Mineral admixture concrete is a renewable material.It requires less cement than ordinary concrete and is thus beneficial for economical use of resources and environmental protection.To examine the impact of chloride s...Mineral admixture concrete is a renewable material.It requires less cement than ordinary concrete and is thus beneficial for economical use of resources and environmental protection.To examine the impact of chloride salt on the durability of mineral admixture concrete under various conditions,in this study,test blocks are divided into two major groups:in one group,the test block is eroded by chloride salt on the interior and by sulphate/magnesium salts on the exterior,and in the second group,the test block is eroded by external chloride/sulphate/magnesium salts.Clean water is considered the control group.Dry-wet alternation tests are carried out to investigate the mechanical properties,mass,macromorphology,and ion content of the concrete.Furthermore,a series of methods,such as XRD,FT-IR,SEM,and EDS,are adopted to examine the phase composition and micromorphology of the concrete.The results show that,for the concrete subjected to the corrosion of internal chloride salt and external sulphate/magnesium salts(0–20 cycles),its mechanical properties improve slowly at the initial stage,but at the final stage(80–120 cycles),it is subjected to more severe corrosion compared to those only eroded by a single corrosive ion,such as the chloride/sulfate/magnesium salts.For concretes subjected to external corrosion of chloride/sulphate/magnesium salts,the concrete durability enhances with the concentration increase of the chloride salt.Mg^(2+)and SO_(4)^(2-)could jointly result in destructive damage to the admixture concrete,main generating corrosion products of ettringite,gypsum,Mg(OH)2,thaumasite,and M-S-H.展开更多
Titanium alloys are extensively used in power, chemical and petroleum industries as constructional materials for vessels and heat transfer tubes. Moreover they are candidate materials for nuclear waste disposal. These...Titanium alloys are extensively used in power, chemical and petroleum industries as constructional materials for vessels and heat transfer tubes. Moreover they are candidate materials for nuclear waste disposal. These alloys have superior resistance to localized forms of corrosion compared to stainless steels and Ni-base alloys. However, this resistance is not as remarkable in crevice corrosion conditions in some aggressive media. Electrochemical corrosion tests were conducted on two ASTM Ti grades namely, Ti-2 and Ti-12 in extremely low pH acidic environment. Results indicated that Ti-2 has less resistance to both general and crevice corrosion attack than Ti-12. Both alloys possess better resistance to general corrosion than to crevice corrosion. Also, results showed that the molybdate addition improves remarkably the resistance of Ti-2 to both types of attack. The increase of molybdate ions concentration from 0.03 mol/L to 0.15 mol/L made Ti-2 to be as resistant as, or somewhat higher than, Ti-12. The elecrochemical findings were further supplemented by optical examination of the corroded surface.展开更多
The influence of oxide scales on the corrosion behaviors of B510 L hot-rolled steel strips was investigated in this study. Focused ion beams and scanning electron microscopy were used to observe the morphologies of ox...The influence of oxide scales on the corrosion behaviors of B510 L hot-rolled steel strips was investigated in this study. Focused ion beams and scanning electron microscopy were used to observe the morphologies of oxide scales on the surface and cross sections of the hot-rolled steel. Raman spectroscopy and X-ray diffraction were used for the phase analysis of the oxide scales and corrosion products. The corrosion potential and impedance were measured by anodic polarization and electrochemical impedance spectroscopy. According to the results, oxide scales on the hot-rolled strips mainly comprise iron and iron oxides. The correlation between mass gain and test time follows a power exponential rule in the damp-heat test. The corrosion products are found to be mainly composed of γ-Fe OOH, Fe3O4, ?-Fe OOH, and γ-Fe2O3. The contents of the corrosion products are different on the surfaces of the steels with and without oxide scales. The steel with oxide scales is found to show a higher corrosion resistance and lower corrosion rate.展开更多
The effects of Cl ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel(UHSMSS) were investigated by a series of electrochemical tests combined ...The effects of Cl ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel(UHSMSS) were investigated by a series of electrochemical tests combined with observations by stereology microscopy and scanning electron microscopy. A critical Cl- ion concentration was found to exist(approximately 0.1wt%), above which pitting occurred. The pitting potential decreased with increasing Cl- ion concentration. A UHSMSS specimen tempered at 600°C exhibited a better pitting corrosion resistance than the one tempered at 400°C. The corrosion current density and passive current density of the UHSMSS tempered at 600°C decreased with increasing pH values of the corrosion solution. The pits developed a shallower dish geometry with increasing polarization potential. A lacy cover on the pits of the UHSMSS tempered at 400°C accelerated pitting, whereas corrosion products deposited in the pits of the UHSMSS tempered at 600°C hindered pitting.展开更多
The corrosion behavior of the nitinol alloy was studied in various corrosion media of different Cl^- ion concentrations. The results demonstrate that the Cl^- ion concentration has significant influences on the corros...The corrosion behavior of the nitinol alloy was studied in various corrosion media of different Cl^- ion concentrations. The results demonstrate that the Cl^- ion concentration has significant influences on the corrosion behavior of the nitinol alloy. In order to enhance the corrosion resistance, protective films were generated on the surface of the nitinol alloy by means of the electrochemical passivation method, for which five different electrolytic solutions were investigated. The surface analysis indicates full growth of all samples passivated in the different electrolytic solutions with layers, however, showing different morphological features. Without any defects like micro-cracks and pores, the surface of the samples passivated in the molybdate solution turns out smoother and denser than those passivated in other solutions. It is shown that the electro-chemical passivation will reduce Ni content but increase Ti content in the surface, reaching the Mole ratio of Ti:Ni = 9.01:1 on the outermost surface. Potentiodynamic polarization test demonstrates that the samples electrochemically passivated in the molybdate solution present a significant increase in breakdown potential due to titanium enrichment on the outermost surface.展开更多
In this study, a NiCrAIY + AINiY composite coating was prepared by arc ion plating technique and sub- sequent annealing treatment. Cyclic hot corrosion tests of the composite coating and a reference NiCrAIY coating c...In this study, a NiCrAIY + AINiY composite coating was prepared by arc ion plating technique and sub- sequent annealing treatment. Cyclic hot corrosion tests of the composite coating and a reference NiCrAIY coating coated with mixed salts of Na2SO4 + K2SO4 and Na2SO4 + NaC1 were carried out at 700 ℃. The results indicated that the composite coating performed better against the corrosion due to the gradient element distribution in Al-enriched outer layer and Cr-enriched inner layer. The corrosion mechanisms for the two coatings were also discussed.展开更多
The morphology analysis and electrochemical method were used to study the corrosion behavior of LaFe11.6Si1.4 alloy of copper ion implantation. X-ray photoelectron spectroscopy (XPS) and atomic emission spectroscopy...The morphology analysis and electrochemical method were used to study the corrosion behavior of LaFe11.6Si1.4 alloy of copper ion implantation. X-ray photoelectron spectroscopy (XPS) and atomic emission spectroscopy (AES) research results showed that a 15 nm-thick oxide film was formed on the surface of sample, and the copper content reached the highest value at 60 nm with a normal distribution. Immersion experiments indicated that the corrosion happened in the copper-poor zone firstly and a galvanic connection was formed among different zones on the surface due to the inhomogeneous distribution of copper. Electrochemical experiment results showed that the corrosion was serious when the ion acceleration voltage increased, and the high acceleration could reduce the thermodynamic performance of corrosion of LaFe11.6Si1.4 alloy.展开更多
基金the Key Projects of Natural Science Research in Colleges and Universities of Anhui Province,Grant No.KJ2019A1043Science and Technology Project of Jiangsu Provincial Department of Housing and Urban Rural Development,Grant No.2019ZD001190.
文摘Mineral admixture concrete is a renewable material.It requires less cement than ordinary concrete and is thus beneficial for economical use of resources and environmental protection.To examine the impact of chloride salt on the durability of mineral admixture concrete under various conditions,in this study,test blocks are divided into two major groups:in one group,the test block is eroded by chloride salt on the interior and by sulphate/magnesium salts on the exterior,and in the second group,the test block is eroded by external chloride/sulphate/magnesium salts.Clean water is considered the control group.Dry-wet alternation tests are carried out to investigate the mechanical properties,mass,macromorphology,and ion content of the concrete.Furthermore,a series of methods,such as XRD,FT-IR,SEM,and EDS,are adopted to examine the phase composition and micromorphology of the concrete.The results show that,for the concrete subjected to the corrosion of internal chloride salt and external sulphate/magnesium salts(0–20 cycles),its mechanical properties improve slowly at the initial stage,but at the final stage(80–120 cycles),it is subjected to more severe corrosion compared to those only eroded by a single corrosive ion,such as the chloride/sulfate/magnesium salts.For concretes subjected to external corrosion of chloride/sulphate/magnesium salts,the concrete durability enhances with the concentration increase of the chloride salt.Mg^(2+)and SO_(4)^(2-)could jointly result in destructive damage to the admixture concrete,main generating corrosion products of ettringite,gypsum,Mg(OH)2,thaumasite,and M-S-H.
文摘Titanium alloys are extensively used in power, chemical and petroleum industries as constructional materials for vessels and heat transfer tubes. Moreover they are candidate materials for nuclear waste disposal. These alloys have superior resistance to localized forms of corrosion compared to stainless steels and Ni-base alloys. However, this resistance is not as remarkable in crevice corrosion conditions in some aggressive media. Electrochemical corrosion tests were conducted on two ASTM Ti grades namely, Ti-2 and Ti-12 in extremely low pH acidic environment. Results indicated that Ti-2 has less resistance to both general and crevice corrosion attack than Ti-12. Both alloys possess better resistance to general corrosion than to crevice corrosion. Also, results showed that the molybdate addition improves remarkably the resistance of Ti-2 to both types of attack. The increase of molybdate ions concentration from 0.03 mol/L to 0.15 mol/L made Ti-2 to be as resistant as, or somewhat higher than, Ti-12. The elecrochemical findings were further supplemented by optical examination of the corroded surface.
基金supported by the National Natural Science Foundation of China(No.51222106)the Fundamental Research Funds for the Central Universities(No.FRF-TP-14-011C1)+1 种基金the Major State Basic Research Development Program of China(No.2014CB643300)the Beijing Municipal Commission of Education
文摘The influence of oxide scales on the corrosion behaviors of B510 L hot-rolled steel strips was investigated in this study. Focused ion beams and scanning electron microscopy were used to observe the morphologies of oxide scales on the surface and cross sections of the hot-rolled steel. Raman spectroscopy and X-ray diffraction were used for the phase analysis of the oxide scales and corrosion products. The corrosion potential and impedance were measured by anodic polarization and electrochemical impedance spectroscopy. According to the results, oxide scales on the hot-rolled strips mainly comprise iron and iron oxides. The correlation between mass gain and test time follows a power exponential rule in the damp-heat test. The corrosion products are found to be mainly composed of γ-Fe OOH, Fe3O4, ?-Fe OOH, and γ-Fe2O3. The contents of the corrosion products are different on the surfaces of the steels with and without oxide scales. The steel with oxide scales is found to show a higher corrosion resistance and lower corrosion rate.
基金financially supported by the National Natural Science Foundation of China (No.51171023)the Fundamental Research Funds for the Central Universities (No.FRF-TP-14-011C1)the Major State Basic Research Development Program of China (No.2014CB643300)
文摘The effects of Cl ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel(UHSMSS) were investigated by a series of electrochemical tests combined with observations by stereology microscopy and scanning electron microscopy. A critical Cl- ion concentration was found to exist(approximately 0.1wt%), above which pitting occurred. The pitting potential decreased with increasing Cl- ion concentration. A UHSMSS specimen tempered at 600°C exhibited a better pitting corrosion resistance than the one tempered at 400°C. The corrosion current density and passive current density of the UHSMSS tempered at 600°C decreased with increasing pH values of the corrosion solution. The pits developed a shallower dish geometry with increasing polarization potential. A lacy cover on the pits of the UHSMSS tempered at 400°C accelerated pitting, whereas corrosion products deposited in the pits of the UHSMSS tempered at 600°C hindered pitting.
基金Local Governmental Foundation of Guizhou province (2142005)
文摘The corrosion behavior of the nitinol alloy was studied in various corrosion media of different Cl^- ion concentrations. The results demonstrate that the Cl^- ion concentration has significant influences on the corrosion behavior of the nitinol alloy. In order to enhance the corrosion resistance, protective films were generated on the surface of the nitinol alloy by means of the electrochemical passivation method, for which five different electrolytic solutions were investigated. The surface analysis indicates full growth of all samples passivated in the different electrolytic solutions with layers, however, showing different morphological features. Without any defects like micro-cracks and pores, the surface of the samples passivated in the molybdate solution turns out smoother and denser than those passivated in other solutions. It is shown that the electro-chemical passivation will reduce Ni content but increase Ti content in the surface, reaching the Mole ratio of Ti:Ni = 9.01:1 on the outermost surface. Potentiodynamic polarization test demonstrates that the samples electrochemically passivated in the molybdate solution present a significant increase in breakdown potential due to titanium enrichment on the outermost surface.
基金supported by the National Natural Science Foundation of China(Grant No.51001106)
文摘In this study, a NiCrAIY + AINiY composite coating was prepared by arc ion plating technique and sub- sequent annealing treatment. Cyclic hot corrosion tests of the composite coating and a reference NiCrAIY coating coated with mixed salts of Na2SO4 + K2SO4 and Na2SO4 + NaC1 were carried out at 700 ℃. The results indicated that the composite coating performed better against the corrosion due to the gradient element distribution in Al-enriched outer layer and Cr-enriched inner layer. The corrosion mechanisms for the two coatings were also discussed.
基金Project supported by the Key Project of National Natural Science Foundation of China (50731007)the National High Technology Research and Development Program of China (2007AA03Z440)
文摘The morphology analysis and electrochemical method were used to study the corrosion behavior of LaFe11.6Si1.4 alloy of copper ion implantation. X-ray photoelectron spectroscopy (XPS) and atomic emission spectroscopy (AES) research results showed that a 15 nm-thick oxide film was formed on the surface of sample, and the copper content reached the highest value at 60 nm with a normal distribution. Immersion experiments indicated that the corrosion happened in the copper-poor zone firstly and a galvanic connection was formed among different zones on the surface due to the inhomogeneous distribution of copper. Electrochemical experiment results showed that the corrosion was serious when the ion acceleration voltage increased, and the high acceleration could reduce the thermodynamic performance of corrosion of LaFe11.6Si1.4 alloy.