fromautism centers in Pakistan,resulting in an accuracy rate of 85%.This reaffirms the model’s suitability for real-world ASD detection.This research offers valuable insights into classifier performance,emphasizing the potential of machine learning to deliver precise and accessible ASD diagnoses via facial image analysis.
基金supported by the National Key Research and Development Program of China(2022YFD2300700)the Open Project Program of State Key Laboratory of Rice Biology,China National Rice Research Institute(20210403)the Zhejiang“Ten Thousand Talents”Plan Science and Technology Innovation Leading Talent Project,China(2020R52035)。
文摘Nitrogen(N)and potassium(K)are two key mineral nutrient elements involved in rice growth.Accurate diagnosis of N and K status is very important for the rational application of fertilizers at a specific rice growth stage.Therefore,we propose a hybrid model for diagnosing rice nutrient levels at the early panicle initiation stage(EPIS),which combines a convolutional neural network(CNN)with an attention mechanism and a long short-term memory network(LSTM).The model was validated on a large set of sequential images collected by an unmanned aerial vehicle(UAV)from rice canopies at different growth stages during a two-year experiment.Compared with VGG16,AlexNet,GoogleNet,DenseNet,and inceptionV3,ResNet101 combined with LSTM obtained the highest average accuracy of 83.81%on the dataset of Huanghuazhan(HHZ,an indica cultivar).When tested on the datasets of HHZ and Xiushui 134(XS134,a japonica rice variety)in 2021,the ResNet101-LSTM model enhanced with the squeeze-and-excitation(SE)block achieved the highest accuracies of 85.38 and 88.38%,respectively.Through the cross-dataset method,the average accuracies on the HHZ and XS134 datasets tested in 2022 were 81.25 and 82.50%,respectively,showing a good generalization.Our proposed model works with the dynamic information of different rice growth stages and can efficiently diagnose different rice nutrient status levels at EPIS,which are helpful for making practical decisions regarding rational fertilization treatments at the panicle initiation stage.
基金supported by the National Natural Science Foundation of China(Grant Nos.42375062 and 42275158)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab)the Natural Science Foundation of Gansu Province(Grant No.22JR5RF1080)。
文摘It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using an identical reference.In this study,three physically reasonable DLMs are implemented for the forecasting of the sea surface temperature(SST),sea level anomaly(SLA),and sea surface velocity in the South China Sea.The DLMs are validated against both the testing dataset and the“OceanPredict”Class 4 dataset.Results show that the DLMs'RMSEs against the latter increase by 44%,245%,302%,and 109%for SST,SLA,current speed,and direction,respectively,compared to those against the former.Therefore,different references have significant influences on the validation,and it is necessary to use an identical and independent reference to intercompare the DLMs and OFSs.Against the Class 4 dataset,the DLMs present significantly better performance for SLA than the OFSs,and slightly better performances for other variables.The error patterns of the DLMs and OFSs show a high degree of similarity,which is reasonable from the viewpoint of predictability,facilitating further applications of the DLMs.For extreme events,the DLMs and OFSs both present large but similar forecast errors for SLA and current speed,while the DLMs are likely to give larger errors for SST and current direction.This study provides an evaluation of the forecast skills of commonly used DLMs and provides an example to objectively intercompare different DLMs.
文摘With the massive success of deep networks,there have been signi-cant efforts to analyze cancer diseases,especially skin cancer.For this purpose,this work investigates the capability of deep networks in diagnosing a variety of dermoscopic lesion images.This paper aims to develop and ne-tune a deep learning architecture to diagnose different skin cancer grades based on dermatoscopic images.Fine-tuning is a powerful method to obtain enhanced classication results by the customized pre-trained network.Regularization,batch normalization,and hyperparameter optimization are performed for ne-tuning the proposed deep network.The proposed ne-tuned ResNet50 model successfully classied 7-respective classes of dermoscopic lesions using the publicly available HAM10000 dataset.The developed deep model was compared against two powerful models,i.e.,InceptionV3 and VGG16,using the Dice similarity coefcient(DSC)and the area under the curve(AUC).The evaluation results show that the proposed model achieved higher results than some recent and robust models.