Unlike Earth,Mars lacks a global dipolar magnetic field but is dominated by patches of a remnant crustal magnetic field.In 2021,the Chinese Mars Rover will land on the surface of Mars and measure the surface magnetic ...Unlike Earth,Mars lacks a global dipolar magnetic field but is dominated by patches of a remnant crustal magnetic field.In 2021,the Chinese Mars Rover will land on the surface of Mars and measure the surface magnetic field along a moving path within the possible landing region of 20°W-50°W,20°N-30°N.One scientific target of the Rover is to monitor the variation in surface remnant magnetic fields and reveal the source of the ionospheric current.An accurate local crustal field model is thus considered necessary as a field reference.Here we establish a local crust field model for the candidate landing site based on the joint magnetic field data set from Mars Global Explorer(MGS)and Mars Atmosphere and Volatile Evolution(MAVEN)data combined.The model is composed of 1,296 dipoles,which are set on three layers but at different buried depths.The application of the dipole model to the joint data set allowed us to calculate the optimal parameters of their dipoles.The calculated results demonstrate that our model has less fitting error than two other state-of-the art global crustal field models,which would indicate a more reasonable assessment of the surface crustal field from our model.展开更多
A three-dimensional four species multi-fluid magnetohydrodynamic (MHD) model was constructed to simulate the solar wind global interaction with Mars. The model was augmented to consider production and loss of the sign...A three-dimensional four species multi-fluid magnetohydrodynamic (MHD) model was constructed to simulate the solar wind global interaction with Mars. The model was augmented to consider production and loss of the significant ion species in the Martian ionosphere, i.e., H^+, O2^+, O^+, CO^+2, associated with chemical reactions among all species. An ideal dipole-like local crustal field model was used to simplify the empirically measured Martian crustal field. Results of this simulation suggest that the magnetic pile-up region (MPR) and the velocity profile in the meridian plane are asymmetric, which is due to the nature of the multi-fluid model to decouple individual ion velocity resulting in occurrence of plume flow in the northern Martian magnetotail. In the presence of dipole magnetic field model, boundary layers, such as bow shock (BS) and magnetic pile-up boundary (MPB), become protuberant. Moreover, the crustal field has an inhibiting effect on the flux of ions escaping from Mars, an effect that occurs primarily in the region between the terminator (SZA 90°) and the Sun Mars line of the magnetotail (SZA 180°), partially around the terminator region. In contrast, near the tailward central line the crustal field has no significant impact on the escaping flux.展开更多
By studying the seismicity pattern before 37 earthquakes with M≥6. 0 in North China and the pattern of crustal deformation in the Capital Area from 1954 to 1992, some abnormal characteristics of these patterns before...By studying the seismicity pattern before 37 earthquakes with M≥6. 0 in North China and the pattern of crustal deformation in the Capital Area from 1954 to 1992, some abnormal characteristics of these patterns before strong earthquakes have been extracted. A comparison has been made between the anomalies of these two kinds of Patterns. From the results we can know the following. ① Before a strong earthquake, the seismicity will strengthen and the crustal deformation rate will increase. ② Several years before a strong earthquake, there will be seismic gaps and deformation gaps around the epicenter of the quake. ③ The dynamic parameters of patterns all show a decrease in information dimension. This means that the crustal deformation has become more and more localized with time and it gives an important indication showing that a strong earthquake is in preparation. At the end of the paper, the physical mechanisms of the abnormal patterns of seismicity and crustal deformationhave been explained in a unified way in terms of the earthquake-generating model of a inhomogeneous strongbody in inhmogeneous media.展开更多
DSS data of the last twenty years and more in the northern part of North China are further interpreted, and combined with other geological and geophysical data, the crustal model for the 3 D finite element method is ...DSS data of the last twenty years and more in the northern part of North China are further interpreted, and combined with other geological and geophysical data, the crustal model for the 3 D finite element method is built after straticulate crustal structure and elastic mechanics parameters are obtained. Referring to regional tectonic stress field and taking the effect of gravity into account, the paper constrains properly the model boundary and then computes the displacement of each nodal point and the strain and stress of each element by using the program from the 3 D linear elastic finite method. The relationship between the distribution feature of the crustal stress field and seismicity is discussed on the basis of analyzing contour maps of maximum principal compressive stress in the upper, middle and lower crusts.展开更多
The relationship between the strain cumulative rate (i.e., the crustal strain rate, or CSR in short) and seismic activity is analyzed to develop a new method to determine risky regions for strong shocks within recent ...The relationship between the strain cumulative rate (i.e., the crustal strain rate, or CSR in short) and seismic activity is analyzed to develop a new method to determine risky regions for strong shocks within recent years by the recorded crustal strain field. Seismic activity, especially the recurrence period, is different in different areas. Ding Guoyu (1984) pointed out that, for different seismic regions, the difference in the recurrence period of strong earthquakes is mainly controlled by their difference in the rate of the tectonic movement, which is controlled by the seismogenic environment and the tectonic conditions. The method of determining the risky regions for strong shocks from the gradient of vertical strain rates observed in a geodetic survey is preliminarily tested with the earthquakes in recent years; the results show that this method is effective and useful for earthquake prediction. The relationship between CSR and seismicity in a specific region is studied with strain theories,展开更多
A statistic analysis of the characteristics of recent tectonic stress fields in the East China region was performed using 143 sets of data of single focal mechanical solutions of moderate and small earthquakes and 17 ...A statistic analysis of the characteristics of recent tectonic stress fields in the East China region was performed using 143 sets of data of single focal mechanical solutions of moderate and small earthquakes and 17 sets of data of composite focal mechanism solutions. The result shows that at present the East China region is controlled by an ENE-( about 80°) oriented principal compressive and NNW-(about 350°) oriented principal tensile stress field. The effect mode of the principal stress is mainly horizontal and sub-horizontal. In a background of basic consistency of the direction and effect mode of stress field, the existence of different seismotectonic zones may be related to the distribution of major active faults in the relevant areas. It indicates the effect and control of the existing structures on the seismic dislocation. Analysis of focal mechanism solution data of recent moderate and small earthquakes and directions of long axes of isoseismal contours of historic moderate and strong earthquakes and recent felt earthquakes indicates that seismic rupture and dislocation in East China region occurred mainly along the faults in NE and NW directions, and sometimes in NNE, ENE, WNW or near-WE directions. Movement along the seismic faults is mainly strike-slip or nearstrike-slip, with a less oblique slip component. Regional difference in dislocation modes exist along the seismic faults. The historical moderate and strong earthquakes in East China produced mainly NE-trending ruptures and dislocations, while the recent earthquakes produced NW-SE ruptures and dislocations in the land region and NE and NW ones in the sea areas.展开更多
GPS observation network is deployed in the central part of Ningxia, which is the juncture of the Alxa block, Ordos block and Qinghai-Xizang (Tibet) block. Using the data of five phases of repeated survey sine 1996, th...GPS observation network is deployed in the central part of Ningxia, which is the juncture of the Alxa block, Ordos block and Qinghai-Xizang (Tibet) block. Using the data of five phases of repeated survey sine 1996, the current state of crustal movement in the central part of Ningxia is analyzed. From the result, we can know the following. (1) In the period from Dec. 1996 to May 1999, the central part of Ningxia had the phenomenon of left-lateral movement about the west margin of Ordos (measuring station P2) and the Lingwu fault on the east of the Yinchuan basin displayed the mode of left-lateral reverse strike slip movement. In that region, the direction of the principal stress field was NNE-SSW (with an azimuth of 29.8?; the central part to the south of the measuring station P2 displaced eastward; the vertical deformation was obviously greater than the horizontal deformation in order of magnitude; the Yinchuan basin and Qinghai-Xizang (Tibet) block were in a state of rising; the measuring station P1 in the hinterland of Ordos showed a trend of subsiding year by year; and there may be a hidden fault to exist between the measuring points P3 and P4. (2) About one year before the occurrence of moderately strong earthquakes in the vicinity of the measuring region, deformation anomalies and abnormal changes of principal stress direction can be observed by the GPS measuring stations in that region; before moderately strong earthquakes near the measuring region and before strong earthquakes in adjacent regions, the simulated GPS deformation vector field ofthat region can betoken the approximate position of the coming earthquake. These results can be regarded as the eigenvalues of earthquake prediction for consideration.展开更多
By inversion of fault slip data for Quaternary tectonic stress field and the analysis of crustal deformation after lateTeriary. we explaincd the evolution of crustal dynamic about the north and east margin of Qinghai-...By inversion of fault slip data for Quaternary tectonic stress field and the analysis of crustal deformation after lateTeriary. we explaincd the evolution of crustal dynamic about the north and east margin of Qinghai-Xizang (Tibet)plateau since Miocenc. From middle or late Miocene to early Pleistocene, the tectonic stress field was featured by amaximum principal compression which was coming from the collision of india Plate continued to the boundaryof the plateau. and was basically of reverse faulting type. Since the late period of early Pleistocene, Pleistocene continuedto push northward and the compressional deformation of the plateau interior increased continuously, meanwhile,N W-SE extension appeared on the east side of the plateau. This formed a favorable condition for the interior block offoe plateau to slide towards east and southeast, causing the faults surrounding the plateau to change from thrust tostrike-slip. -The contemporary tectonic stress field was formed from the late period of early Pleistocene and continuedto present. The direction of maximum principal compressional stress rotated clockwise with respect to the previoustectonic stress held. the stress field was mainly of strike-slip type.展开更多
In this study, we analyze the regional GPS data of Crustal Movement Observation Network of China (CMONOC) observed from 2009-2013 using the BERNESE GPS software, and then the preliminary results of horizontal veloci...In this study, we analyze the regional GPS data of Crustal Movement Observation Network of China (CMONOC) observed from 2009-2013 using the BERNESE GPS software, and then the preliminary results of horizontal velocity field and strain rate field are presented, which could reflect the overall deformation features in the Chinese mainland from 2009-2013. Besides, the velocity error and the probable factors that could influence the estimate of long-term deformation are also discussed.展开更多
In this paper, the fault deformation abnormality, dynamic evolution features of gravity and vertical deformation field in the seismogenic process of the Yongdeng, Gansu Province earthquake on July 22, 1995 are studied...In this paper, the fault deformation abnormality, dynamic evolution features of gravity and vertical deformation field in the seismogenic process of the Yongdeng, Gansu Province earthquake on July 22, 1995 are studied primarily. There appeared α β γ tri stage anomaly at three sites near the epicenter, and there appeared anomalies of step and sudden jump at more than 10 sites in outer region since 1993. The high value area before shock, coseismic effect and process of recovery aftershock were monitored by portable gravity data. Data reflects the changing process of fault movement from the quasi linear to the nonlinear in the near source region during seismogenic development of the Yongdeng earthquake and evolution of gravity field from heterogeneity of seismogenic term to quasi homogeneity of postseismic term. There exists close relationship between strong earthquake and dynamic evolution of regional stress strain field. Considering all above, the experience and lessons in this medium short term prediction test are summarized.展开更多
Polymetalic sulfide is the main product of sea-floor hydrothermal venting, and has become an important sea-floor mineral resources for its rich in many kinds of precious metal elements. Since 2007, a number of investi...Polymetalic sulfide is the main product of sea-floor hydrothermal venting, and has become an important sea-floor mineral resources for its rich in many kinds of precious metal elements. Since 2007, a number of investigations have been carried out by the China Ocean Mineral Resources Research and Development Association(COMRA)cruises(CCCs) along the Southwest Indian Ridge(SWIR). In 2011, the COMRA signed an exploration contract of sea-floor polymetallic sulfides of 10 000 km2 on the SWIR with the International Seabed Authority. Based on the multibeam data and shipborne gravity data obtained in 2010 by the R/V Dayang Yihao during the leg 6 of CCCs21, together with the global satellite surveys, the characteristics of gravity anomalies are analyzed in the Duanqiao hydrothermal field(37°39′S, 50°24′E). The "subarea calibration" terrain-correcting method is employed to calculate the Bouguer gravity anomaly, and the ocean bottom seismometer(OBS) profile is used to constrain the two-dimensional gravity anomaly simulation. The absent Moho in a previous seismic model is also calculated.The results show that the crustal thickness varies between 3 and 10 km along the profile, and the maximum crustal thickness reaches up to 10 km in the Duanqiao hydrothermal field with an average of 7.5 km. It is by far the most thicker crust discovered along the SWIR. The calculated crust thickness at the Longqi hydrothermal field is approximately 3 km, 1 km less than that indicated by seismic models, possibly due to the outcome of an oceanic core complex(OCC).展开更多
The relationship between the earth stress field, earth surface displacement field and the gravity variation is deduced. Algorithms based on the boundary element method to compute the earth stress variation using the e...The relationship between the earth stress field, earth surface displacement field and the gravity variation is deduced. Algorithms based on the boundary element method to compute the earth stress variation using the earth surface displacement is discussed. The stress field variation in Jiashi region, Xinjiang, China is obtained from the GPS data observed in 1997 and 1998, respectively, and the relationship among the local stress field variation, seismic activities and fault tectonic activities is discussed.展开更多
Having analysised the data collected by our survey ship'Ocean IV 'in the Bransfield Strait in 1991,we recognized that the geomorphology,gravity and magnetic anomalies trending NE direction along bandings. The ...Having analysised the data collected by our survey ship'Ocean IV 'in the Bransfield Strait in 1991,we recognized that the geomorphology,gravity and magnetic anomalies trending NE direction along bandings. The sediments in the Bransfield Strait can be subdivided into two sequences:the first rifting equence and the second rifting sequence.The basement was faulted into a half-graben in northwestern side of the Bransfield trough. Considering the crustal structure crossing the South Shetland Islands,the Bransfield Strait and the Antarctic Peninsula, we propse a two-phase rifting tectonic evolution model and a layered-shear model for the lithospheric deformation under the effects of extensional stress field.展开更多
In the paper, the current strain field and stress field in Chinese continent have been discussedbased on the processed data from two GPS campaigns of national GPS network carried out inthe years of 1994 and 1996. With...In the paper, the current strain field and stress field in Chinese continent have been discussedbased on the processed data from two GPS campaigns of national GPS network carried out inthe years of 1994 and 1996. With a principal compressional strain direction of NNE, thewestern and castern parts of Qinghai-Xizang subplate are dominated by extensional straiu andthe central Part by compressional strain. Along the southwestern segment of southeastern partof Qinghai-Xizang subplate, i. e. Yunnan area, the princiPal compressional strain direction isNW and the compressional strain is equivalent to the extensional strain in magnitude. Theprincipal compressional strain of Xinjiang subplate is mainly NNE and NE with a difference inthe strain magnitude. The principal compressional strain in North China subplate is quite effective in NE and nearly EW directions with differences along some segments. However, thecompressional strain is corresponding to the extensional strain in magnitude in most areas.展开更多
Seismic fault parameters can be inversed with Okada model based on deformation data before and after earthquakes in focal region and its adjacent area. Co-seismic displacements can be simulated by using these paramete...Seismic fault parameters can be inversed with Okada model based on deformation data before and after earthquakes in focal region and its adjacent area. Co-seismic displacements can be simulated by using these parameters,and then regional velocity field obtained by deducting the co-seismic displacements from the observed displacements by GPS method. We processed and analyzed the data in the northeastern edge region of the Qinghai-Tibet plateau observed during 2001 -2003 in two steps: firstly, the displacements generated by Kunlun MsS. 1 earthquake of 2001 in this region was simulated, and secondly, deducted the co-seismic displacements from it and obtained the horizontal crustal velocity field. The results reveal : 1 ) the effect of Kunlun Ms8.1 earthquake on crustal deformation in this region is significant; 2 )the velocity field obtained with this method is better than the original GPS velocity field in reflecting the status of regional crustal movement and strain.展开更多
On the basis of the synthetic analysis of present regional tectonic stress field in China, this paper follows three steps to do crustal stability assessment: (1) zonation of preevaluation area for regional crustal sta...On the basis of the synthetic analysis of present regional tectonic stress field in China, this paper follows three steps to do crustal stability assessment: (1) zonation of preevaluation area for regional crustal stability assessment and zonation; (2) choice, taking value and weight distribution of quantitative evaluation indices and determination of evaluation standards; (3) assessment and zonation of regional crustal stability using fuzzy mathematics in China.展开更多
Based on the chemical and stable carbon isotopic composition of natural gas and light hydrocarbons, along with regional geological data, the genetic type, origin and migration of natural gases in the L lithologic gas ...Based on the chemical and stable carbon isotopic composition of natural gas and light hydrocarbons, along with regional geological data, the genetic type, origin and migration of natural gases in the L lithologic gas field, the eastern slope of Yinggehai Sag were investigated. The results show that these gases have a considerable variation in chemical composition, with 33.6%–91.5% hydrocarbon, 0.5%-62.2% CO2, and dryness coefficients ranging from 0.94 to 0.99. The alkane gases are characterized by δ13C1 values of -40.71‰--27.40‰,δ13C2 values of –27.27‰– –20.26‰, and the isoparaffin contents accounting for 55%–73% of the total C5–C7 light hydrocarbons. These data indicate that the natural gases belong to the coal-type gas and are mainly derived from the Miocene terrigenous organic-rich source rocks. When the CO2 contents are greater than 10%, the δ13CCO2 values are –9.04‰ to – 0.95‰ and the associated helium has a 3He/4He value of 7.78×10^–8, suggesting that the CO2 here is crustal origin and inorganic and mainly sourced from the thermal decomposition of calcareous mudstone and carbonate in deep strata. The gas migrated in three ways, i.e., migration of gas from the Miocene source rock to the reservoirs nearby;vertical migration of highly mature gas from deeper Meishan and Sanya Formations source rock through concealed faults;and lateral migration along permeable sandbodies. The relatively large pressure difference between the “source” and “reservoir” is the key driving force for the vertical and lateral migration of gas. Short-distance migration and effective “source - reservoir” match control the gas distribution.展开更多
Through numerical simulation for GPS data, aseismic negative dislocation model for crustal horizontal movement during 1999~2001 in the northeast margin of Qinghai-Xizang block is presented, combined with the spatial d...Through numerical simulation for GPS data, aseismic negative dislocation model for crustal horizontal movement during 1999~2001 in the northeast margin of Qinghai-Xizang block is presented, combined with the spatial distribution of apparent strain field in this area, the characteristics of motion and deformation of active blocks and their boundary faults, together with the place and intensity of strain accumulation are analyzed. It is shown that: a) 9 active blocks appeared totally clockwise motion from eastward by north to eastward by south. Obvious sinistral strike-slip and NE-NEE relative compressive motion between the blocks separated by Qilianshan-Haiyuan fault zone was discovered; b) 20 fault segments (most of them showed compression) locked the relative motion between blocks to varying degrees, among the total, the mid-east segment of Qilianshan fault (containing the place where it meets Riyueshan-Lajishan fault) and the place where it meets Haiyuan fault and Zhuanglanghe fault, more favored accumulation of strain. Moreover, the region where Riyueshan-Lajishan fault meets north boundary of Qaidam block may have strain accumulation to some degree. c) Obtained magnitude of block velocities and locking of their boundaries were less than relevant results for observation in the period of 1993~1999.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(grant no.XDA17010201)the National Natural Science Foundation of China(grants nos.41922031,41774188,41525016,and 41621063).
文摘Unlike Earth,Mars lacks a global dipolar magnetic field but is dominated by patches of a remnant crustal magnetic field.In 2021,the Chinese Mars Rover will land on the surface of Mars and measure the surface magnetic field along a moving path within the possible landing region of 20°W-50°W,20°N-30°N.One scientific target of the Rover is to monitor the variation in surface remnant magnetic fields and reveal the source of the ionospheric current.An accurate local crustal field model is thus considered necessary as a field reference.Here we establish a local crust field model for the candidate landing site based on the joint magnetic field data set from Mars Global Explorer(MGS)and Mars Atmosphere and Volatile Evolution(MAVEN)data combined.The model is composed of 1,296 dipoles,which are set on three layers but at different buried depths.The application of the dipole model to the joint data set allowed us to calculate the optimal parameters of their dipoles.The calculated results demonstrate that our model has less fitting error than two other state-of-the art global crustal field models,which would indicate a more reasonable assessment of the surface crustal field from our model.
基金supported by the pre-research projects on Civil Aerospace Technologies No.D020103 and D020105 funded by China’s National Space Administration (CNSA)support from the National Natural Science Foundation of China (NSFC) under grants 41674176, 41525015, 41774186, 41574156, and 41941001
文摘A three-dimensional four species multi-fluid magnetohydrodynamic (MHD) model was constructed to simulate the solar wind global interaction with Mars. The model was augmented to consider production and loss of the significant ion species in the Martian ionosphere, i.e., H^+, O2^+, O^+, CO^+2, associated with chemical reactions among all species. An ideal dipole-like local crustal field model was used to simplify the empirically measured Martian crustal field. Results of this simulation suggest that the magnetic pile-up region (MPR) and the velocity profile in the meridian plane are asymmetric, which is due to the nature of the multi-fluid model to decouple individual ion velocity resulting in occurrence of plume flow in the northern Martian magnetotail. In the presence of dipole magnetic field model, boundary layers, such as bow shock (BS) and magnetic pile-up boundary (MPB), become protuberant. Moreover, the crustal field has an inhibiting effect on the flux of ions escaping from Mars, an effect that occurs primarily in the region between the terminator (SZA 90°) and the Sun Mars line of the magnetotail (SZA 180°), partially around the terminator region. In contrast, near the tailward central line the crustal field has no significant impact on the escaping flux.
文摘By studying the seismicity pattern before 37 earthquakes with M≥6. 0 in North China and the pattern of crustal deformation in the Capital Area from 1954 to 1992, some abnormal characteristics of these patterns before strong earthquakes have been extracted. A comparison has been made between the anomalies of these two kinds of Patterns. From the results we can know the following. ① Before a strong earthquake, the seismicity will strengthen and the crustal deformation rate will increase. ② Several years before a strong earthquake, there will be seismic gaps and deformation gaps around the epicenter of the quake. ③ The dynamic parameters of patterns all show a decrease in information dimension. This means that the crustal deformation has become more and more localized with time and it gives an important indication showing that a strong earthquake is in preparation. At the end of the paper, the physical mechanisms of the abnormal patterns of seismicity and crustal deformationhave been explained in a unified way in terms of the earthquake-generating model of a inhomogeneous strongbody in inhmogeneous media.
文摘DSS data of the last twenty years and more in the northern part of North China are further interpreted, and combined with other geological and geophysical data, the crustal model for the 3 D finite element method is built after straticulate crustal structure and elastic mechanics parameters are obtained. Referring to regional tectonic stress field and taking the effect of gravity into account, the paper constrains properly the model boundary and then computes the displacement of each nodal point and the strain and stress of each element by using the program from the 3 D linear elastic finite method. The relationship between the distribution feature of the crustal stress field and seismicity is discussed on the basis of analyzing contour maps of maximum principal compressive stress in the upper, middle and lower crusts.
基金1998. This project was sponsored by the National Science Foundation (96-913-03-03-02), China.
文摘The relationship between the strain cumulative rate (i.e., the crustal strain rate, or CSR in short) and seismic activity is analyzed to develop a new method to determine risky regions for strong shocks within recent years by the recorded crustal strain field. Seismic activity, especially the recurrence period, is different in different areas. Ding Guoyu (1984) pointed out that, for different seismic regions, the difference in the recurrence period of strong earthquakes is mainly controlled by their difference in the rate of the tectonic movement, which is controlled by the seismogenic environment and the tectonic conditions. The method of determining the risky regions for strong shocks from the gradient of vertical strain rates observed in a geodetic survey is preliminarily tested with the earthquakes in recent years; the results show that this method is effective and useful for earthquake prediction. The relationship between CSR and seismicity in a specific region is studied with strain theories,
文摘A statistic analysis of the characteristics of recent tectonic stress fields in the East China region was performed using 143 sets of data of single focal mechanical solutions of moderate and small earthquakes and 17 sets of data of composite focal mechanism solutions. The result shows that at present the East China region is controlled by an ENE-( about 80°) oriented principal compressive and NNW-(about 350°) oriented principal tensile stress field. The effect mode of the principal stress is mainly horizontal and sub-horizontal. In a background of basic consistency of the direction and effect mode of stress field, the existence of different seismotectonic zones may be related to the distribution of major active faults in the relevant areas. It indicates the effect and control of the existing structures on the seismic dislocation. Analysis of focal mechanism solution data of recent moderate and small earthquakes and directions of long axes of isoseismal contours of historic moderate and strong earthquakes and recent felt earthquakes indicates that seismic rupture and dislocation in East China region occurred mainly along the faults in NE and NW directions, and sometimes in NNE, ENE, WNW or near-WE directions. Movement along the seismic faults is mainly strike-slip or nearstrike-slip, with a less oblique slip component. Regional difference in dislocation modes exist along the seismic faults. The historical moderate and strong earthquakes in East China produced mainly NE-trending ruptures and dislocations, while the recent earthquakes produced NW-SE ruptures and dislocations in the land region and NE and NW ones in the sea areas.
基金the Program of the Science and Technology Commission of Ningxia Hui Autonomous Region and Joint Foundation of Seismological Science(197043).
文摘GPS observation network is deployed in the central part of Ningxia, which is the juncture of the Alxa block, Ordos block and Qinghai-Xizang (Tibet) block. Using the data of five phases of repeated survey sine 1996, the current state of crustal movement in the central part of Ningxia is analyzed. From the result, we can know the following. (1) In the period from Dec. 1996 to May 1999, the central part of Ningxia had the phenomenon of left-lateral movement about the west margin of Ordos (measuring station P2) and the Lingwu fault on the east of the Yinchuan basin displayed the mode of left-lateral reverse strike slip movement. In that region, the direction of the principal stress field was NNE-SSW (with an azimuth of 29.8?; the central part to the south of the measuring station P2 displaced eastward; the vertical deformation was obviously greater than the horizontal deformation in order of magnitude; the Yinchuan basin and Qinghai-Xizang (Tibet) block were in a state of rising; the measuring station P1 in the hinterland of Ordos showed a trend of subsiding year by year; and there may be a hidden fault to exist between the measuring points P3 and P4. (2) About one year before the occurrence of moderately strong earthquakes in the vicinity of the measuring region, deformation anomalies and abnormal changes of principal stress direction can be observed by the GPS measuring stations in that region; before moderately strong earthquakes near the measuring region and before strong earthquakes in adjacent regions, the simulated GPS deformation vector field ofthat region can betoken the approximate position of the coming earthquake. These results can be regarded as the eigenvalues of earthquake prediction for consideration.
文摘By inversion of fault slip data for Quaternary tectonic stress field and the analysis of crustal deformation after lateTeriary. we explaincd the evolution of crustal dynamic about the north and east margin of Qinghai-Xizang (Tibet)plateau since Miocenc. From middle or late Miocene to early Pleistocene, the tectonic stress field was featured by amaximum principal compression which was coming from the collision of india Plate continued to the boundaryof the plateau. and was basically of reverse faulting type. Since the late period of early Pleistocene, Pleistocene continuedto push northward and the compressional deformation of the plateau interior increased continuously, meanwhile,N W-SE extension appeared on the east side of the plateau. This formed a favorable condition for the interior block offoe plateau to slide towards east and southeast, causing the faults surrounding the plateau to change from thrust tostrike-slip. -The contemporary tectonic stress field was formed from the late period of early Pleistocene and continuedto present. The direction of maximum principal compressional stress rotated clockwise with respect to the previoustectonic stress held. the stress field was mainly of strike-slip type.
基金supported by Foundation of Institute of Seismology,China Earthquake Administration(201326119)the National Natural Science Foundation of China(41074016,41274027,41304067)
文摘In this study, we analyze the regional GPS data of Crustal Movement Observation Network of China (CMONOC) observed from 2009-2013 using the BERNESE GPS software, and then the preliminary results of horizontal velocity field and strain rate field are presented, which could reflect the overall deformation features in the Chinese mainland from 2009-2013. Besides, the velocity error and the probable factors that could influence the estimate of long-term deformation are also discussed.
文摘In this paper, the fault deformation abnormality, dynamic evolution features of gravity and vertical deformation field in the seismogenic process of the Yongdeng, Gansu Province earthquake on July 22, 1995 are studied primarily. There appeared α β γ tri stage anomaly at three sites near the epicenter, and there appeared anomalies of step and sudden jump at more than 10 sites in outer region since 1993. The high value area before shock, coseismic effect and process of recovery aftershock were monitored by portable gravity data. Data reflects the changing process of fault movement from the quasi linear to the nonlinear in the near source region during seismogenic development of the Yongdeng earthquake and evolution of gravity field from heterogeneity of seismogenic term to quasi homogeneity of postseismic term. There exists close relationship between strong earthquake and dynamic evolution of regional stress strain field. Considering all above, the experience and lessons in this medium short term prediction test are summarized.
基金The National Basic Research Program(973 Program)of China under contract No.2012CB417305the China Ocean Mineral Resources Research and Development Association Twelfth Five-Year Major Program under contract Nos DY125-11-R-01 and DY125-11-R-05+2 种基金the International Cooperative Study on Hydrothermal System at Ultraslow Spreading SWIRthe Natural Science Foundation of Zhejiang Province of China under contract No.LY12D06006the Scientific Research Fund of Second Institute of Oceanography,State Oceanic Administration under contract No.JG1203
文摘Polymetalic sulfide is the main product of sea-floor hydrothermal venting, and has become an important sea-floor mineral resources for its rich in many kinds of precious metal elements. Since 2007, a number of investigations have been carried out by the China Ocean Mineral Resources Research and Development Association(COMRA)cruises(CCCs) along the Southwest Indian Ridge(SWIR). In 2011, the COMRA signed an exploration contract of sea-floor polymetallic sulfides of 10 000 km2 on the SWIR with the International Seabed Authority. Based on the multibeam data and shipborne gravity data obtained in 2010 by the R/V Dayang Yihao during the leg 6 of CCCs21, together with the global satellite surveys, the characteristics of gravity anomalies are analyzed in the Duanqiao hydrothermal field(37°39′S, 50°24′E). The "subarea calibration" terrain-correcting method is employed to calculate the Bouguer gravity anomaly, and the ocean bottom seismometer(OBS) profile is used to constrain the two-dimensional gravity anomaly simulation. The absent Moho in a previous seismic model is also calculated.The results show that the crustal thickness varies between 3 and 10 km along the profile, and the maximum crustal thickness reaches up to 10 km in the Duanqiao hydrothermal field with an average of 7.5 km. It is by far the most thicker crust discovered along the SWIR. The calculated crust thickness at the Longqi hydrothermal field is approximately 3 km, 1 km less than that indicated by seismic models, possibly due to the outcome of an oceanic core complex(OCC).
基金State Natural Science Foundation of China !(49774214)the State Key Project !(96-913-07).
文摘The relationship between the earth stress field, earth surface displacement field and the gravity variation is deduced. Algorithms based on the boundary element method to compute the earth stress variation using the earth surface displacement is discussed. The stress field variation in Jiashi region, Xinjiang, China is obtained from the GPS data observed in 1997 and 1998, respectively, and the relationship among the local stress field variation, seismic activities and fault tectonic activities is discussed.
文摘Having analysised the data collected by our survey ship'Ocean IV 'in the Bransfield Strait in 1991,we recognized that the geomorphology,gravity and magnetic anomalies trending NE direction along bandings. The sediments in the Bransfield Strait can be subdivided into two sequences:the first rifting equence and the second rifting sequence.The basement was faulted into a half-graben in northwestern side of the Bransfield trough. Considering the crustal structure crossing the South Shetland Islands,the Bransfield Strait and the Antarctic Peninsula, we propse a two-phase rifting tectonic evolution model and a layered-shear model for the lithospheric deformation under the effects of extensional stress field.
基金Supported by the projects of 95-04-07-03-04 and (94) 1-D1 of China Seismological Bureau, China.
文摘In the paper, the current strain field and stress field in Chinese continent have been discussedbased on the processed data from two GPS campaigns of national GPS network carried out inthe years of 1994 and 1996. With a principal compressional strain direction of NNE, thewestern and castern parts of Qinghai-Xizang subplate are dominated by extensional straiu andthe central Part by compressional strain. Along the southwestern segment of southeastern partof Qinghai-Xizang subplate, i. e. Yunnan area, the princiPal compressional strain direction isNW and the compressional strain is equivalent to the extensional strain in magnitude. Theprincipal compressional strain of Xinjiang subplate is mainly NNE and NE with a difference inthe strain magnitude. The principal compressional strain in North China subplate is quite effective in NE and nearly EW directions with differences along some segments. However, thecompressional strain is corresponding to the extensional strain in magnitude in most areas.
基金supported by the National Natural Science Fundation of China(40674057)Earthquake Science Joint Fundation of China(A07132)
文摘Seismic fault parameters can be inversed with Okada model based on deformation data before and after earthquakes in focal region and its adjacent area. Co-seismic displacements can be simulated by using these parameters,and then regional velocity field obtained by deducting the co-seismic displacements from the observed displacements by GPS method. We processed and analyzed the data in the northeastern edge region of the Qinghai-Tibet plateau observed during 2001 -2003 in two steps: firstly, the displacements generated by Kunlun MsS. 1 earthquake of 2001 in this region was simulated, and secondly, deducted the co-seismic displacements from it and obtained the horizontal crustal velocity field. The results reveal : 1 ) the effect of Kunlun Ms8.1 earthquake on crustal deformation in this region is significant; 2 )the velocity field obtained with this method is better than the original GPS velocity field in reflecting the status of regional crustal movement and strain.
文摘On the basis of the synthetic analysis of present regional tectonic stress field in China, this paper follows three steps to do crustal stability assessment: (1) zonation of preevaluation area for regional crustal stability assessment and zonation; (2) choice, taking value and weight distribution of quantitative evaluation indices and determination of evaluation standards; (3) assessment and zonation of regional crustal stability using fuzzy mathematics in China.
基金Supported by the China National Science and Technology Major Project(2016ZX05024-005)
文摘Based on the chemical and stable carbon isotopic composition of natural gas and light hydrocarbons, along with regional geological data, the genetic type, origin and migration of natural gases in the L lithologic gas field, the eastern slope of Yinggehai Sag were investigated. The results show that these gases have a considerable variation in chemical composition, with 33.6%–91.5% hydrocarbon, 0.5%-62.2% CO2, and dryness coefficients ranging from 0.94 to 0.99. The alkane gases are characterized by δ13C1 values of -40.71‰--27.40‰,δ13C2 values of –27.27‰– –20.26‰, and the isoparaffin contents accounting for 55%–73% of the total C5–C7 light hydrocarbons. These data indicate that the natural gases belong to the coal-type gas and are mainly derived from the Miocene terrigenous organic-rich source rocks. When the CO2 contents are greater than 10%, the δ13CCO2 values are –9.04‰ to – 0.95‰ and the associated helium has a 3He/4He value of 7.78×10^–8, suggesting that the CO2 here is crustal origin and inorganic and mainly sourced from the thermal decomposition of calcareous mudstone and carbonate in deep strata. The gas migrated in three ways, i.e., migration of gas from the Miocene source rock to the reservoirs nearby;vertical migration of highly mature gas from deeper Meishan and Sanya Formations source rock through concealed faults;and lateral migration along permeable sandbodies. The relatively large pressure difference between the “source” and “reservoir” is the key driving force for the vertical and lateral migration of gas. Short-distance migration and effective “source - reservoir” match control the gas distribution.
基金State Key Basic Development and Programming Project Mechanism and Prediction of Continental Strong Earthquakes (G1998040703) Joint Seismological Science Foundation of China (603001).
文摘Through numerical simulation for GPS data, aseismic negative dislocation model for crustal horizontal movement during 1999~2001 in the northeast margin of Qinghai-Xizang block is presented, combined with the spatial distribution of apparent strain field in this area, the characteristics of motion and deformation of active blocks and their boundary faults, together with the place and intensity of strain accumulation are analyzed. It is shown that: a) 9 active blocks appeared totally clockwise motion from eastward by north to eastward by south. Obvious sinistral strike-slip and NE-NEE relative compressive motion between the blocks separated by Qilianshan-Haiyuan fault zone was discovered; b) 20 fault segments (most of them showed compression) locked the relative motion between blocks to varying degrees, among the total, the mid-east segment of Qilianshan fault (containing the place where it meets Riyueshan-Lajishan fault) and the place where it meets Haiyuan fault and Zhuanglanghe fault, more favored accumulation of strain. Moreover, the region where Riyueshan-Lajishan fault meets north boundary of Qaidam block may have strain accumulation to some degree. c) Obtained magnitude of block velocities and locking of their boundaries were less than relevant results for observation in the period of 1993~1999.