In the Mei-yu region,there has been noticeable increase in the occurrence of compound hot drought(CHD)events in recent years.However,the underlying causes of these occurrences remain poorly understood.To address this ...In the Mei-yu region,there has been noticeable increase in the occurrence of compound hot drought(CHD)events in recent years.However,the underlying causes of these occurrences remain poorly understood.To address this knowledge gap,we conducted a comprehensive study utilizing observational datasets,reanalysis datasets,and four numerical experiments to investigate the associated physical mechanisms.Our findings indicated that the prevalence of CHD events in the Mei-yu region is influenced strongly by two key factors:the decline in Barents Sea ice during February and the presence of a La Ni?alike pattern of sea surface temperature(SST)in April.The decline in Barents Sea ice generates an anomalous Rossby wave in the Arctic that propagates southeastward.The La Ni?a-like SST pattern regulates a Rossby wave over western America,propagating along the subtropical jet stream.These two Rossby waves induce northward movement and strengthened intensity of the subtropical westerly jet in East Asia.The local circulation patterns in the Mei-yu region are influenced by the position and intensity of the subtropical jet,leading to downward motion in accordance with the secondary circulation theory for high-altitude jet streams.Consequently,these local circulation patterns might contribute to occurrence of CHD events.Moreover,our analysis revealed that the impact of Barents Sea ice and the La Nina-like SST pattern can explain approximately two-thirds of the mild CHD events in the Mei-yu region,and that the influence of each is relatively independent.This research underscores influences of polartropical systems on climate extremes in eastern Asia.展开更多
使用淮河流域1981年至2020年的149个气象站点的气温和相对湿度数据,分析了流域暖季极端高温干旱复合事件(Compound Drought and Heat Events,CDHEs)的时空演变特征,并通过趋势分析和相关分析法探讨了CDHEs与气候和植被的关系。结果表明:...使用淮河流域1981年至2020年的149个气象站点的气温和相对湿度数据,分析了流域暖季极端高温干旱复合事件(Compound Drought and Heat Events,CDHEs)的时空演变特征,并通过趋势分析和相关分析法探讨了CDHEs与气候和植被的关系。结果表明:(1)CDHEs的发生日数在年代际尺度上呈现明显的增加趋势,并且范围扩大,频发区逐渐向淮河流域中西部移动;(2)在年际尺度上,CDHEs随时间序列呈显著的波动上升趋势,空间分布上以西北部为中心向四周递减。连续CDHEs事件呈年际变化,最大2至4天的连续事件存在波动,2019年达到高峰,并且在流域内零散或成片出现;(3)在月际尺度上,CDHEs的发生日数在6月最多,其次是5月、7月、9月和8月。淮河流域入汛前的旱情和入汛后的旱涝急转都容易导致CDHEs发生,而且随着月际变化向南移动;(4)CDHEs对水热条件和大气环流具有特别的敏感性。在850hPa反气旋和500hPa显著高压异常的控制下,高温、低湿、高蒸发和降水少的气候背景有利于淮河地区CDHEs的形成,尤其是在淮河中西部地区。因此,CDHEs的发生与气候变化密切相关;(5)CDHEs与植被生长也存在显著关系。CDHEs与GPP呈显著的负相关,而与NDVI呈显著的正相关,显著地区的土地类型以耕地和城乡、工矿、居民用地为主。GPP和NDVI的不同步可能是因为多种因素的非线性相互作用,而不仅仅是单一因素的影响。此外,对于GPP和NDVI来说,土壤含水量至关重要。总之,本文对淮河流域CDHEs的时空分布特征进行了深入研究,并探讨了其与气候和植被的关系。研究结果可以为该地区的气象灾害防御和生态环境保护提供科学依据和参考。展开更多
The increasingly frequent and severe regional-scale compound heatwave-drought extreme events(CHDEs),driven by global warming,present formidable challenges to ecosystems,residential livelihoods,and economic conditions....The increasingly frequent and severe regional-scale compound heatwave-drought extreme events(CHDEs),driven by global warming,present formidable challenges to ecosystems,residential livelihoods,and economic conditions.However,uncertainty persists regarding the future trend of CHDEs and their insights into regional spatiotemporal heterogeneity.By integrating daily meteorological data from observations in 1961-2022 and global climate models(GCMs)based on the Shared Socioeconomic Pathways,the evolution patterns of CHDEs were compared and examined among three sub-catchments of the Yangtze River Basin,and the return periods of CHDE in 2050s and 210Os were projected.The findings indicate that the climate during the 2022 CHDE period was the warmest and driest recorded in 1961-2022,with precipitation less than 154.5 mm and a mean daily maximum temperature 3.4°C higher than the average of 1981-2010,whereas the char-acteristics in the sub-catchments exhibited temporal and spatial variation.In July-August 2022,the most notable feature of CHDE was its extremeness since 1961,with return periods of~200-year in upstream,80-year in midstream,and 40-year in downstream,respectively.By 2050,the return periods witnessed 2022 CHDE would likely be reduced by one-third.Looking towards 2100,under the highest emission scenario of SSP585,it was projected to substantially increase the frequency of CHDEs,with return periods reduced to one-third in the upstream and downstream,as well as halved in the midstream.These findings provide valuable insights into the changing risks associated with forthcoming climate extremes,emphasizing the urgency of addressing these challenges in regional management and sustainable development.展开更多
基金supported by the National Key Technologies R&D Program of China[grant number 2022YFC3002803]the National Science Fund for Distinguished Young Scholars[grant number 41925021].
基金supported by the National Natural Science Foundation of China(42088101)the National Key Research and Development Program of China(2022YFF0801704)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(316323005)。
文摘In the Mei-yu region,there has been noticeable increase in the occurrence of compound hot drought(CHD)events in recent years.However,the underlying causes of these occurrences remain poorly understood.To address this knowledge gap,we conducted a comprehensive study utilizing observational datasets,reanalysis datasets,and four numerical experiments to investigate the associated physical mechanisms.Our findings indicated that the prevalence of CHD events in the Mei-yu region is influenced strongly by two key factors:the decline in Barents Sea ice during February and the presence of a La Ni?alike pattern of sea surface temperature(SST)in April.The decline in Barents Sea ice generates an anomalous Rossby wave in the Arctic that propagates southeastward.The La Ni?a-like SST pattern regulates a Rossby wave over western America,propagating along the subtropical jet stream.These two Rossby waves induce northward movement and strengthened intensity of the subtropical westerly jet in East Asia.The local circulation patterns in the Mei-yu region are influenced by the position and intensity of the subtropical jet,leading to downward motion in accordance with the secondary circulation theory for high-altitude jet streams.Consequently,these local circulation patterns might contribute to occurrence of CHD events.Moreover,our analysis revealed that the impact of Barents Sea ice and the La Nina-like SST pattern can explain approximately two-thirds of the mild CHD events in the Mei-yu region,and that the influence of each is relatively independent.This research underscores influences of polartropical systems on climate extremes in eastern Asia.
文摘使用淮河流域1981年至2020年的149个气象站点的气温和相对湿度数据,分析了流域暖季极端高温干旱复合事件(Compound Drought and Heat Events,CDHEs)的时空演变特征,并通过趋势分析和相关分析法探讨了CDHEs与气候和植被的关系。结果表明:(1)CDHEs的发生日数在年代际尺度上呈现明显的增加趋势,并且范围扩大,频发区逐渐向淮河流域中西部移动;(2)在年际尺度上,CDHEs随时间序列呈显著的波动上升趋势,空间分布上以西北部为中心向四周递减。连续CDHEs事件呈年际变化,最大2至4天的连续事件存在波动,2019年达到高峰,并且在流域内零散或成片出现;(3)在月际尺度上,CDHEs的发生日数在6月最多,其次是5月、7月、9月和8月。淮河流域入汛前的旱情和入汛后的旱涝急转都容易导致CDHEs发生,而且随着月际变化向南移动;(4)CDHEs对水热条件和大气环流具有特别的敏感性。在850hPa反气旋和500hPa显著高压异常的控制下,高温、低湿、高蒸发和降水少的气候背景有利于淮河地区CDHEs的形成,尤其是在淮河中西部地区。因此,CDHEs的发生与气候变化密切相关;(5)CDHEs与植被生长也存在显著关系。CDHEs与GPP呈显著的负相关,而与NDVI呈显著的正相关,显著地区的土地类型以耕地和城乡、工矿、居民用地为主。GPP和NDVI的不同步可能是因为多种因素的非线性相互作用,而不仅仅是单一因素的影响。此外,对于GPP和NDVI来说,土壤含水量至关重要。总之,本文对淮河流域CDHEs的时空分布特征进行了深入研究,并探讨了其与气候和植被的关系。研究结果可以为该地区的气象灾害防御和生态环境保护提供科学依据和参考。
基金the National Natural Science Foundation of China(42371084,42101311,41975100)。
文摘The increasingly frequent and severe regional-scale compound heatwave-drought extreme events(CHDEs),driven by global warming,present formidable challenges to ecosystems,residential livelihoods,and economic conditions.However,uncertainty persists regarding the future trend of CHDEs and their insights into regional spatiotemporal heterogeneity.By integrating daily meteorological data from observations in 1961-2022 and global climate models(GCMs)based on the Shared Socioeconomic Pathways,the evolution patterns of CHDEs were compared and examined among three sub-catchments of the Yangtze River Basin,and the return periods of CHDE in 2050s and 210Os were projected.The findings indicate that the climate during the 2022 CHDE period was the warmest and driest recorded in 1961-2022,with precipitation less than 154.5 mm and a mean daily maximum temperature 3.4°C higher than the average of 1981-2010,whereas the char-acteristics in the sub-catchments exhibited temporal and spatial variation.In July-August 2022,the most notable feature of CHDE was its extremeness since 1961,with return periods of~200-year in upstream,80-year in midstream,and 40-year in downstream,respectively.By 2050,the return periods witnessed 2022 CHDE would likely be reduced by one-third.Looking towards 2100,under the highest emission scenario of SSP585,it was projected to substantially increase the frequency of CHDEs,with return periods reduced to one-third in the upstream and downstream,as well as halved in the midstream.These findings provide valuable insights into the changing risks associated with forthcoming climate extremes,emphasizing the urgency of addressing these challenges in regional management and sustainable development.