面对居民日益增长的生活热水和电能需求,光伏/光热(photovoltaic/thermal,PV/T)技术的应用可以降低建筑运行时的能源消耗。本文介绍了一种太阳能PV/T光储直驱热电联产(combined heat and power,CHP)系统,为了减少系统运行过程中的能量损...面对居民日益增长的生活热水和电能需求,光伏/光热(photovoltaic/thermal,PV/T)技术的应用可以降低建筑运行时的能源消耗。本文介绍了一种太阳能PV/T光储直驱热电联产(combined heat and power,CHP)系统,为了减少系统运行过程中的能量损失,采用直流压缩机和储能电池,并在兰州地区对系统的运行性能开展了实验测试。研究结果表明,PV/T系统的光伏板温度相比传统PV组件温度平均降低12.26℃,平均发电效率相对提升8.1%。在将24.4~27.2℃的水加热到50.1~50.7℃的过程中,平均性能系数(coefficient of performance,COP)可达到5.48,相比传统空气源热泵热水器提高82.1%~106.8%。平均集热效率和综合效率分别为37.30%和71.24%,PV/T系统的发电量和耗电量分别为3.33kWh和1.69kWh,发电量相比PV系统提高5.7%。太阳能PV/T光储直驱热电联产系统可以减少建筑部门的能源消耗,并提升PV/T系统的发电效率和综合效率,在晴天条件下可以实现离网运行。展开更多
针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进IN...针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进INFO-Bi-LSTM模型)。采用Circle混沌映射和反向学习产生高质量初始化种群,引入自适应t分布提升INFO算法跳出局部最优解和全局搜索的能力。选取改进INFO-Bi-LSTM模型和多种预测模型对炉内外联合脱硫过程中4种典型工况下的SO_(2)排放质量浓度进行预测,将预测结果进行验证对比。结果表明:改进INFO算法的寻优能力得到提升,并且改进INFO-Bi-LSTM模型精度更高,更加适用于SO_(2)排放质量浓度的预测,可为变工况下的脱硫控制提供控制理论支撑。展开更多
文摘面对居民日益增长的生活热水和电能需求,光伏/光热(photovoltaic/thermal,PV/T)技术的应用可以降低建筑运行时的能源消耗。本文介绍了一种太阳能PV/T光储直驱热电联产(combined heat and power,CHP)系统,为了减少系统运行过程中的能量损失,采用直流压缩机和储能电池,并在兰州地区对系统的运行性能开展了实验测试。研究结果表明,PV/T系统的光伏板温度相比传统PV组件温度平均降低12.26℃,平均发电效率相对提升8.1%。在将24.4~27.2℃的水加热到50.1~50.7℃的过程中,平均性能系数(coefficient of performance,COP)可达到5.48,相比传统空气源热泵热水器提高82.1%~106.8%。平均集热效率和综合效率分别为37.30%和71.24%,PV/T系统的发电量和耗电量分别为3.33kWh和1.69kWh,发电量相比PV系统提高5.7%。太阳能PV/T光储直驱热电联产系统可以减少建筑部门的能源消耗,并提升PV/T系统的发电效率和综合效率,在晴天条件下可以实现离网运行。
文摘针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进INFO-Bi-LSTM模型)。采用Circle混沌映射和反向学习产生高质量初始化种群,引入自适应t分布提升INFO算法跳出局部最优解和全局搜索的能力。选取改进INFO-Bi-LSTM模型和多种预测模型对炉内外联合脱硫过程中4种典型工况下的SO_(2)排放质量浓度进行预测,将预测结果进行验证对比。结果表明:改进INFO算法的寻优能力得到提升,并且改进INFO-Bi-LSTM模型精度更高,更加适用于SO_(2)排放质量浓度的预测,可为变工况下的脱硫控制提供控制理论支撑。