The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the po...The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings.展开更多
The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a mult...The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a multi-objective optimization model based on the life cycle assessment(LCA)method for the optimal design of hybrid solar and biomass system.The life-cycle process of the poly-generation system is divided into six phases to analyze energy consumption and greenhouse gas emissions.The comprehensive performances of the hybrid system are optimized by incorporating the evaluation criteria,including environmental impact in the whole life cycle,renewable energy contribution and economic benefit.The non-dominated sorting genetic algorithmⅡ(NSGA-Ⅱ)with the technique for order preference by similarity to ideal solution(TOPSIS)method is employed to search the Pareto frontier result and thereby achieve optimal performance.The developed optimization methodology is used for a case study in an industrial park.The results indicate that the best performance from the optimized hybrid system is reached with the environmental impact load reduction rate(EILRR)of 46.03%,renewable energy contribution proportion(RECP)of 92.73%and annual total cost saving rate(ATCSR)of35.75%,respectively.By comparing pollutant-eq emissions of different stages,the operation phase emits the largest pollutant followed by the phase of raw material acquisition.Overall,this study reveals that the proposed multi-objective optimization model integrated with LCA method delivers an alternative path for the design and optimization of more sustainable CCHP system.展开更多
As a potentially viable renewable energy, Enhanced Geothermal Systems(EGSs) extract heat from hot dry rock(HDR) reservoirs to produce electricity and heat, which promotes the progress towards carbon peaking and carbon...As a potentially viable renewable energy, Enhanced Geothermal Systems(EGSs) extract heat from hot dry rock(HDR) reservoirs to produce electricity and heat, which promotes the progress towards carbon peaking and carbon neutralization. The main challenge for EGSs is to reduce the investment cost. In the present study, thermo-economic investigations of EGS projects are conducted. The effects of geofluid mass flow rate, wellhead temperature and loss rate on the thermo-economic performance of the EGS organic Rankine cycle(ORC) are studied. A performance comparison between EGS-ORC and the EGS combined heating and power system(CHP) is presented. Considering the CO_(2)emission reduction benefits, the influence of carbon emission trading price on the levelized cost of energy(LCOE) is also presented. It is indicated that the geofluid mass flow rate is a critical parameter in dictating the success of a project. Under the assumed typical working conditions, the LCOE of EGS-ORC and EGS-CHP systems are 24.72 and 16.1 cents/k Wh, respectively. Compared with the EGS-ORC system, the LCOE of the EGS-CHP system is reduced by 35%. EGS-CHP systems have the potential to be economically viable in the future. With carbon emission trading prices of 12.76 USD/ton, the LCOE can be reduced by approximately 8.5%.展开更多
Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits su...Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits such as lower electricity generation price. In Iran among all type of DGs, because of wide natural gas network infrastructure and several incentives that government legislated to support combined cooling, heat and power (CCHP) investors, this type of technology is more prevalent in comparison with other technologies. Between existing CCHP technologies, certain economic choices are to be taken into account. For different buildings with different load curves, suitable size and operation of CCHP should be calculated to make the project more feasible. If CCHP does not well suited for a position, then the whole energy efficiency would be plunged significantly. In this paper, a model to find the optimal size and operation of CCHP and auxiliary boiler for any users is proposed by considering an integrated view of electricity and natural gas network using GAMS software. Then this method is applying for a hospital in Tehran as a real case study. Finally, by applying COMFAR III software, useful financial parameters and sensitivity analysis are calculated.展开更多
Although numerous studies have considered the two traditional operation strategies:following the electric load(FEL)and following the thermal load(FTL),for combined cooling,heating,and power(CCHP)systems in different c...Although numerous studies have considered the two traditional operation strategies:following the electric load(FEL)and following the thermal load(FTL),for combined cooling,heating,and power(CCHP)systems in different case studies,there are limited theoretical studies on the quantification methods to assess the feasibility of these two strategies in different load demands scenarios.Therefore,instead of a case study,we have undertaken a theoretical analysis of the suitable application scenarios for FEL and FTL strategies based on the energy-matching performance between systems'provision and users'demands.To compare the calculation models of energy saving rate(ESR)for FEL and FTL strategies in the left and right sub-regions of the energy-supply curve,a comprehensive parameter(^)that combines three inherently influential factors(off-design operation parameter,energy-matching parameter,and install capacity coefficient)is defined to determine the optimal installed capacity and feasibility of FEL or FTL strategies quantitatively.The results indicate that greater value of x contribute to a better energy saving performance,and FEL strategy shows better performance than FTL in most load demands scenarios,and the optimal installed capacity occurs when the load demand points were located in different regions of the energy-supply curve.Finally,taking a hotel in Beijing as an example,the value of the optimal install capacity coefficient is 0.845 and the FEL strategy is also suggested,and compared to the maximum install capacity,the average values of the ESR on a typical summer day,transition season,and winter can be enhanced by 3.9%,8.8%,and 1.89%,respectively.展开更多
The fluctuations of renewable energy and various energy demands are crucial issues for the optimal design and operation of combined cooling,heating and power(CCHP)system.In this paper,a novel CCHP system is simulated ...The fluctuations of renewable energy and various energy demands are crucial issues for the optimal design and operation of combined cooling,heating and power(CCHP)system.In this paper,a novel CCHP system is simulated with advanced adiabatic compressed air energy storage(AA-CAES)technology as a join to connect with wind energy generation and an internal-combustion engine(ICE).The capital cost of utilities,energy cost,environmental protection cost and primary energy savings ratio(P E S R)are used as system performance indicators.To fulfill the cooling,heating and power requirements of a district and consider the thermal-electric coupling of ICE and AA-CAES in CCHP system,three operation strategies are established to schedule the dispatch of AA-CAES and ICE:ICE priority operation strategy,CAES priority operation strategy and simultaneous operation strategy.Each strategy leads the operation load of AA-CAES or ICE to improve the energy supply efficiency of the system.Moreover,to minimize comprehensive costs and maximize the P E S R,a novel optimization algorithm based on intelligent updating multi-objective differential evolution(MODE)is proposed to solve the optimization model.Considering the multi-interface characteristic and active management ability of the ICE and AA-CAES,the economic benefits and energy efficiency of the three operation strategies are compared by the simulation with the same system configuration.On a typical summer day,the simultaneous strategy is the best solution as the total cost is 3643 USD and the P E S R is 66.1%,while on a typical winter day,the ICE priority strategy is the best solution as the total cost is 4529 USD and the P E S R is 64.4%.The proposed methodology provides the CCHP based AA-CAES system with a better optimized operation.展开更多
In this study,energetic,economic,and environmental analysis of solid oxide fuel cell-based combined cooling,heating,and power(SOFC-CCHP)system is proposed for a cancer care hospital building.The energy required for th...In this study,energetic,economic,and environmental analysis of solid oxide fuel cell-based combined cooling,heating,and power(SOFC-CCHP)system is proposed for a cancer care hospital building.The energy required for the hospital power,cooling,and heating demands was obtained based on real and detailed field data,which could serve as a reference for future works in the field.These data with a 3D model for the hospital building are constructed and created in eQUEST software to precisely calculate the energy demands of the existing system(baseline case).Then,energetic,economic,and environmental models were developed to compare and assess the performance of the proposed SOFC-CCHP system.The results show that the proposed system can cover about 49% to 77% of the power demand of the hospital with an overall efficiency of 78.3%.Also,the results show that the levelized cost of electricity of the system and its payback period at the designed capacity of the SOFC is 0.087S/kWh and 10 years,respectively.Furthermore,compared to the baseline system of the hospital,the SOFC-CCHP reduces the CO_(2) emission by 89% over the year.The sensitivity analysis showed that a maximum SOFC efficiency of 52%and overall efficiency of 80%are achieved at cell operating temperature of 1027℃ and fuel utilization factor of 0.85.展开更多
Syngas fuel such as hydrogen and carbon monoxide generated by solar energy is a promising method to use solar energy and overcome its fluctuation effectively.This study proposes a combined cooling,heating,and power sy...Syngas fuel such as hydrogen and carbon monoxide generated by solar energy is a promising method to use solar energy and overcome its fluctuation effectively.This study proposes a combined cooling,heating,and power system using the reversible solid oxide fuel cell assisted by solar energy to produce solar fuel and then supply energy products for users during the period without solar radiation.The system runs a solar-assisted solid oxide electrolysis cell mode and a solid oxide fuel cell mode.The thermodynamic models are constructed,and the energetic and exergetic performances are analyzed.Under the design work conditions,the SOEC mode’s overall system energy and exergy efficiencies are 19.0%and 20.5%,respectively.The electrical,energy and exergy efficiencies in the SOFC mode are 51.4%,71.3%,and 45.2%,respectively.The solid oxide fuel cell accounts for 60.0%of total exergy destruction,caused by the electrochemical reactions’thermodynamic irreversibilities.The increase of operating temperature of solid oxide fuel cell from 800℃to 1050℃rises the exergy and energy efficiencies by 11.3%and 12.3%,respectively.Its pressure from 0.2 to 0.7 MPa improves electrical efficiency by 13.8%while decreasing energy and exergy efficiencies by 5.2%and 6.0%,respectively.展开更多
Combined cooling,heating and power(CCHP)systems have been considered as a potential energy saving technology for buildings due to their high energy efficiency and low carbon emission.Thermal energy storage(TES)can imp...Combined cooling,heating and power(CCHP)systems have been considered as a potential energy saving technology for buildings due to their high energy efficiency and low carbon emission.Thermal energy storage(TES)can improve the energy efficiency of CCHP systems,since they reduce the mismatch between the energy supply and demand.However,it also increases the complexity of operation optimization of CCHP systems.In this study,a multi-agent system(MAS)-based optimal control method is proposed to minimize the operation cost of CCHP systems combined with TES.Four types of agents,i.e.,coordinator agents,building agents,energy management agents and optimization agents,are implemented in the MAS to cooperate with each other.The operation optimization problem is solved by the genetic algorithm.A simulated system is utilized to validate the performance of the proposed method.Results show that the operation cost reductions of 10.0%on a typical summer day and 7.7%on a typical spring day are achieved compared with a rule-based control method.A sensitivity analysis is further performed and results show that the optimal operation cost does not change obviously when the rated capacity of TES exceeds a threshold.展开更多
The ongoing development of cogeneration technology has promoted public awareness on the integration of different types of energy systems.Integration of power and heating systems is the most common approach for energy ...The ongoing development of cogeneration technology has promoted public awareness on the integration of different types of energy systems.Integration of power and heating systems is the most common approach for energy transmission.The heat and power coupling of combined heat and power(CHP)units constrains the improvement of flexibility to accommodate more wind power,especially in winter.To address this problem,electrical boilers(EBs)are utilized as independent heat sources in one heat station to enhance their flexibility.This paper proposes a subsidy based bi-level optimal model.The objective of the upper problem is to minimize the operating cost,while the lower problem is to maximize the benefits of CHP and EBs based on the subsidy signals sent by the power system operator(PSO).The bi-level model is reformulated as a single-level linear problem by Karush Kuhn Turck(KKT)conditions and recast to a mix integer quadratic program using strong duality theory.Numerical results performed on an IEEE six-bus system with a eight-node district heating system validate the proposed model.The results demonstrate that the subsidy strategies can make the EB and CHP units operate according to the system operators’preferences to accommodate more wind power.展开更多
To improve the overall thermal efficiency of the organic Rankine cycle( ORC), a simulation study was carried out for a combined heat and power( CHP) system, using the Redlich-Kuang-Soave( RKS) equation of state....To improve the overall thermal efficiency of the organic Rankine cycle( ORC), a simulation study was carried out for a combined heat and power( CHP) system, using the Redlich-Kuang-Soave( RKS) equation of state. In the system,R245 fa was selected as the working fluid. A scroll expander was modeled with empirical isentropic expansion efficiency.Plate heat exchangers were selected as the evaporator and the condenser, and detailed heat transfer models were programmed for both one-phase and two-phase regions. Simulations were carried out at seven different heat source temperatures( 80,90, 100, 110, 120, 130, 140 ℃) in combination with eight different heat sink temperatures( 20, 25, 30, 35, 40, 45, 50,55 ℃). Results showthat in the ORC without an internal heat exchanger( IHE), the optimum cycle efficiencies are in the range of 7. 0% to 7. 3% when the temperature differences between the heat source and heat sink are in the range of 70 to90 ℃. Simulations on CHP reveal that domestic hot water can be produced when the heat sink inlet temperature is higher than40 ℃, and the corresponding exergy efficiency and overall thermal efficiency are 29% to 56% and 87% to 90% higher than those in the non-CHP ORC, respectively. It is found that the IHE has little effect on the improvement of work output and efficiencies for the CHP ORC.展开更多
Liquid air energy storage(LAES)has been regarded as a large-scale electrical storage technology.In this paper,we first investigate the performance of the current LAES(termed as a baseline LAES)over a far wider range o...Liquid air energy storage(LAES)has been regarded as a large-scale electrical storage technology.In this paper,we first investigate the performance of the current LAES(termed as a baseline LAES)over a far wider range of charging pressure(1 to 21 MPa).Our analyses show that the baseline LAES could achieve an electrical round trip efficiency(e RTE)above 60%at a high charging pressure of 19 MPa.The baseline LAES,however,produces a large amount of excess heat particularly at low charging pressures with the maximum occurred at~1 MPa.Hence,the performance of the baseline LAES,especially at low charging pressures,is underestimated by only considering electrical energy in all the previous research.The performance of the baseline LAES with excess heat is then evaluated which gives a high e RTE even at lower charging pressures;the local maximum of 62%is achieved at~4 MPa.As a result of the above,a hybrid LAES system is proposed to provide cooling,heating,hot water and power.To evaluate the performance of the hybrid LAES system,three performance indicators are considered:nominal-electrical round trip efficiency(ne RTE),primary energy savings and avoided carbon dioxide emissions.Our results show that the hybrid LAES can achieve a high ne RTE between 52%and 76%,with the maximum at~5 MPa.For a given size of hybrid LAES(1 MW×8 h),the primary energy savings and avoided carbon dioxide emissions are up to 12.1 MWh and 2.3 ton,respectively.These new findings suggest,for the first time,that small-scale LAES systems could be best operated at lower charging pressures and the technologies have a great potential for applications in local decentralized micro energy networks.展开更多
The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and p...The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak.展开更多
Combined cooling and power(CCP)system driven by low-grade heat is promising for improving energy efficiency.This work proposes a CCP system that integrates a regenerative organic Rankine cycle(RORC)and an absorption c...Combined cooling and power(CCP)system driven by low-grade heat is promising for improving energy efficiency.This work proposes a CCP system that integrates a regenerative organic Rankine cycle(RORC)and an absorption chiller on both driving and cooling fluid sides.The system is modeled by using the heat current method to fully consider nonlinear heat transfer and heat-work conversion constraints and resolve its behavior accurately.The off-design system simulation is performed next,showing that the fluid inlet temperatures and flow rates of cooling water as well as RORC working fluid strongly affect system performance.The off-design operation even becomes infeasible when parameters deviate from nominal values largely due to limited heat transfer capability of components,highlighting the importance of considering heat transfer constraints via heat current method.Design optimization aiming to minimize the total thermal conductance is also conducted.RORC efficiency increases by 7.9%and decreases by 12.4%after optimization,with the hot fluid inlet temperature increase from 373.15 to 403.15 K and mass flow rate ranges from 10 to 30 kg/s,emphasizing the necessity of balancing system cost and performance.展开更多
An active distribution system power-supply planning model considering cooling,heating and power load balance is proposed in this paper.A regional energy service company is assumed to be in charge of the investment and...An active distribution system power-supply planning model considering cooling,heating and power load balance is proposed in this paper.A regional energy service company is assumed to be in charge of the investment and operation for the system in the model.The expansion of substations,building up distributed combined cooling,heating and power(CCHP),gas heating boiler(GHB)and air conditioner(AC)are included as investment planning options.In terms of operation,the load scenarios are divided into heating,cooling and transition periods.Also,the extreme load scene is included to assure the power supply reliability of the system.Numerical results demonstrate the effectiveness of the proposed model and illustrate the economic benefits of applying distributed CCHP in regional power supply on investment and operation.展开更多
The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills i...The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills in an important research gap by investigating the coupling effect between a diesel exhaust heat recovery and an intake air heating system employed in a remote mine.An integrative approach comprising analytical,numerical,and experimental assessment has been adapted.The novel analytical model developed here establishes the reliability of the proposed mine heating system by providing comparative analysis between a coupled and a decoupled system.The effect of working fluid variation has been examined by the numerical analysis and the possible improvement has been identified.Experimental investigations present a demonstration of the successful lab-scale implementation of the concept and validate the numerical and analytical models developed.Successful deployment of the fully coupled mine heating system proposed here will assist the mining industry on its journey towards energy-efficient,and sustainable mining practices through nearly 70%reduction in fossil fuel consumption for heating intentions.展开更多
This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion p...This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion process in heat & power plants, cogeneration units, etc., which burn the gaseous fuel, primarily natural gas, or methane, biogas, geothermal gas, or other gaseous mixtures containing hydrogen. The solution proposes a more effective and non-traditional use of gaseous fuel for heating, the flue gases of which are processed in order to extract additional utilisable heat, with potential elimination of CO2 from them. Deploying of the heating plant in an island regime (OFF-GRID) enables definition of the benefits brought by the 3 years of operational experience and presents visions for the future offering the possibility to utilise the support energy services at the municipal as well as regional level.展开更多
As one of promising clean and low-emission energy, wind power is being rapidly developed in China.However, it faces serious problem of wind curtailment,particularly in northeast China, where combined heat and power(CH...As one of promising clean and low-emission energy, wind power is being rapidly developed in China.However, it faces serious problem of wind curtailment,particularly in northeast China, where combined heat and power(CHP) units cover a large proportion of the district heat supply. Due to the inherent strong coupling between the power and the heat load, the operational flexibility of CHP units is severely restricted in winter to meet the heat supply demand, which imparts considerable stress on the wind power connection to the grid. To promote the integration of wind power and enhance the flexibility of CHP units, this paper presented a method of heat and power load dispatching by exploring the energy storage ability of electric heating boilers and district heating systems. The optimization results indicate that the proposed method can integrate additional wind power into the grid and reduce the coal consumption of CHP units over the optimized period. Furthermore, the thermal inertia of a district heating system is found to contribute more to the reduction of coal consumption, whereas the electric heating boilers contribute to lower wind curtailment.展开更多
This paper proposes a distributed real-time state estimation(RTSE)method for the combined heat and power systems(CHPSs).First,a difference-based model for the heat system is established considering the dynamics of hea...This paper proposes a distributed real-time state estimation(RTSE)method for the combined heat and power systems(CHPSs).First,a difference-based model for the heat system is established considering the dynamics of heat systems.This heat system model is further used along with the power system steady-state model for holistic CHPS state estimation.A cubature Kalman filter(CKF)-based RTSE is developed to deal with the system nonlinearity while integrating both the historical and present measurement information.Finally,a multi-timescale asynchronous distributed computation scheme is designed to enhance the scalability of the proposed method for largescale systems.This distributed implementation requires only a small amount of information exchange and thus protects the privacy of different energy systems.Simulations carried out on two CHPSs show that the proposed method can significantly improve the estimation efficiency of CHPS without loss of accuracy compared with other existing models and methods.展开更多
基金This work was partially supported by the Brook Byers Institute for Sustainable Systems, the Hightower Chair, Georgia Research Alliance, and grants (083604, 1441208) from the US National Science Foundation Program for Emerging Frontiers in Research and Innovation (EFRI).
文摘The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings.
基金supported by the National Natural Science Foundation of China(Grant No.51976164)。
文摘The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a multi-objective optimization model based on the life cycle assessment(LCA)method for the optimal design of hybrid solar and biomass system.The life-cycle process of the poly-generation system is divided into six phases to analyze energy consumption and greenhouse gas emissions.The comprehensive performances of the hybrid system are optimized by incorporating the evaluation criteria,including environmental impact in the whole life cycle,renewable energy contribution and economic benefit.The non-dominated sorting genetic algorithmⅡ(NSGA-Ⅱ)with the technique for order preference by similarity to ideal solution(TOPSIS)method is employed to search the Pareto frontier result and thereby achieve optimal performance.The developed optimization methodology is used for a case study in an industrial park.The results indicate that the best performance from the optimized hybrid system is reached with the environmental impact load reduction rate(EILRR)of 46.03%,renewable energy contribution proportion(RECP)of 92.73%and annual total cost saving rate(ATCSR)of35.75%,respectively.By comparing pollutant-eq emissions of different stages,the operation phase emits the largest pollutant followed by the phase of raw material acquisition.Overall,this study reveals that the proposed multi-objective optimization model integrated with LCA method delivers an alternative path for the design and optimization of more sustainable CCHP system.
基金financial support provided by the National Key Research and Development Program of China(No.2018YFB1501805)China Geological Survey Project(Grant No.DD2019135,and No.DD20211336)。
文摘As a potentially viable renewable energy, Enhanced Geothermal Systems(EGSs) extract heat from hot dry rock(HDR) reservoirs to produce electricity and heat, which promotes the progress towards carbon peaking and carbon neutralization. The main challenge for EGSs is to reduce the investment cost. In the present study, thermo-economic investigations of EGS projects are conducted. The effects of geofluid mass flow rate, wellhead temperature and loss rate on the thermo-economic performance of the EGS organic Rankine cycle(ORC) are studied. A performance comparison between EGS-ORC and the EGS combined heating and power system(CHP) is presented. Considering the CO_(2)emission reduction benefits, the influence of carbon emission trading price on the levelized cost of energy(LCOE) is also presented. It is indicated that the geofluid mass flow rate is a critical parameter in dictating the success of a project. Under the assumed typical working conditions, the LCOE of EGS-ORC and EGS-CHP systems are 24.72 and 16.1 cents/k Wh, respectively. Compared with the EGS-ORC system, the LCOE of the EGS-CHP system is reduced by 35%. EGS-CHP systems have the potential to be economically viable in the future. With carbon emission trading prices of 12.76 USD/ton, the LCOE can be reduced by approximately 8.5%.
基金supported by Major International(Regional)Joint Research Project of the National Natural Science Foundation of China(61320106011)National High Technology Research and Development Program of China(863 Program)(2014AA052802)National Natural Science Foundation of China(61573224)
文摘Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits such as lower electricity generation price. In Iran among all type of DGs, because of wide natural gas network infrastructure and several incentives that government legislated to support combined cooling, heat and power (CCHP) investors, this type of technology is more prevalent in comparison with other technologies. Between existing CCHP technologies, certain economic choices are to be taken into account. For different buildings with different load curves, suitable size and operation of CCHP should be calculated to make the project more feasible. If CCHP does not well suited for a position, then the whole energy efficiency would be plunged significantly. In this paper, a model to find the optimal size and operation of CCHP and auxiliary boiler for any users is proposed by considering an integrated view of electricity and natural gas network using GAMS software. Then this method is applying for a hospital in Tehran as a real case study. Finally, by applying COMFAR III software, useful financial parameters and sensitivity analysis are calculated.
基金This work was supported by the National K ey Research and Development Program of China(Grant No.2016 Y F B 0901405)the Science Fund for Creative Research Groups(No.51621062)the National Natural Science Foundation of China(Grant No.51806117,51236004).
文摘Although numerous studies have considered the two traditional operation strategies:following the electric load(FEL)and following the thermal load(FTL),for combined cooling,heating,and power(CCHP)systems in different case studies,there are limited theoretical studies on the quantification methods to assess the feasibility of these two strategies in different load demands scenarios.Therefore,instead of a case study,we have undertaken a theoretical analysis of the suitable application scenarios for FEL and FTL strategies based on the energy-matching performance between systems'provision and users'demands.To compare the calculation models of energy saving rate(ESR)for FEL and FTL strategies in the left and right sub-regions of the energy-supply curve,a comprehensive parameter(^)that combines three inherently influential factors(off-design operation parameter,energy-matching parameter,and install capacity coefficient)is defined to determine the optimal installed capacity and feasibility of FEL or FTL strategies quantitatively.The results indicate that greater value of x contribute to a better energy saving performance,and FEL strategy shows better performance than FTL in most load demands scenarios,and the optimal installed capacity occurs when the load demand points were located in different regions of the energy-supply curve.Finally,taking a hotel in Beijing as an example,the value of the optimal install capacity coefficient is 0.845 and the FEL strategy is also suggested,and compared to the maximum install capacity,the average values of the ESR on a typical summer day,transition season,and winter can be enhanced by 3.9%,8.8%,and 1.89%,respectively.
基金The work was supported by the National Fundamental Research Program of China 973 project(2014CB249201).
文摘The fluctuations of renewable energy and various energy demands are crucial issues for the optimal design and operation of combined cooling,heating and power(CCHP)system.In this paper,a novel CCHP system is simulated with advanced adiabatic compressed air energy storage(AA-CAES)technology as a join to connect with wind energy generation and an internal-combustion engine(ICE).The capital cost of utilities,energy cost,environmental protection cost and primary energy savings ratio(P E S R)are used as system performance indicators.To fulfill the cooling,heating and power requirements of a district and consider the thermal-electric coupling of ICE and AA-CAES in CCHP system,three operation strategies are established to schedule the dispatch of AA-CAES and ICE:ICE priority operation strategy,CAES priority operation strategy and simultaneous operation strategy.Each strategy leads the operation load of AA-CAES or ICE to improve the energy supply efficiency of the system.Moreover,to minimize comprehensive costs and maximize the P E S R,a novel optimization algorithm based on intelligent updating multi-objective differential evolution(MODE)is proposed to solve the optimization model.Considering the multi-interface characteristic and active management ability of the ICE and AA-CAES,the economic benefits and energy efficiency of the three operation strategies are compared by the simulation with the same system configuration.On a typical summer day,the simultaneous strategy is the best solution as the total cost is 3643 USD and the P E S R is 66.1%,while on a typical winter day,the ICE priority strategy is the best solution as the total cost is 4529 USD and the P E S R is 64.4%.The proposed methodology provides the CCHP based AA-CAES system with a better optimized operation.
基金The work presented in this publication was made possible by NPRP-S grant#[11S-1231-170155]from the Qatar National Research Fund(a member of Qatar Foundation)。
文摘In this study,energetic,economic,and environmental analysis of solid oxide fuel cell-based combined cooling,heating,and power(SOFC-CCHP)system is proposed for a cancer care hospital building.The energy required for the hospital power,cooling,and heating demands was obtained based on real and detailed field data,which could serve as a reference for future works in the field.These data with a 3D model for the hospital building are constructed and created in eQUEST software to precisely calculate the energy demands of the existing system(baseline case).Then,energetic,economic,and environmental models were developed to compare and assess the performance of the proposed SOFC-CCHP system.The results show that the proposed system can cover about 49% to 77% of the power demand of the hospital with an overall efficiency of 78.3%.Also,the results show that the levelized cost of electricity of the system and its payback period at the designed capacity of the SOFC is 0.087S/kWh and 10 years,respectively.Furthermore,compared to the baseline system of the hospital,the SOFC-CCHP reduces the CO_(2) emission by 89% over the year.The sensitivity analysis showed that a maximum SOFC efficiency of 52%and overall efficiency of 80%are achieved at cell operating temperature of 1027℃ and fuel utilization factor of 0.85.
基金supported by the National Natural Science Foundation of China(Grant No.51876064 and 52090064)the Bureau of Shihezi Science&Technology(Grant No.2021ZD02)。
文摘Syngas fuel such as hydrogen and carbon monoxide generated by solar energy is a promising method to use solar energy and overcome its fluctuation effectively.This study proposes a combined cooling,heating,and power system using the reversible solid oxide fuel cell assisted by solar energy to produce solar fuel and then supply energy products for users during the period without solar radiation.The system runs a solar-assisted solid oxide electrolysis cell mode and a solid oxide fuel cell mode.The thermodynamic models are constructed,and the energetic and exergetic performances are analyzed.Under the design work conditions,the SOEC mode’s overall system energy and exergy efficiencies are 19.0%and 20.5%,respectively.The electrical,energy and exergy efficiencies in the SOFC mode are 51.4%,71.3%,and 45.2%,respectively.The solid oxide fuel cell accounts for 60.0%of total exergy destruction,caused by the electrochemical reactions’thermodynamic irreversibilities.The increase of operating temperature of solid oxide fuel cell from 800℃to 1050℃rises the exergy and energy efficiencies by 11.3%and 12.3%,respectively.Its pressure from 0.2 to 0.7 MPa improves electrical efficiency by 13.8%while decreasing energy and exergy efficiencies by 5.2%and 6.0%,respectively.
基金The project was supported by the State Key Laboratory of Air-Conditioning Equipment and System Energy Conservation(No.ACSKL2019KT07)the National Natural Science Foundation of China(No.51706197).
文摘Combined cooling,heating and power(CCHP)systems have been considered as a potential energy saving technology for buildings due to their high energy efficiency and low carbon emission.Thermal energy storage(TES)can improve the energy efficiency of CCHP systems,since they reduce the mismatch between the energy supply and demand.However,it also increases the complexity of operation optimization of CCHP systems.In this study,a multi-agent system(MAS)-based optimal control method is proposed to minimize the operation cost of CCHP systems combined with TES.Four types of agents,i.e.,coordinator agents,building agents,energy management agents and optimization agents,are implemented in the MAS to cooperate with each other.The operation optimization problem is solved by the genetic algorithm.A simulated system is utilized to validate the performance of the proposed method.Results show that the operation cost reductions of 10.0%on a typical summer day and 7.7%on a typical spring day are achieved compared with a rule-based control method.A sensitivity analysis is further performed and results show that the optimal operation cost does not change obviously when the rated capacity of TES exceeds a threshold.
基金This work was supported by the National Key Research and Development Program of China(No.2017YFB0902100).
文摘The ongoing development of cogeneration technology has promoted public awareness on the integration of different types of energy systems.Integration of power and heating systems is the most common approach for energy transmission.The heat and power coupling of combined heat and power(CHP)units constrains the improvement of flexibility to accommodate more wind power,especially in winter.To address this problem,electrical boilers(EBs)are utilized as independent heat sources in one heat station to enhance their flexibility.This paper proposes a subsidy based bi-level optimal model.The objective of the upper problem is to minimize the operating cost,while the lower problem is to maximize the benefits of CHP and EBs based on the subsidy signals sent by the power system operator(PSO).The bi-level model is reformulated as a single-level linear problem by Karush Kuhn Turck(KKT)conditions and recast to a mix integer quadratic program using strong duality theory.Numerical results performed on an IEEE six-bus system with a eight-node district heating system validate the proposed model.The results demonstrate that the subsidy strategies can make the EB and CHP units operate according to the system operators’preferences to accommodate more wind power.
基金Special Fund for IndustryUniversity and Research Cooperation(No.2011DFR61130)
文摘To improve the overall thermal efficiency of the organic Rankine cycle( ORC), a simulation study was carried out for a combined heat and power( CHP) system, using the Redlich-Kuang-Soave( RKS) equation of state. In the system,R245 fa was selected as the working fluid. A scroll expander was modeled with empirical isentropic expansion efficiency.Plate heat exchangers were selected as the evaporator and the condenser, and detailed heat transfer models were programmed for both one-phase and two-phase regions. Simulations were carried out at seven different heat source temperatures( 80,90, 100, 110, 120, 130, 140 ℃) in combination with eight different heat sink temperatures( 20, 25, 30, 35, 40, 45, 50,55 ℃). Results showthat in the ORC without an internal heat exchanger( IHE), the optimum cycle efficiencies are in the range of 7. 0% to 7. 3% when the temperature differences between the heat source and heat sink are in the range of 70 to90 ℃. Simulations on CHP reveal that domestic hot water can be produced when the heat sink inlet temperature is higher than40 ℃, and the corresponding exergy efficiency and overall thermal efficiency are 29% to 56% and 87% to 90% higher than those in the non-CHP ORC, respectively. It is found that the IHE has little effect on the improvement of work output and efficiencies for the CHP ORC.
基金the partial support from UK EPSRC Manifest Project under EP/N032888/1,EP/P003605/1a UK FCO Science&Innovation Network grant(Global Partnerships Fund)an IGI/IAS Global Challenges Funding(IGI/IAS ID 3041)。
文摘Liquid air energy storage(LAES)has been regarded as a large-scale electrical storage technology.In this paper,we first investigate the performance of the current LAES(termed as a baseline LAES)over a far wider range of charging pressure(1 to 21 MPa).Our analyses show that the baseline LAES could achieve an electrical round trip efficiency(e RTE)above 60%at a high charging pressure of 19 MPa.The baseline LAES,however,produces a large amount of excess heat particularly at low charging pressures with the maximum occurred at~1 MPa.Hence,the performance of the baseline LAES,especially at low charging pressures,is underestimated by only considering electrical energy in all the previous research.The performance of the baseline LAES with excess heat is then evaluated which gives a high e RTE even at lower charging pressures;the local maximum of 62%is achieved at~4 MPa.As a result of the above,a hybrid LAES system is proposed to provide cooling,heating,hot water and power.To evaluate the performance of the hybrid LAES system,three performance indicators are considered:nominal-electrical round trip efficiency(ne RTE),primary energy savings and avoided carbon dioxide emissions.Our results show that the hybrid LAES can achieve a high ne RTE between 52%and 76%,with the maximum at~5 MPa.For a given size of hybrid LAES(1 MW×8 h),the primary energy savings and avoided carbon dioxide emissions are up to 12.1 MWh and 2.3 ton,respectively.These new findings suggest,for the first time,that small-scale LAES systems could be best operated at lower charging pressures and the technologies have a great potential for applications in local decentralized micro energy networks.
基金Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization(South China University of Technology)(2013A061401005)Research Fund(JMSWFW-2110-044)from Zhongshan Jiaming Electric Power Co.,Ltd.
文摘The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak.
基金supported by National Natural Science Foundation of China(Grant No.52125604)。
文摘Combined cooling and power(CCP)system driven by low-grade heat is promising for improving energy efficiency.This work proposes a CCP system that integrates a regenerative organic Rankine cycle(RORC)and an absorption chiller on both driving and cooling fluid sides.The system is modeled by using the heat current method to fully consider nonlinear heat transfer and heat-work conversion constraints and resolve its behavior accurately.The off-design system simulation is performed next,showing that the fluid inlet temperatures and flow rates of cooling water as well as RORC working fluid strongly affect system performance.The off-design operation even becomes infeasible when parameters deviate from nominal values largely due to limited heat transfer capability of components,highlighting the importance of considering heat transfer constraints via heat current method.Design optimization aiming to minimize the total thermal conductance is also conducted.RORC efficiency increases by 7.9%and decreases by 12.4%after optimization,with the hot fluid inlet temperature increase from 373.15 to 403.15 K and mass flow rate ranges from 10 to 30 kg/s,emphasizing the necessity of balancing system cost and performance.
基金This project is supported by National High Technology Research and Development Program of China(863 Program)(No.2014AA051902).
文摘An active distribution system power-supply planning model considering cooling,heating and power load balance is proposed in this paper.A regional energy service company is assumed to be in charge of the investment and operation for the system in the model.The expansion of substations,building up distributed combined cooling,heating and power(CCHP),gas heating boiler(GHB)and air conditioner(AC)are included as investment planning options.In terms of operation,the load scenarios are divided into heating,cooling and transition periods.Also,the extreme load scene is included to assure the power supply reliability of the system.Numerical results demonstrate the effectiveness of the proposed model and illustrate the economic benefits of applying distributed CCHP in regional power supply on investment and operation.
文摘The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills in an important research gap by investigating the coupling effect between a diesel exhaust heat recovery and an intake air heating system employed in a remote mine.An integrative approach comprising analytical,numerical,and experimental assessment has been adapted.The novel analytical model developed here establishes the reliability of the proposed mine heating system by providing comparative analysis between a coupled and a decoupled system.The effect of working fluid variation has been examined by the numerical analysis and the possible improvement has been identified.Experimental investigations present a demonstration of the successful lab-scale implementation of the concept and validate the numerical and analytical models developed.Successful deployment of the fully coupled mine heating system proposed here will assist the mining industry on its journey towards energy-efficient,and sustainable mining practices through nearly 70%reduction in fossil fuel consumption for heating intentions.
文摘This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion process in heat & power plants, cogeneration units, etc., which burn the gaseous fuel, primarily natural gas, or methane, biogas, geothermal gas, or other gaseous mixtures containing hydrogen. The solution proposes a more effective and non-traditional use of gaseous fuel for heating, the flue gases of which are processed in order to extract additional utilisable heat, with potential elimination of CO2 from them. Deploying of the heating plant in an island regime (OFF-GRID) enables definition of the benefits brought by the 3 years of operational experience and presents visions for the future offering the possibility to utilise the support energy services at the municipal as well as regional level.
基金supported by National Key Tech-nology R&D Program(No.2015BAA01B01)State Grid Corporation of China
文摘As one of promising clean and low-emission energy, wind power is being rapidly developed in China.However, it faces serious problem of wind curtailment,particularly in northeast China, where combined heat and power(CHP) units cover a large proportion of the district heat supply. Due to the inherent strong coupling between the power and the heat load, the operational flexibility of CHP units is severely restricted in winter to meet the heat supply demand, which imparts considerable stress on the wind power connection to the grid. To promote the integration of wind power and enhance the flexibility of CHP units, this paper presented a method of heat and power load dispatching by exploring the energy storage ability of electric heating boilers and district heating systems. The optimization results indicate that the proposed method can integrate additional wind power into the grid and reduce the coal consumption of CHP units over the optimized period. Furthermore, the thermal inertia of a district heating system is found to contribute more to the reduction of coal consumption, whereas the electric heating boilers contribute to lower wind curtailment.
基金supported by the Science and Technology Project of State Grid Corporation of China(No.52060019001H)。
文摘This paper proposes a distributed real-time state estimation(RTSE)method for the combined heat and power systems(CHPSs).First,a difference-based model for the heat system is established considering the dynamics of heat systems.This heat system model is further used along with the power system steady-state model for holistic CHPS state estimation.A cubature Kalman filter(CKF)-based RTSE is developed to deal with the system nonlinearity while integrating both the historical and present measurement information.Finally,a multi-timescale asynchronous distributed computation scheme is designed to enhance the scalability of the proposed method for largescale systems.This distributed implementation requires only a small amount of information exchange and thus protects the privacy of different energy systems.Simulations carried out on two CHPSs show that the proposed method can significantly improve the estimation efficiency of CHPS without loss of accuracy compared with other existing models and methods.