To study the formation process of feldspathic sandstone and sand compound soil in the Mu Us Desert,1∶ 1,1∶ 2 and 1∶ 5 ratios of feldspathic sandstone and sand were mixed to obtain compound soil to plant crops,and a...To study the formation process of feldspathic sandstone and sand compound soil in the Mu Us Desert,1∶ 1,1∶ 2 and 1∶ 5 ratios of feldspathic sandstone and sand were mixed to obtain compound soil to plant crops,and analyze the rules of changes in water-stable aggregates of the compound soil among the 4 years crops growing process. The results showed,before crop planting,the order of mass percent of> 0. 25 mm and 0. 25-2. 00 mm water-stable aggregates in three kinds of compound soil was 1∶ 1 > 1∶ 2 > 1∶ 5,showing that the overall content was low; the mass percent of > 0. 25 mm water-stable aggregates remained at 18. 38%-28. 22%; the mass percent of 0. 25-0. 50 mm,0. 50-2. 00 mm,2. 00-5. 00 mm,and > 5. 00 mm water-stable aggregates was close with each other in each kind of compound soil. After4 years of planting,the mass percent of > 0. 25 mm water-stable aggregates in 1∶ 2 compound soil increased significantly and exceeded other2 kinds of compound soil,reached 32. 34%; the main components of > 0. 25 mm water stable aggregates in 1∶ 1,1∶ 2,and 1∶ 5 compound soil were 0. 25-0. 50 mm( 53. 54%),0. 25-0. 50 mm( 59. 43%),0. 05-2. 00 mm( 52. 16%),aggregates; 0. 25-2. 00 mm aggregates increased significantly in all three kinds of compound soil,with the highest increase in 1∶ 2 compound soil; the organic matters of 1∶ 2 compound soil were significantly correlated with 0. 25-0. 50 mm and 0. 25-2. 00 mm water-stable aggregates. The results showed that the ratio of 0. 25-2. 00 mm aggregates in the three kinds of compound soil was increased after 4 years of crop planting and 1∶ 2 compound soil was most favorable for the formation of aggregates.展开更多
Photodegradation ofpentachlorophenol (PCP) and p-nitrophenol (PNP) in soil was carried out in a designed rotary reactor, which can provide the soil particles with continually uniform irradiation, and on a series o...Photodegradation ofpentachlorophenol (PCP) and p-nitrophenol (PNP) in soil was carried out in a designed rotary reactor, which can provide the soil particles with continually uniform irradiation, and on a series of thin soil layers. TiO2, as a kind of environmental friendly photocatalyst, was introduced to the soil to enhance the processes. Compared with that on the soil layers, photodegradation of PCP at initial concentration of 60 mg/kg was improved dramatically in the rotary reactor no matter whether TiO2 was added, with an increase of 3.0 times in the apparent first-order rate constants. The addition of 1 wt% TiO2 furthered the improvement by 1.4 times. Without addition of TiO2, PNP (initial concentration of 60 mg/kg) photodegradation rate in the rotary reactor was similar to that on the soil layers. When 1 wt% additional TiO2 was added, PNP photodegradation was enhanced obviously, and the enhancement in the rotary reactor was 2 times of that on the soil layers, which may be attributed to the higher frequency of the contact between PNP on soil particles and the photocatalyst. The effect of soil pH and initial concentrations of the target compounds on the photodegradation in the rotary reactor was investigated. The order of the degradation rate at different soil pH was relative to the aggregation of soil particles during mixing in the rotary reactor. Photodegradation of PCP and PNP at different initial concentrations showed that addition of TiO2 to enhance the photodegradation was more suitable for contaminated soil with higher concentration of PCP, while was effective for contaminated soil at each PNP concentration tested in our study.展开更多
Soil erosion is one of the most serious environmental issues constraining the sustainable development of human society and economies.Soil compound erosion is the result of the alternation or interaction between two or...Soil erosion is one of the most serious environmental issues constraining the sustainable development of human society and economies.Soil compound erosion is the result of the alternation or interaction between two or more erosion forces.In recent years,fluctuations and extreme changes in climatic factors(air temperature,precipitation,wind speed,etc.)have led to an increase in the intensity and extent of compound erosion,which is increasingly considered in soil erosion research.First,depending on the involvement of gravity,compound erosion process can be divided into compound erosion with and without gravity.We systematically summarized the research on the mechanisms and processes of alternating or interacting soil erosion forces(wind,water,and freeze-thaw)considering different combinations,combed the characteristics of compound erosion in three typical regions,namely,high-elevation areas,high-latitude areas,and dry and wet transition regions,and reviewed soil compound erosion research methods,such as station observations,simulation experiments,prediction models,and artificial neural networks.The soil erosion model of wind,water,and freeze-thaw interaction is the most significant method for quantifying and predicting compound erosion.Furthermore,it is proposed that there are several issues such as unclear internal mechanisms,lack of comprehensive prediction models,and insufficient scale conversion methods in soil compound erosion research.It is also suggested that future soil compound erosion mechanism research should prioritize the coupling of compound erosion forces and climate change.展开更多
By means of both pot and field tests,this paper studied the contents of Cd,Pb,Cu,Zn and As and their ecological effects on plant-soil system.in tissues of crops and soil microorganisms.It was found that there exist sy...By means of both pot and field tests,this paper studied the contents of Cd,Pb,Cu,Zn and As and their ecological effects on plant-soil system.in tissues of crops and soil microorganisms.It was found that there exist synergistic effect among these five elements,especially for Cd in combination.The reclaniation of soil polluted by these elements in combination is rather difficult to be carried out.The distinctive ecological and chemical behaviors between Cd and As make various reclamation measures less applicable,and thus,further research measures are necessary.展开更多
d and As both have harmful effects on the growth,development and seed germination of alfalfa, especially in such a condition as the coexistence of Cd and As in soil environment The research using the pot-culture imita...d and As both have harmful effects on the growth,development and seed germination of alfalfa, especially in such a condition as the coexistence of Cd and As in soil environment The research using the pot-culture imitative method first found that if soil was simultaneously polluted by Cd and As,function of alfalfa absorbing Cd from soil may be promoted because of the existence of As,in conversely,Cd may inhibit alfalfa plant from absorbing As It was also found that secon- dary ecological effects were most likely to be brought out due to the coexistence of Cd and As. For example,alfalfa is passive to excessively absorb Cu and Pb .The harmful effects undoubtedly intensi- fy the contamination of alfalfa, The results showed that the mechanism of the interaction among Cd,As,Pb and Cu in soil-alfalfa ecosystems is very complicated.展开更多
Forty-six candidate phenol/benzoate degrading-iron reducing bacteria were isolated from long term irrigated tropical paddy soils by enrichment procedures.Pure cultures and some prepared mixed cultures were examined fo...Forty-six candidate phenol/benzoate degrading-iron reducing bacteria were isolated from long term irrigated tropical paddy soils by enrichment procedures.Pure cultures and some prepared mixed cultures were examined for ferric oxide reduction and phenol/benzoate degradation.All the isolates were iron reducers,but only 56.5%could couple iron reduction to phenol and/or benzoate degradation,as evidenced by depletion of phenol and benzoate after one week incubation.Analysis of degradative capability using Biolog...展开更多
The contaminants of the ground are potentially harmful agents and when they are released in this medium, their persistence becomes an important concern. Because of the expressed interest, a certain number of pesticide...The contaminants of the ground are potentially harmful agents and when they are released in this medium, their persistence becomes an important concern. Because of the expressed interest, a certain number of pesticides and important chemicals and their toxicity are described in this article. The studies went on the determination of the concentration, the lethal amount of the organochlorinated compounds, chemical organophosphates, carbamates and compounds. One summer recorded 3 pesticides in 5 samples of the grounds of Sikasso and Segou (Mali). Their concentration varies from 20 (atrazine) with 45 g/kg of ground. The lethal amounts of the revealed poisons variable from 338 for phtalates to 28.710 mg/kg for hexane (alkane) thus evaluate their impact on the food chain. Organophosphates and the carbamates (insecticidal) involve a reduction of 34.2% of the number of Cyprinus carpio of fresh water. The atrazine contaminates drinking water, but the diuron modifies the behavior and the reproduction of fish by deteriorating their system of olfactive perception of natural substances. Important mortalities of birds are noted around the corn fields of Bougouni treated by the carbofuran. The pesticides involve at the man a reduction in fruitfulness, an increase in the risk of miscarriage of premature birth, congenital malformations and cancers.展开更多
Effects of two kinds of magnesium compound with fertilizer on Daylily (Hemerocallis citrina Baroni) growth, yield, and soil nutrients in red soil were studied. The results indicated that significant effects of magne...Effects of two kinds of magnesium compound with fertilizer on Daylily (Hemerocallis citrina Baroni) growth, yield, and soil nutrients in red soil were studied. The results indicated that significant effects of magnesium applied to soils were observed in increasing Daylily (Hemerocallis citrina Baroni) yield, improving its growth, and strengthening its antivirus property as well as increasing the amount of exchangeable Mg, N, P, and K in red soil. In particular, the effects of magnesium compound fertilizer Ⅱ (MCF2) with higher Mg content were better than that of the others, which increased Daylily (Hemerocallis citrina Baroni) yield by 57.4, 32.8, and 14.5% compared to that of control treatment (CK), chemical fertilizer with nitrogen, phosphorus, potassium treatment (CF), and magnesium compound fertilizer Ⅰ treatment (MCF1) with lower Mg content. It increased soil Alkali N, available P, exchangeable K, and exchangeable Mg by 94.9, 46.5, 31.1, and 35.3%, respectively, compared with that of CK treatment. Therefore, the application of magnesium compound with fertilizer is an optimum method for improving red soil quality.展开更多
Soil organic matter(SOM)is the predominant component for sorption of hydrophobic organic compouds in soil and sorption by SOM ultimately affects chemical fate and availability in soil,and the degree of remedia- tion s...Soil organic matter(SOM)is the predominant component for sorption of hydrophobic organic compouds in soil and sorption by SOM ultimately affects chemical fate and availability in soil,and the degree of remedia- tion success of contaminated soils. This paper summarizes the latest development on sorption of organic com- pounds in soil (natural) organic matter,addresses four sorption mechanisms: surface adsorption,solid - phase Partitioning,dual-mode sorption,and fixed-pore sorption model,and presents future research directions as well.展开更多
The anthill soil is used by hypertensive elderly and teenagers from Oshikoto region (Namibia) and many of them testified stabilization of their blood pressure to normal after consuming the anthill soil-derived aqueous...The anthill soil is used by hypertensive elderly and teenagers from Oshikoto region (Namibia) and many of them testified stabilization of their blood pressure to normal after consuming the anthill soil-derived aqueous extracts. This study therefore investigated and/or assessed the physicochemical parameters, the contents of some metal(loid)s (and their associated potential health risks) and the qualitative composition of bioactive compounds of this anthill soil. The homogenous soil sample collected from various anthill soils in the Oshikoto region was used to obtain the measurements of physiochemical parameters. The elemental contents were determined (using an Inductively Coupled Plasma Optical Emission Spectrophotometer) after acid digestion in accordance with the EPA method 350B and their potential health risk assessments were performed. Methanol, aqueous methanol, and aqueous-based extracts were generated via maceration extraction process prior to the screening of bioactive compounds using standard diagnostic assays. The oxidation reduction potential (164.4 ± 16.6 mV) was the only physicochemical parameter whose value was within the World Health Organization limits for drinking water whereas, total dissolved solids (23 ± 5.5 mg/L), electrical conductivity (44 ± 10.1 uS/cm) and pH (5.35 ± 0.33) were out of specifications. Phenolic compounds, flavonoids, terpenoids, and cardiac glycosides were present in anthill soil (with respect to the extractants used) to which its antihypertensive properties can be attributed in addition to some of the studied mineral components. With respect to the pH, TDS and EC, and the contents of most metal(loid)s in relation to their health risk assessment values, the results suggest that aqueous extracts derived from this anthill soil can be deemed unsuitable for human consumption.展开更多
基金Supported by Special Project of Public Welfare Industry of Ministry of Land and Resources(201411008)
文摘To study the formation process of feldspathic sandstone and sand compound soil in the Mu Us Desert,1∶ 1,1∶ 2 and 1∶ 5 ratios of feldspathic sandstone and sand were mixed to obtain compound soil to plant crops,and analyze the rules of changes in water-stable aggregates of the compound soil among the 4 years crops growing process. The results showed,before crop planting,the order of mass percent of> 0. 25 mm and 0. 25-2. 00 mm water-stable aggregates in three kinds of compound soil was 1∶ 1 > 1∶ 2 > 1∶ 5,showing that the overall content was low; the mass percent of > 0. 25 mm water-stable aggregates remained at 18. 38%-28. 22%; the mass percent of 0. 25-0. 50 mm,0. 50-2. 00 mm,2. 00-5. 00 mm,and > 5. 00 mm water-stable aggregates was close with each other in each kind of compound soil. After4 years of planting,the mass percent of > 0. 25 mm water-stable aggregates in 1∶ 2 compound soil increased significantly and exceeded other2 kinds of compound soil,reached 32. 34%; the main components of > 0. 25 mm water stable aggregates in 1∶ 1,1∶ 2,and 1∶ 5 compound soil were 0. 25-0. 50 mm( 53. 54%),0. 25-0. 50 mm( 59. 43%),0. 05-2. 00 mm( 52. 16%),aggregates; 0. 25-2. 00 mm aggregates increased significantly in all three kinds of compound soil,with the highest increase in 1∶ 2 compound soil; the organic matters of 1∶ 2 compound soil were significantly correlated with 0. 25-0. 50 mm and 0. 25-2. 00 mm water-stable aggregates. The results showed that the ratio of 0. 25-2. 00 mm aggregates in the three kinds of compound soil was increased after 4 years of crop planting and 1∶ 2 compound soil was most favorable for the formation of aggregates.
基金The National Basic Research Program of China (No. 2004CB418504 2003CB415006)
文摘Photodegradation ofpentachlorophenol (PCP) and p-nitrophenol (PNP) in soil was carried out in a designed rotary reactor, which can provide the soil particles with continually uniform irradiation, and on a series of thin soil layers. TiO2, as a kind of environmental friendly photocatalyst, was introduced to the soil to enhance the processes. Compared with that on the soil layers, photodegradation of PCP at initial concentration of 60 mg/kg was improved dramatically in the rotary reactor no matter whether TiO2 was added, with an increase of 3.0 times in the apparent first-order rate constants. The addition of 1 wt% TiO2 furthered the improvement by 1.4 times. Without addition of TiO2, PNP (initial concentration of 60 mg/kg) photodegradation rate in the rotary reactor was similar to that on the soil layers. When 1 wt% additional TiO2 was added, PNP photodegradation was enhanced obviously, and the enhancement in the rotary reactor was 2 times of that on the soil layers, which may be attributed to the higher frequency of the contact between PNP on soil particles and the photocatalyst. The effect of soil pH and initial concentrations of the target compounds on the photodegradation in the rotary reactor was investigated. The order of the degradation rate at different soil pH was relative to the aggregation of soil particles during mixing in the rotary reactor. Photodegradation of PCP and PNP at different initial concentrations showed that addition of TiO2 to enhance the photodegradation was more suitable for contaminated soil with higher concentration of PCP, while was effective for contaminated soil at each PNP concentration tested in our study.
基金supported by the key research and development and transformation project of Qinghai Province,China(2022-SF-173)the Second Tibetan Plateau Scientific Expedition and Research Program,China(2019QZKK0606)the National Natural Science Foundation of China(42101027).
文摘Soil erosion is one of the most serious environmental issues constraining the sustainable development of human society and economies.Soil compound erosion is the result of the alternation or interaction between two or more erosion forces.In recent years,fluctuations and extreme changes in climatic factors(air temperature,precipitation,wind speed,etc.)have led to an increase in the intensity and extent of compound erosion,which is increasingly considered in soil erosion research.First,depending on the involvement of gravity,compound erosion process can be divided into compound erosion with and without gravity.We systematically summarized the research on the mechanisms and processes of alternating or interacting soil erosion forces(wind,water,and freeze-thaw)considering different combinations,combed the characteristics of compound erosion in three typical regions,namely,high-elevation areas,high-latitude areas,and dry and wet transition regions,and reviewed soil compound erosion research methods,such as station observations,simulation experiments,prediction models,and artificial neural networks.The soil erosion model of wind,water,and freeze-thaw interaction is the most significant method for quantifying and predicting compound erosion.Furthermore,it is proposed that there are several issues such as unclear internal mechanisms,lack of comprehensive prediction models,and insufficient scale conversion methods in soil compound erosion research.It is also suggested that future soil compound erosion mechanism research should prioritize the coupling of compound erosion forces and climate change.
文摘By means of both pot and field tests,this paper studied the contents of Cd,Pb,Cu,Zn and As and their ecological effects on plant-soil system.in tissues of crops and soil microorganisms.It was found that there exist synergistic effect among these five elements,especially for Cd in combination.The reclaniation of soil polluted by these elements in combination is rather difficult to be carried out.The distinctive ecological and chemical behaviors between Cd and As make various reclamation measures less applicable,and thus,further research measures are necessary.
文摘d and As both have harmful effects on the growth,development and seed germination of alfalfa, especially in such a condition as the coexistence of Cd and As in soil environment The research using the pot-culture imitative method first found that if soil was simultaneously polluted by Cd and As,function of alfalfa absorbing Cd from soil may be promoted because of the existence of As,in conversely,Cd may inhibit alfalfa plant from absorbing As It was also found that secon- dary ecological effects were most likely to be brought out due to the coexistence of Cd and As. For example,alfalfa is passive to excessively absorb Cu and Pb .The harmful effects undoubtedly intensi- fy the contamination of alfalfa, The results showed that the mechanism of the interaction among Cd,As,Pb and Cu in soil-alfalfa ecosystems is very complicated.
文摘Forty-six candidate phenol/benzoate degrading-iron reducing bacteria were isolated from long term irrigated tropical paddy soils by enrichment procedures.Pure cultures and some prepared mixed cultures were examined for ferric oxide reduction and phenol/benzoate degradation.All the isolates were iron reducers,but only 56.5%could couple iron reduction to phenol and/or benzoate degradation,as evidenced by depletion of phenol and benzoate after one week incubation.Analysis of degradative capability using Biolog...
文摘The contaminants of the ground are potentially harmful agents and when they are released in this medium, their persistence becomes an important concern. Because of the expressed interest, a certain number of pesticides and important chemicals and their toxicity are described in this article. The studies went on the determination of the concentration, the lethal amount of the organochlorinated compounds, chemical organophosphates, carbamates and compounds. One summer recorded 3 pesticides in 5 samples of the grounds of Sikasso and Segou (Mali). Their concentration varies from 20 (atrazine) with 45 g/kg of ground. The lethal amounts of the revealed poisons variable from 338 for phtalates to 28.710 mg/kg for hexane (alkane) thus evaluate their impact on the food chain. Organophosphates and the carbamates (insecticidal) involve a reduction of 34.2% of the number of Cyprinus carpio of fresh water. The atrazine contaminates drinking water, but the diuron modifies the behavior and the reproduction of fish by deteriorating their system of olfactive perception of natural substances. Important mortalities of birds are noted around the corn fields of Bougouni treated by the carbofuran. The pesticides involve at the man a reduction in fruitfulness, an increase in the risk of miscarriage of premature birth, congenital malformations and cancers.
文摘Effects of two kinds of magnesium compound with fertilizer on Daylily (Hemerocallis citrina Baroni) growth, yield, and soil nutrients in red soil were studied. The results indicated that significant effects of magnesium applied to soils were observed in increasing Daylily (Hemerocallis citrina Baroni) yield, improving its growth, and strengthening its antivirus property as well as increasing the amount of exchangeable Mg, N, P, and K in red soil. In particular, the effects of magnesium compound fertilizer Ⅱ (MCF2) with higher Mg content were better than that of the others, which increased Daylily (Hemerocallis citrina Baroni) yield by 57.4, 32.8, and 14.5% compared to that of control treatment (CK), chemical fertilizer with nitrogen, phosphorus, potassium treatment (CF), and magnesium compound fertilizer Ⅰ treatment (MCF1) with lower Mg content. It increased soil Alkali N, available P, exchangeable K, and exchangeable Mg by 94.9, 46.5, 31.1, and 35.3%, respectively, compared with that of CK treatment. Therefore, the application of magnesium compound with fertilizer is an optimum method for improving red soil quality.
文摘Soil organic matter(SOM)is the predominant component for sorption of hydrophobic organic compouds in soil and sorption by SOM ultimately affects chemical fate and availability in soil,and the degree of remedia- tion success of contaminated soils. This paper summarizes the latest development on sorption of organic com- pounds in soil (natural) organic matter,addresses four sorption mechanisms: surface adsorption,solid - phase Partitioning,dual-mode sorption,and fixed-pore sorption model,and presents future research directions as well.
文摘The anthill soil is used by hypertensive elderly and teenagers from Oshikoto region (Namibia) and many of them testified stabilization of their blood pressure to normal after consuming the anthill soil-derived aqueous extracts. This study therefore investigated and/or assessed the physicochemical parameters, the contents of some metal(loid)s (and their associated potential health risks) and the qualitative composition of bioactive compounds of this anthill soil. The homogenous soil sample collected from various anthill soils in the Oshikoto region was used to obtain the measurements of physiochemical parameters. The elemental contents were determined (using an Inductively Coupled Plasma Optical Emission Spectrophotometer) after acid digestion in accordance with the EPA method 350B and their potential health risk assessments were performed. Methanol, aqueous methanol, and aqueous-based extracts were generated via maceration extraction process prior to the screening of bioactive compounds using standard diagnostic assays. The oxidation reduction potential (164.4 ± 16.6 mV) was the only physicochemical parameter whose value was within the World Health Organization limits for drinking water whereas, total dissolved solids (23 ± 5.5 mg/L), electrical conductivity (44 ± 10.1 uS/cm) and pH (5.35 ± 0.33) were out of specifications. Phenolic compounds, flavonoids, terpenoids, and cardiac glycosides were present in anthill soil (with respect to the extractants used) to which its antihypertensive properties can be attributed in addition to some of the studied mineral components. With respect to the pH, TDS and EC, and the contents of most metal(loid)s in relation to their health risk assessment values, the results suggest that aqueous extracts derived from this anthill soil can be deemed unsuitable for human consumption.