Pasteurella multocida(PM)has been infecting a variety of hosts for a long time,causing sustained economic losses worldwide;however,there have been limited studies on its extensive adaptability(Aktories et al.2012).Ana...Pasteurella multocida(PM)has been infecting a variety of hosts for a long time,causing sustained economic losses worldwide;however,there have been limited studies on its extensive adaptability(Aktories et al.2012).Analysis of strains data collected in our laboratory revealed that PM typically acquires foreign genes through transformation and conjugation,rather than transformation and fusion.Integrative and conjugative elements(ICEs)are a crucial mechanism that leads to abrupt changes in niche preferences and enhances environmental adaptability for bacteria,with their number far exceeding the number of plasmids and phages(Wozniak and Waldor 2010;Johnson and Grossman 2015;Botelho and Schulenburg 2021).Previous research has shown that the European bovine-sourced strain Pm36950 contains the experimentally transferable resistant ICEPmu1,which could integrate into the host chromosome or forming a circular intermediate(Michael et al.2012).Additionally,a few studies have suggested that PM strains isolated from European bovine and Asian swine might contain ICEs,but these claims lack experimental verification(Klima et al.2014;Moustafa et al.2015;Kadlec et al.2017;Peng et al.2017;Beker et al.2018;Schink et al.2022).Currently,there is no data available on ICE-carrying PM strains isolated from hosts outside of European cattle or Chinses swine.This letter presents a report on a novel ICE identified in the hypervirulent and multidrug-resistant PM HN141014 strain isolated from Chinese duck.The ICE was specifically analyzed for its resistance genes,transferable capacity and host diversity.展开更多
Bacteria can evolve rapidly by acquiring new traits such as virulence,metabolic properties,and most importantly,antimicrobial resistance,through horizontal gene transfer(HGT).Multidrug resistance in bacteria,especiall...Bacteria can evolve rapidly by acquiring new traits such as virulence,metabolic properties,and most importantly,antimicrobial resistance,through horizontal gene transfer(HGT).Multidrug resistance in bacteria,especially in Gram-negative organisms,has become a global public health threat often through the spread of mobile genetic elements.Conjugation represents a major form of HGT and involves the transfer of DNA from a donor bacterium to a recipient by direct contact.Conjugative plasmids,a major vehicle for the dissemination of antimicrobial resistance,are selfish elements capable of mediating their own transmission through conjugation.To spread to and survive in a new bacterial host,conjugative plasmids have evolved mechanisms to circumvent both host defense systems and compete with co-resident plasmids.Such mechanisms have mostly been studied in model plasmids such as the F plasmid,rather than in conjugative plasmids that confer antimicrobial resistance(AMR)in important human pathogens.A better understanding of these mechanisms is crucial for predicting the flow of antimicrobial resistance-conferring conjugative plasmids among bacterial populations and guiding the rational design of strategies to halt the spread of antimicrobial resistance.Here,we review mechanisms employed by conjugative plasmids that promote their transmission and establishment in Gram-negative bacteria,by following the life cycle of conjugative plasmids.展开更多
Flavobacterium columnare, the etiological agent of colunmaris disease, is one of the most important and widespread bacterial pathogens of freshwater fish. In this study, we constructed two artificial selectable marke...Flavobacterium columnare, the etiological agent of colunmaris disease, is one of the most important and widespread bacterial pathogens of freshwater fish. In this study, we constructed two artificial selectable markers (chloramphenicol and spectinomycin resistance) for gene transfer in F. columnare. These two new artificial selectable markers, which were created by placing the chloramphenicol or spectinomycin resistance gene under the control of the native acs regulatory region of F. columnare, were functional in both F. columnare and Escherichia coli. The integrative/conjugative plasmids constructed by using these markers were introduced into F. columnare G4 via electroporation or conjugation. The integrated plasmid DNA was confirmed by Southern blotting and PCR analysis. These two markers can be employed in future investigations into gene deletion and the pathogenicity of virulence factors in F. columnare.展开更多
Antimicrobial susceptibility test was performed on 57 clinical isolates of P. aeruginosa and 36 clinical isolates of Acinetobacter with 11 antimicrobial agents including getamicin, amikacin, ciprofloxacin, ofloxacin, ...Antimicrobial susceptibility test was performed on 57 clinical isolates of P. aeruginosa and 36 clinical isolates of Acinetobacter with 11 antimicrobial agents including getamicin, amikacin, ciprofloxacin, ofloxacin, fleroxacin, piperacillin, cefotaxime, cefoperazone/sulbactam, ceftazidime, cefoperazone and doxycycline. Transferable drug resistance plasmid carrying rates of these clinical isolates were also studied. On the basis of the in vitro activities, 52.63%(30/57) of the isolated strains of P. aeruginosa were susceptible to antimicrobial agents selected (except doxycycline), 41.67%(15/36) of the isolated strains of Acinetobacter were susceptible to 11 antimicrobial agents. The sensitivity rate of P.aeruginosa and Acinetobacter to antimicrobial agents selected was 70% or greater to all except doxycycline. Furthermore, the sensitivity rate of P.aeruginosa to amikacin ciprofloxacin, ceftazidime, cefoperazone, cefoperazone/sulbactam, and that of Acinetobacter to cefoperazone/sulbactam, amikacin was more than 90%,among them amikacin, cefoperazone/sulbactam being the most effective. Plasmid analysis showed that 15.79%(9/57) P.aeruginosa strains and 13.89%(5/36) Acinetobacter strains carried plasmid. Conjugative plasmid carrying rates of P. aeruginosa strains and Acinetobacter strains were 7.02%(4/57), 13.89%(5/36), respectively. Conjugative plasmid didn′t play an important role in the formation and dissemination of drug resistance of P. aeruginosa and Acinetobacter.展开更多
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c...Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.展开更多
I. INTRODUCTIONIn the preceding paper we have reported that in a forked conjugative thienylpolyenic system with two electron-attracting groups at one end, the structural
In this paper, the following carbonyl-imino bridged compounds and related analogs havebeen synthesized:X= C1, m = 0); and the structural effect of the carbonyl-imino bridges has been studied by means of the UV and oth...In this paper, the following carbonyl-imino bridged compounds and related analogs havebeen synthesized:X= C1, m = 0); and the structural effect of the carbonyl-imino bridges has been studied by means of the UV and other properties of the compounds. A new conception of conjugative segment is put forward. The structural bases for each of the three π-π* bands of (C) are ascertained and verified by modification on structure of segments, such as eliminating, merging, lengthening or shortening of segments. It is demonstrated that both bridges -CO-and -NH- can block the conjugated polarization of the whole molecule so as to form three segments S, M and L of which the λmax each exhibits relative independence. The electronic absorption peaks resulting from different segments can be readily recognized and the existence of each segment can be ascertained. This may provide a new way for structural analysis of bridged compounds.展开更多
The co-occurrence of plasmid-mediated multidrug resistance and hypervirulence in epidemic carbapenem-resistant Klebsiella pneumoniae has emerged as a global public health issue.In this study,an ST23 carbapenem-resista...The co-occurrence of plasmid-mediated multidrug resistance and hypervirulence in epidemic carbapenem-resistant Klebsiella pneumoniae has emerged as a global public health issue.In this study,an ST23 carbapenem-resistant hyper-virulent K.pneumoniae(CR-HvKP)strain VH1-2 was identified from cucumber in China and harbored a novel hybrid plasmid pVH1-2-VIR.The plasmid pVH1-2-VIR carrying both virulence and multidrug-resistance(MDR)genes was likely generated through the recombination of a virulence plasmid and an IncFIIK conjugative MDR plasmid in clinical ST2318622 isolated from a sputum sample.The plasmid pVH1-2-VIR exhibited the capacity for transfer to the clinical ST11 carbapenem-resistant K.pneumoniae(CRKP)strain via conjugation assay.Acquisition of pVH1-2-VIR plasmid directly converted a CRKP into CR-HvKP strain characterized by hypermucoviscosity,heightened virulence for Galleria mellonella larvae,and increased colonization ability in the mouse intestine.The emergence of such a hybrid plasmid may expedite the spread of CR-HvKP strains,posing a significant risk to human health.展开更多
Five homologous series of bifurcate systems of aliphatic and aromatic polyenic cyano and carboxylic compounds have been prepared and studied. The electronic absorption spectra forthe series and the NMR chemical shifts...Five homologous series of bifurcate systems of aliphatic and aromatic polyenic cyano and carboxylic compounds have been prepared and studied. The electronic absorption spectra forthe series and the NMR chemical shifts for the methyl-, methylene- and beta-protons havebeen found to conform very well to the rule of homologous linearity. The mass spectra forthe α-cyano polyenic ester series show strong peaks for the fragments of M-COOEt but noneof M-CN, indicating that the CN group seems to be in stronger conjugation with the poly-enic chain than the COOEt group does. In all the forked series studided, a red shift in electronic spectra is brought about upon the introduction of an electron-attractive branching group, just like the case of introducing an electron-repelling substituent. This has been taken as an indication of the predominance of themolecular integrality over the group characteristics. By means of the method of similar triangles between a homologous line for a linearseries and that for the corresponding forked compounds, the equivalent △Ns for a branching group may be calculated with accuracy. Based on the value of this equivalent, the substituentnature of the structural effect of the branching group has been inferred. The electronic absorption maxima for four series of the forked compounds have been cal-culated by means of the extended homologous equation for the corresponding linear compounds.With an appropriate correction for the positional effect of the substituent equivalent, the cal-culated wavelengths agree generally with experimental data within ± 7nm.展开更多
The global dissemination of antibiotic resistance genes(ARGs),especially via plasmid-mediated horizontal transfer,is becoming a pervasive health threat.While our previous study found that herbicides can accelerate the...The global dissemination of antibiotic resistance genes(ARGs),especially via plasmid-mediated horizontal transfer,is becoming a pervasive health threat.While our previous study found that herbicides can accelerate the horizontal gene transfer(HGT)of ARGs in soil bacteria,the underlying mechanisms by which herbicides promote the HGT of ARGs across and within bacterial genera are still unclear.Here,the underlying mechanism associ-ated with herbicide-promoted HGT was analyzed by detecting intracellular reactive oxygen species(ROS)production,extracellular polymeric substance composition,cell membrane integrity and proton motive force combined with genome-wide RNA sequencing.Exposure to herbicides induced a series of the above bacterial responses to promote HGT except for the ROS response,including compact cell-to-cell contact by enhancing pilus-encoded gene expression and decreasing cell surface charge,increasing cell membrane permeability,and enhancing the proton motive force,providing additional power for DNA uptake.This study provides a mechanistic understanding of the risk of bacterial resistance spread promoted by herbicides,which elucidates a new perspective on nonantibiotic agrochemical acceleration of the HGT of ARGs.展开更多
Seven homologous series p-A=B-C_6H_4(CH=CH)_nX=Y (A=B: NO_2, X=Y: CHO, COMe, CN, NO_2; A=B: CN, X=Y: CHO, CN; A=B: H, X=Y: NO_2) were synthesized, the effect of opposite terminal groups in phenylpolyenic conjugative s...Seven homologous series p-A=B-C_6H_4(CH=CH)_nX=Y (A=B: NO_2, X=Y: CHO, COMe, CN, NO_2; A=B: CN, X=Y: CHO, CN; A=B: H, X=Y: NO_2) were synthesized, the effect of opposite terminal groups in phenylpolyenic conjugative systems has been studied by means of UV, XPS, ^(13) C NMR and quantum chemical calculation. The results show that: 1. There exists the effect of opposite terminal groups exists in phenylpolyenic and other aromatic conjugative systems. 2. When A=B and X=Y are the same, the group (-X=Y) connected at polyenic chain is a terminal group, while the other is an opposite terminal group. When the two groups are different, the one with weaker conjugative power plays the role of the opposite terminal group. 3. The effect of opposite terminal groups increases successively in the order of CN, COMe, CHO, NO_2 and can be quantita- tively described with substitute equivalent △N_s. Theλ_(max) of compound containing an opposite terminal group can be calculated by the homologous equation 10^(-4) =a+b/(1/2)^(2/N'^(-S)_a), most of the calculated values are in agreement with experiment results.展开更多
Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability.The growing research and utilization of novel materials in designing we...Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability.The growing research and utilization of novel materials in designing wearable biosensors have accelerated the development of point-of-care sensing platforms and implantable biomedical devices in human health care.Among numerous potential materials,conjugated polymers(CPs)are emerging as ideal choices for constructing high-performance wearable biosensors because of their outstanding conductive and mechanical properties.Recently,CPs have been extensively incorporated into various wearable biosensors to monitor a range of target biomolecules.However,fabricating highly reliable CP-based wearable biosensors for practical applications remains a significant challenge,necessitating novel developmental strategies for enhancing the viability of such biosensors.Accordingly,this review aims to provide consolidated scientific evidence by summarizing and evaluating recent studies focused on designing and fabricating CP-based wearable biosensors,thereby facilitating future research.Emphasizing the superior properties and benefits of CPs,this review aims to clarify their potential applicability within this field.Furthermore,the fundamentals and main components of CP-based wearable biosensors and their sensing mechanisms are discussed in detail.The recent advancements in CP nanostructures and hybridizations for improved sensing performance,along with recent innovations in next-generation wearable biosensors are highlighted.CPbased wearable biosensors have been—and will continue to be—an ideal platform for developing effective and user-friendly diagnostic technologies for human health monitoring.展开更多
Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safet...Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-Ⅱresponsive organic PTMs was explored, and their photothermal conversion efficiencies(PCEs) still remain relatively low. Herein, donor–acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-Ⅱ window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-Ⅱ absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-Ⅱ light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-Ⅱ window, without any side-effect. Moreover, by combining with PD-1 antibody,the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-Ⅱ window, offering a new horizon in developing radical-characteristic NIR-Ⅱ photothermal materials.展开更多
This study attempts to develop a reproducible thin-film formation technique called vacuum-free(VF)lamination,which transfers thin films using elastomeric polymer-based laminating mediators.Precisely,by controlling the...This study attempts to develop a reproducible thin-film formation technique called vacuum-free(VF)lamination,which transfers thin films using elastomeric polymer-based laminating mediators.Precisely,by controlling the interface characteristics of the mediator based on the work of adhesion,VF lamination is successfully performed for various thicknesses(from 20 to 240 nm)of a conjugated photoactive material composed of poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-bʹ]dithiophene))-alt-(5,5-(1ʹ,3ʹ-di-2-thienyl-5ʹ,7ʹ-bis(2-ethylhexyl)benzo[1ʹ,2ʹ-c:4ʹ,5ʹ-cʹ]dithiophene-4,8-dione)](a polymer donor)and 2,2ʹ-((2Z,2ʹZ)-((12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2ʹʹ,3ʹʹ:4ʹ,5ʹ]thieno[2ʹ,3ʹ:4,5]pyrrolo[3,2-g]thieno[2ʹ,3ʹ:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile(a nonfullerene acceptor).Interestingly,the organic photovoltaic and photodetecting applications,prepared by the VF lamination process,showed superior performance compared to those of devices prepared by conventional spin-coating.This is due to the overturned surface morphology,which led to enhanced charge transport ability and blocking of the externally injected charge.Thus,the reproducible VF lamination process,exploiting an adhesion-based elastomeric polymer mediator,is a promising thin-film formation technique for developing efficient next-generation organic optoelectronic materials consistent with the solution process.展开更多
Ciliates are eukaryotic unicellular organisms with complex morphology and developmental processes,including asexual and sexual processes.Conjugation is a form of sexual process that renews genetic materials.However,vi...Ciliates are eukaryotic unicellular organisms with complex morphology and developmental processes,including asexual and sexual processes.Conjugation is a form of sexual process that renews genetic materials.However,visualizing conjugation in ciliates is a challenge due to the complexity and dynamics of the process,while traditional staining methods are often insufficient for the research.This study introduces a new method for visualizing developmental progression in the nuclei during conjugation using Hoechst33342 staining.It describes how to proceed from cell culture,conjugation induction and synchronization,staining preparation,and observation to statistical analysis.The combination of fluorescent staining with the‘volume-fixing'technique eliminates the fixation and dehydration steps,thus reducing the overall operation time to just 20 minutes.This method offers several advantages over traditional staining techniques for studying the nuclei during conjugation.It improves image quality and workflow efficiency and enables real-time observation of live cell states.Potential solutions to challenges that may arise during experimental procedures are introduced and references and guidelines for cytological research are provided in this paper.展开更多
The emergence and spread of the mobile colistin-resistance gene,mcr-1,and its variants pose achallenge to the use of colistin,a last-resort antibiotic used to treat severe infections caused by extensively drug-resista...The emergence and spread of the mobile colistin-resistance gene,mcr-1,and its variants pose achallenge to the use of colistin,a last-resort antibiotic used to treat severe infections caused by extensively drug-resistant(XDR)Gram-negative pathogens.Antibiotic adjuvants are a promising strategy to enhance the efficacy of colistin against colistin-resistant pathogens;however,few studies have considered the effects of adjuvants on limiting resistance-gene transmission.We found that chelerythrine(4 mg·L^(-1))derived from Macleaya cordata extract,which is used as an animal feed additive,reduced the minimal inhibitory concentration(MIC)of colistin against an mcr-1 positive Escherichia coli(E.coli)strain by 16-fold(from 2.000 to 0.125 mg·L^(-1)).eliminated approximately 10^(4) colony-forming units(CFUs)of an mcr-1-carrying strain in a murine intestinal infection model,and inhibited the conjugation of an mcr-1-bearing plasmid in vitro(by>100-fold)and in a mouse model(by up to 5-fold).A detailed analysis revealed that chelery-thrine binds to phospholipids on bacterial membranes and increases cytoplasmic membrane fluidity,thereby impairing respiration,disrupting proton motive force(PMF),generating reactive oxygen species(ROS),and decreasing intracellular adenosine triphosphate(ATP)levels,which subsequently downregu-lates mcr-1 and conjugation-associated genes.These dual effects of chelerythrine can expand the use of antibiotic adjuvants and may provide a new strategy for circumventing mobile colistin resistance.展开更多
Osteoporosis remains incurable.The most widely used antiresorptive agents,bisphosphonates(BPs),also inhibit bone formation,while the anabolic agent,teriparatide,does not inhibit bone resorption,and thus they have limi...Osteoporosis remains incurable.The most widely used antiresorptive agents,bisphosphonates(BPs),also inhibit bone formation,while the anabolic agent,teriparatide,does not inhibit bone resorption,and thus they have limited efficacy in preventing osteoporotic fractures and cause some side effects.展开更多
Enhancing catalytic activity of multi-enzyme in vitro through substrate channeling effect is promis-ing yet challenging.Herein,conjugated microporous polymers(CMPs)-scaffolded integrated en-zyme cascade systems(I-ECSs...Enhancing catalytic activity of multi-enzyme in vitro through substrate channeling effect is promis-ing yet challenging.Herein,conjugated microporous polymers(CMPs)-scaffolded integrated en-zyme cascade systems(I-ECSs)are constructed through co-entrapping glucose oxidase(GOx)and horseradish peroxidase(HRP),in which hydrogen peroxide(H_(2)O_(2)) is the intermediate product.The interplay of low-resistance mass transfer pathway and appropriate pore wall-H_(2)O_(2) interactions facilitates the directed transfer of H_(2)O_(2),resulting in 2.4-fold and 5.0-fold elevation in catalytic activ-ity compared to free ECSs and separated ECSs,respectively.The substrate channeling effect could be regulated by altering the mass ratio of GOx to HRP.Besides,I-ECSs demonstrate excellent stabili-ties in harsh environments and multiple recycling.展开更多
Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed tha...Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed that the thermal stability can be enhanced by introducing amino groups to form intra/inter-molecular hydrogen bonds, constructing conjugate systems and designing symmetrical structures. This article aims to review the physical and chemical properties of ultra-high temperature heat-resistant energetic compounds and provide valuable theoretical insights for the preparation of ultra-high temperature heatresistant energetic materials. We also analyze the selected 20 heat-resistant energetic materials with decomposition temperatures higher than 350℃, serving as templates for the synthesis of various highperformance heat-resistant energetic materials.展开更多
By using one-dimensional tight-binding model modified to include electron-electric field interaction and electron-electron interaction,we theoretically explore the polarization process of exciton and biexciton in cis-...By using one-dimensional tight-binding model modified to include electron-electric field interaction and electron-electron interaction,we theoretically explore the polarization process of exciton and biexciton in cis-polyacetylene.The dynamical simulation is performed by adopting the non-adiabatic evolution approach.The results show that under the effect of moderate electric field,when the strength of electron-electron interaction is weak,the singlet exciton is stable but its polarization presents obvious oscillation.With the enhancement of interaction,it is dissociated into polaron pairs,the spin-flip of which can be observed through modulating the interaction strength.For the triplet exciton,the strong electron-electron interaction restrains its normal polarization,but it is still stable.In the case of biexciton,the strong electron-electron interaction not only dissociate it,but also flip its charge distribution.The yield of the possible states formed after the dissociation of exciton and biexciton is also calculated.展开更多
基金supported by the earmarked fund for China Agriculture Research System(CARS-42-17)the Sichuan Veterinary Medicine and Drug Innovation Group of China Agricultural Research System(SCCXTD-2021-18)。
文摘Pasteurella multocida(PM)has been infecting a variety of hosts for a long time,causing sustained economic losses worldwide;however,there have been limited studies on its extensive adaptability(Aktories et al.2012).Analysis of strains data collected in our laboratory revealed that PM typically acquires foreign genes through transformation and conjugation,rather than transformation and fusion.Integrative and conjugative elements(ICEs)are a crucial mechanism that leads to abrupt changes in niche preferences and enhances environmental adaptability for bacteria,with their number far exceeding the number of plasmids and phages(Wozniak and Waldor 2010;Johnson and Grossman 2015;Botelho and Schulenburg 2021).Previous research has shown that the European bovine-sourced strain Pm36950 contains the experimentally transferable resistant ICEPmu1,which could integrate into the host chromosome or forming a circular intermediate(Michael et al.2012).Additionally,a few studies have suggested that PM strains isolated from European bovine and Asian swine might contain ICEs,but these claims lack experimental verification(Klima et al.2014;Moustafa et al.2015;Kadlec et al.2017;Peng et al.2017;Beker et al.2018;Schink et al.2022).Currently,there is no data available on ICE-carrying PM strains isolated from hosts outside of European cattle or Chinses swine.This letter presents a report on a novel ICE identified in the hypervirulent and multidrug-resistant PM HN141014 strain isolated from Chinese duck.The ICE was specifically analyzed for its resistance genes,transferable capacity and host diversity.
基金the Wellcome Trust,BBSRC,and the National Natural Science Foundation of China(81802065,102908/Z/13/Z).
文摘Bacteria can evolve rapidly by acquiring new traits such as virulence,metabolic properties,and most importantly,antimicrobial resistance,through horizontal gene transfer(HGT).Multidrug resistance in bacteria,especially in Gram-negative organisms,has become a global public health threat often through the spread of mobile genetic elements.Conjugation represents a major form of HGT and involves the transfer of DNA from a donor bacterium to a recipient by direct contact.Conjugative plasmids,a major vehicle for the dissemination of antimicrobial resistance,are selfish elements capable of mediating their own transmission through conjugation.To spread to and survive in a new bacterial host,conjugative plasmids have evolved mechanisms to circumvent both host defense systems and compete with co-resident plasmids.Such mechanisms have mostly been studied in model plasmids such as the F plasmid,rather than in conjugative plasmids that confer antimicrobial resistance(AMR)in important human pathogens.A better understanding of these mechanisms is crucial for predicting the flow of antimicrobial resistance-conferring conjugative plasmids among bacterial populations and guiding the rational design of strategies to halt the spread of antimicrobial resistance.Here,we review mechanisms employed by conjugative plasmids that promote their transmission and establishment in Gram-negative bacteria,by following the life cycle of conjugative plasmids.
基金Supported by the National Basic Research Program of China(973Program)(No.2009CB118703)
文摘Flavobacterium columnare, the etiological agent of colunmaris disease, is one of the most important and widespread bacterial pathogens of freshwater fish. In this study, we constructed two artificial selectable markers (chloramphenicol and spectinomycin resistance) for gene transfer in F. columnare. These two new artificial selectable markers, which were created by placing the chloramphenicol or spectinomycin resistance gene under the control of the native acs regulatory region of F. columnare, were functional in both F. columnare and Escherichia coli. The integrative/conjugative plasmids constructed by using these markers were introduced into F. columnare G4 via electroporation or conjugation. The integrated plasmid DNA was confirmed by Southern blotting and PCR analysis. These two markers can be employed in future investigations into gene deletion and the pathogenicity of virulence factors in F. columnare.
文摘Antimicrobial susceptibility test was performed on 57 clinical isolates of P. aeruginosa and 36 clinical isolates of Acinetobacter with 11 antimicrobial agents including getamicin, amikacin, ciprofloxacin, ofloxacin, fleroxacin, piperacillin, cefotaxime, cefoperazone/sulbactam, ceftazidime, cefoperazone and doxycycline. Transferable drug resistance plasmid carrying rates of these clinical isolates were also studied. On the basis of the in vitro activities, 52.63%(30/57) of the isolated strains of P. aeruginosa were susceptible to antimicrobial agents selected (except doxycycline), 41.67%(15/36) of the isolated strains of Acinetobacter were susceptible to 11 antimicrobial agents. The sensitivity rate of P.aeruginosa and Acinetobacter to antimicrobial agents selected was 70% or greater to all except doxycycline. Furthermore, the sensitivity rate of P.aeruginosa to amikacin ciprofloxacin, ceftazidime, cefoperazone, cefoperazone/sulbactam, and that of Acinetobacter to cefoperazone/sulbactam, amikacin was more than 90%,among them amikacin, cefoperazone/sulbactam being the most effective. Plasmid analysis showed that 15.79%(9/57) P.aeruginosa strains and 13.89%(5/36) Acinetobacter strains carried plasmid. Conjugative plasmid carrying rates of P. aeruginosa strains and Acinetobacter strains were 7.02%(4/57), 13.89%(5/36), respectively. Conjugative plasmid didn′t play an important role in the formation and dissemination of drug resistance of P. aeruginosa and Acinetobacter.
基金financially supported by the Sichuan Science and Technology Program(2022YFS0025 and 2024YFFK0133)supported by the“Fundamental Research Funds for the Central Universities of China.”。
文摘Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.
文摘I. INTRODUCTIONIn the preceding paper we have reported that in a forked conjugative thienylpolyenic system with two electron-attracting groups at one end, the structural
基金Project supported by the National Natural Science Foundation of China.
文摘In this paper, the following carbonyl-imino bridged compounds and related analogs havebeen synthesized:X= C1, m = 0); and the structural effect of the carbonyl-imino bridges has been studied by means of the UV and other properties of the compounds. A new conception of conjugative segment is put forward. The structural bases for each of the three π-π* bands of (C) are ascertained and verified by modification on structure of segments, such as eliminating, merging, lengthening or shortening of segments. It is demonstrated that both bridges -CO-and -NH- can block the conjugated polarization of the whole molecule so as to form three segments S, M and L of which the λmax each exhibits relative independence. The electronic absorption peaks resulting from different segments can be readily recognized and the existence of each segment can be ascertained. This may provide a new way for structural analysis of bridged compounds.
基金supported in part by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(32121004)Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2019BT02N054)+4 种基金Laboratory of Lingnan Modern Agriculture Project(NT2021006)Guangdong Major Project of Basic and Applied Basic Research(grant 2020B0301030007)Innovation Team Project of Guangdong University(2019KCXTD001),the 111 Project(grant D20008)Natural Science Foundation of Shandong Province of China(ZR2022MC001)the Scientific and Technological Projects of Qingdao(19‐6‐1‐94‐nsh).
文摘The co-occurrence of plasmid-mediated multidrug resistance and hypervirulence in epidemic carbapenem-resistant Klebsiella pneumoniae has emerged as a global public health issue.In this study,an ST23 carbapenem-resistant hyper-virulent K.pneumoniae(CR-HvKP)strain VH1-2 was identified from cucumber in China and harbored a novel hybrid plasmid pVH1-2-VIR.The plasmid pVH1-2-VIR carrying both virulence and multidrug-resistance(MDR)genes was likely generated through the recombination of a virulence plasmid and an IncFIIK conjugative MDR plasmid in clinical ST2318622 isolated from a sputum sample.The plasmid pVH1-2-VIR exhibited the capacity for transfer to the clinical ST11 carbapenem-resistant K.pneumoniae(CRKP)strain via conjugation assay.Acquisition of pVH1-2-VIR plasmid directly converted a CRKP into CR-HvKP strain characterized by hypermucoviscosity,heightened virulence for Galleria mellonella larvae,and increased colonization ability in the mouse intestine.The emergence of such a hybrid plasmid may expedite the spread of CR-HvKP strains,posing a significant risk to human health.
文摘Five homologous series of bifurcate systems of aliphatic and aromatic polyenic cyano and carboxylic compounds have been prepared and studied. The electronic absorption spectra forthe series and the NMR chemical shifts for the methyl-, methylene- and beta-protons havebeen found to conform very well to the rule of homologous linearity. The mass spectra forthe α-cyano polyenic ester series show strong peaks for the fragments of M-COOEt but noneof M-CN, indicating that the CN group seems to be in stronger conjugation with the poly-enic chain than the COOEt group does. In all the forked series studided, a red shift in electronic spectra is brought about upon the introduction of an electron-attractive branching group, just like the case of introducing an electron-repelling substituent. This has been taken as an indication of the predominance of themolecular integrality over the group characteristics. By means of the method of similar triangles between a homologous line for a linearseries and that for the corresponding forked compounds, the equivalent △Ns for a branching group may be calculated with accuracy. Based on the value of this equivalent, the substituentnature of the structural effect of the branching group has been inferred. The electronic absorption maxima for four series of the forked compounds have been cal-culated by means of the extended homologous equation for the corresponding linear compounds.With an appropriate correction for the positional effect of the substituent equivalent, the cal-culated wavelengths agree generally with experimental data within ± 7nm.
基金This work was supported by the National Natural Science Foundation of China(31972521)the Fujian Agriculture and Forest University Program for Distinguished Young Scholar(No.XJQ2017001).
文摘The global dissemination of antibiotic resistance genes(ARGs),especially via plasmid-mediated horizontal transfer,is becoming a pervasive health threat.While our previous study found that herbicides can accelerate the horizontal gene transfer(HGT)of ARGs in soil bacteria,the underlying mechanisms by which herbicides promote the HGT of ARGs across and within bacterial genera are still unclear.Here,the underlying mechanism associ-ated with herbicide-promoted HGT was analyzed by detecting intracellular reactive oxygen species(ROS)production,extracellular polymeric substance composition,cell membrane integrity and proton motive force combined with genome-wide RNA sequencing.Exposure to herbicides induced a series of the above bacterial responses to promote HGT except for the ROS response,including compact cell-to-cell contact by enhancing pilus-encoded gene expression and decreasing cell surface charge,increasing cell membrane permeability,and enhancing the proton motive force,providing additional power for DNA uptake.This study provides a mechanistic understanding of the risk of bacterial resistance spread promoted by herbicides,which elucidates a new perspective on nonantibiotic agrochemical acceleration of the HGT of ARGs.
文摘Seven homologous series p-A=B-C_6H_4(CH=CH)_nX=Y (A=B: NO_2, X=Y: CHO, COMe, CN, NO_2; A=B: CN, X=Y: CHO, CN; A=B: H, X=Y: NO_2) were synthesized, the effect of opposite terminal groups in phenylpolyenic conjugative systems has been studied by means of UV, XPS, ^(13) C NMR and quantum chemical calculation. The results show that: 1. There exists the effect of opposite terminal groups exists in phenylpolyenic and other aromatic conjugative systems. 2. When A=B and X=Y are the same, the group (-X=Y) connected at polyenic chain is a terminal group, while the other is an opposite terminal group. When the two groups are different, the one with weaker conjugative power plays the role of the opposite terminal group. 3. The effect of opposite terminal groups increases successively in the order of CN, COMe, CHO, NO_2 and can be quantita- tively described with substitute equivalent △N_s. Theλ_(max) of compound containing an opposite terminal group can be calculated by the homologous equation 10^(-4) =a+b/(1/2)^(2/N'^(-S)_a), most of the calculated values are in agreement with experiment results.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(No.NRF-2021R1A2C2004109)the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(No.P0020612,2022 The Competency Development Program for Industry Specialist).
文摘Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability.The growing research and utilization of novel materials in designing wearable biosensors have accelerated the development of point-of-care sensing platforms and implantable biomedical devices in human health care.Among numerous potential materials,conjugated polymers(CPs)are emerging as ideal choices for constructing high-performance wearable biosensors because of their outstanding conductive and mechanical properties.Recently,CPs have been extensively incorporated into various wearable biosensors to monitor a range of target biomolecules.However,fabricating highly reliable CP-based wearable biosensors for practical applications remains a significant challenge,necessitating novel developmental strategies for enhancing the viability of such biosensors.Accordingly,this review aims to provide consolidated scientific evidence by summarizing and evaluating recent studies focused on designing and fabricating CP-based wearable biosensors,thereby facilitating future research.Emphasizing the superior properties and benefits of CPs,this review aims to clarify their potential applicability within this field.Furthermore,the fundamentals and main components of CP-based wearable biosensors and their sensing mechanisms are discussed in detail.The recent advancements in CP nanostructures and hybridizations for improved sensing performance,along with recent innovations in next-generation wearable biosensors are highlighted.CPbased wearable biosensors have been—and will continue to be—an ideal platform for developing effective and user-friendly diagnostic technologies for human health monitoring.
基金The work was financially supported by the National Natural Science Foundation of China(No.52173135,22207024)Jiangsu Specially Appointed Professorship,Leading Talents of Innovation and Entrepreneurship of Gusu(ZXL2022496)the Suzhou Science and Technology Program(SKY2022039).
文摘Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-Ⅱresponsive organic PTMs was explored, and their photothermal conversion efficiencies(PCEs) still remain relatively low. Herein, donor–acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-Ⅱ window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-Ⅱ absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-Ⅱ light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-Ⅱ window, without any side-effect. Moreover, by combining with PD-1 antibody,the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-Ⅱ window, offering a new horizon in developing radical-characteristic NIR-Ⅱ photothermal materials.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Science,ICT (MSIT) (Grant Nos.2023R1A2C2008021 and RS-2023-00217270)supported by the Technology Innovation Program (Grant No.20017439,“Development of manufacturing process technique on high-speed signal transmission line for 6G device,”and Grant No.20021915,“Development on Nanocomposite Material of Optical Film[GPa]for Foldable Devices”)funded by the Ministry of Trade,Industry&Energy (MOTIE,Korea).
文摘This study attempts to develop a reproducible thin-film formation technique called vacuum-free(VF)lamination,which transfers thin films using elastomeric polymer-based laminating mediators.Precisely,by controlling the interface characteristics of the mediator based on the work of adhesion,VF lamination is successfully performed for various thicknesses(from 20 to 240 nm)of a conjugated photoactive material composed of poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-bʹ]dithiophene))-alt-(5,5-(1ʹ,3ʹ-di-2-thienyl-5ʹ,7ʹ-bis(2-ethylhexyl)benzo[1ʹ,2ʹ-c:4ʹ,5ʹ-cʹ]dithiophene-4,8-dione)](a polymer donor)and 2,2ʹ-((2Z,2ʹZ)-((12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2ʹʹ,3ʹʹ:4ʹ,5ʹ]thieno[2ʹ,3ʹ:4,5]pyrrolo[3,2-g]thieno[2ʹ,3ʹ:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile(a nonfullerene acceptor).Interestingly,the organic photovoltaic and photodetecting applications,prepared by the VF lamination process,showed superior performance compared to those of devices prepared by conventional spin-coating.This is due to the overturned surface morphology,which led to enhanced charge transport ability and blocking of the externally injected charge.Thus,the reproducible VF lamination process,exploiting an adhesion-based elastomeric polymer mediator,is a promising thin-film formation technique for developing efficient next-generation organic optoelectronic materials consistent with the solution process.
基金supported by the National Natural Science Foundation of China(No.32270558)。
文摘Ciliates are eukaryotic unicellular organisms with complex morphology and developmental processes,including asexual and sexual processes.Conjugation is a form of sexual process that renews genetic materials.However,visualizing conjugation in ciliates is a challenge due to the complexity and dynamics of the process,while traditional staining methods are often insufficient for the research.This study introduces a new method for visualizing developmental progression in the nuclei during conjugation using Hoechst33342 staining.It describes how to proceed from cell culture,conjugation induction and synchronization,staining preparation,and observation to statistical analysis.The combination of fluorescent staining with the‘volume-fixing'technique eliminates the fixation and dehydration steps,thus reducing the overall operation time to just 20 minutes.This method offers several advantages over traditional staining techniques for studying the nuclei during conjugation.It improves image quality and workflow efficiency and enables real-time observation of live cell states.Potential solutions to challenges that may arise during experimental procedures are introduced and references and guidelines for cytological research are provided in this paper.
基金grants from the Laboratory of Lingnan Modern Agriculture Project(NT2021006 to Yang Wang and Jianzhong Shen)the National Natural Science Foundation of China(81861138051 and 81991535 to Yang Wang and Congming Wu).
文摘The emergence and spread of the mobile colistin-resistance gene,mcr-1,and its variants pose achallenge to the use of colistin,a last-resort antibiotic used to treat severe infections caused by extensively drug-resistant(XDR)Gram-negative pathogens.Antibiotic adjuvants are a promising strategy to enhance the efficacy of colistin against colistin-resistant pathogens;however,few studies have considered the effects of adjuvants on limiting resistance-gene transmission.We found that chelerythrine(4 mg·L^(-1))derived from Macleaya cordata extract,which is used as an animal feed additive,reduced the minimal inhibitory concentration(MIC)of colistin against an mcr-1 positive Escherichia coli(E.coli)strain by 16-fold(from 2.000 to 0.125 mg·L^(-1)).eliminated approximately 10^(4) colony-forming units(CFUs)of an mcr-1-carrying strain in a murine intestinal infection model,and inhibited the conjugation of an mcr-1-bearing plasmid in vitro(by>100-fold)and in a mouse model(by up to 5-fold).A detailed analysis revealed that chelery-thrine binds to phospholipids on bacterial membranes and increases cytoplasmic membrane fluidity,thereby impairing respiration,disrupting proton motive force(PMF),generating reactive oxygen species(ROS),and decreasing intracellular adenosine triphosphate(ATP)levels,which subsequently downregu-lates mcr-1 and conjugation-associated genes.These dual effects of chelerythrine can expand the use of antibiotic adjuvants and may provide a new strategy for circumventing mobile colistin resistance.
基金funded by National Institutes of Health,National Institute on Aging,grant numbers,R01AG076731,R01AG049994National Institute for Arthritis and Musculoskeletal and Skin Diseases,R01AR043510,and P30 AR069655。
文摘Osteoporosis remains incurable.The most widely used antiresorptive agents,bisphosphonates(BPs),also inhibit bone formation,while the anabolic agent,teriparatide,does not inhibit bone resorption,and thus they have limited efficacy in preventing osteoporotic fractures and cause some side effects.
文摘Enhancing catalytic activity of multi-enzyme in vitro through substrate channeling effect is promis-ing yet challenging.Herein,conjugated microporous polymers(CMPs)-scaffolded integrated en-zyme cascade systems(I-ECSs)are constructed through co-entrapping glucose oxidase(GOx)and horseradish peroxidase(HRP),in which hydrogen peroxide(H_(2)O_(2)) is the intermediate product.The interplay of low-resistance mass transfer pathway and appropriate pore wall-H_(2)O_(2) interactions facilitates the directed transfer of H_(2)O_(2),resulting in 2.4-fold and 5.0-fold elevation in catalytic activ-ity compared to free ECSs and separated ECSs,respectively.The substrate channeling effect could be regulated by altering the mass ratio of GOx to HRP.Besides,I-ECSs demonstrate excellent stabili-ties in harsh environments and multiple recycling.
基金supported by the National Natural Science Foundation of China(Grant Nos.21975127,22105102,and 22135003)Young Elite Scientist Sponsorship Program by CAST(Grant No.YESS20210074)the Fundamental Research Funds for the Central Universities(Grant No.30921011204)。
文摘Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed that the thermal stability can be enhanced by introducing amino groups to form intra/inter-molecular hydrogen bonds, constructing conjugate systems and designing symmetrical structures. This article aims to review the physical and chemical properties of ultra-high temperature heat-resistant energetic compounds and provide valuable theoretical insights for the preparation of ultra-high temperature heatresistant energetic materials. We also analyze the selected 20 heat-resistant energetic materials with decomposition temperatures higher than 350℃, serving as templates for the synthesis of various highperformance heat-resistant energetic materials.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020MA070).
文摘By using one-dimensional tight-binding model modified to include electron-electric field interaction and electron-electron interaction,we theoretically explore the polarization process of exciton and biexciton in cis-polyacetylene.The dynamical simulation is performed by adopting the non-adiabatic evolution approach.The results show that under the effect of moderate electric field,when the strength of electron-electron interaction is weak,the singlet exciton is stable but its polarization presents obvious oscillation.With the enhancement of interaction,it is dissociated into polaron pairs,the spin-flip of which can be observed through modulating the interaction strength.For the triplet exciton,the strong electron-electron interaction restrains its normal polarization,but it is still stable.In the case of biexciton,the strong electron-electron interaction not only dissociate it,but also flip its charge distribution.The yield of the possible states formed after the dissociation of exciton and biexciton is also calculated.