期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
An analytical transient coal permeability model:Sorption non-equilibrium index-based swelling switch
1
作者 Xingxing Liu Jishan Liu +2 位作者 Liang Chen Jinchang Sheng Huimin Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1175-1191,共17页
Long-term permeability experiments have indicated that sorption-induced swelling can switch from internal to bulk depending on the evolutive sorption status.However,this sorption swelling switch mechanism has not been... Long-term permeability experiments have indicated that sorption-induced swelling can switch from internal to bulk depending on the evolutive sorption status.However,this sorption swelling switch mechanism has not been considered in current analytical permeability models.This study introduces a normalized sorption non-equilibrium index(SNEI)to characterize the sorption status,quantify the dynamical variations of matrix swelling accumulation and internal swelling partition,and formulate the sorption swelling switch model.The incorporation of this index into the extended total effective stress concept leads to an analytical transient coal permeability model.Model results show that the sorption swelling switch itself results in the permeability switch under stress-constrained conditions,while the confined bulk swelling suppresses the permeability recovery to the continuous reduction under displacement-constrained conditions.Model verifications show that current experimental observations correspond to the early stages of the transient process,and they could be extended to the whole process with these models.This study demonstrates the importance of the sorption swelling switch in determining permeability evolution using simple boundary conditions.It provides new insights into experimentally revealing the sorption swelling switch in the future,and underscores the requirement of a rigorous model for complex coupled processes in large-scale coal seams. 展开更多
关键词 coal permeability Sorption swelling switch Sorption non-equilibrium Boundary conditions
在线阅读 下载PDF
Controlling effects of differential swelling index on evolution of coal permeability 被引量:13
2
作者 Chuanzhong Jiang Zhenfeng Zhao +3 位作者 Xiwei Zhang Jishan Liu Derek Elsworth Guanglei Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第3期461-472,共12页
Coal permeability measurements are normally conducted under the assumption that gas pressure in the matrix is equalized with that in fracture and that gas sorption-induced swelling/shrinking strain is uniformly distri... Coal permeability measurements are normally conducted under the assumption that gas pressure in the matrix is equalized with that in fracture and that gas sorption-induced swelling/shrinking strain is uniformly distributed within the coal.However,the validity of this assumption has long been questioned and differential strain between the fracture strain and the bulk strain has long been considered as the primary reason for the inconsistency between experimental data and poroelasticity solutions.Although efforts have been made to incorporate the impact into coal permeability models,the fundamental nature of those efforts to split the matrix strain between fracture and coal bulk remains questionable.In this study,a new concept of differential swelling index(DSI)was derived to theoretically define the relation among sorption-induced strains of the coal bulk,fracture,and coal matrix at the equilibrium state.DSI was a function of the equilibrium pressure and its magnitudes were regulated by the Langmuir constants of both the matrix and the coal bulk.Furthermore,a spectrum of DSI-based coal permeability models was developed to explicitly consider the effect of differential strains.These models were verified with the experimental data under the conditions of uniaxial strain,constant confining pressure,and constant effective stress. 展开更多
关键词 coal permeability Differential swelling behavior Gas adsorption Equilibrium pressure
在线阅读 下载PDF
Effect of adsorption-induced matrix swelling on coal permeability evolution of micro-fracture with the real geometry
3
作者 Ming-Yao Wei Jishan Liu +2 位作者 Ying-Ke Liu Zhang-Hao Liu Derek Elsworth 《Petroleum Science》 SCIE CAS CSCD 2021年第4期1143-1152,共10页
Gas transport in coal induces effective stress variation,matrix swelling/shrinkage,and significantly affects matrix and fracture deformation,resulting in porosity and permeability evolution.However,the heterogeneity a... Gas transport in coal induces effective stress variation,matrix swelling/shrinkage,and significantly affects matrix and fracture deformation,resulting in porosity and permeability evolution.However,the heterogeneity and anisotropy of coal are neglected in dual porosity models,which can lead to the deviation from the real physical mechanisms.To uncover the permeability evolution,especially the influence of dynamic matrix-fracture interaction for real fracture distribution,advanced virtual simulation is proposed.In this study,real fracture geometry is taken into account in the physical model based on the CT-scan image,while the mathematical models for coal deformation and gas flow are established.Our calculations are verified against a long-term experimental data under the same boundary condition.Accordingly,the real matrix-fracture interaction caused by adsorption-induced matrix deformation has been visually exhibited,and some new insight into the behavior of fracture permeability in real materials is offered.The results indicate the non-uniform distribution of fracture geometry is responsible for the nonmonotonic change of permeability.It also found that injection pressure,Langmuir strain constant and initial matrix permeability have important influences on the fracture permeability evolution.This research provides valuable insight into the understanding of the permeability change for the real fracture spatial distribution in coal. 展开更多
关键词 Geometry distribution Adsorption swelling coal permeability Matrix-fracture interaction
在线阅读 下载PDF
Revaluating coal permeability-gas pressure relation under various gas pressure differential conditions
4
作者 Chunguang Wang Hongxu Wang +5 位作者 Derek Elsworth Guanglei Cui Bingqian Li Meng Zhou Wenxin Li Jiyuan Zhang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期203-216,共14页
Identifying changes in coal permeability with gas pressure and accurately codifying mean efective stresses in laboratory samples are crucial in predicting gas-fow behavior in coal reservoirs. Traditionally, coal perme... Identifying changes in coal permeability with gas pressure and accurately codifying mean efective stresses in laboratory samples are crucial in predicting gas-fow behavior in coal reservoirs. Traditionally, coal permeability to gas is assessed using the steady-state method, where the equivalent gas pressure in the coal is indexed to the average of upstream and downstream pressures of the coal, while ignoring the nonlinear gas pressure gradient along the gas fow path. For the fow of a compressible gas, the traditional method consistently underestimates the length/volume-averaged pressure and overestimates mean efective stress. The higher the pressure diferential within the sample, the greater the error between the true mean pressure for a compressible fuid and that assumed as the average between upstream and downstream pressures under typical reservoir conditions. A correction coefcient for the compressible fuid pressure asymptotes to approximately 1.3%, representing that the error in mean pressure and efective stress can be on the order of approximately 30%, particularly for highly pressure-sensitive permeabilities and compressibilities, further amplifying errors in evaluated reservoir properties. We utilized this volume-averaged pressure and efective stress to correct permeability and compressibility data reported in the literature. Both the corrected initial permeability and the corrected pore compressibility were found to be smaller than the uncorrected values, due to the underestimation of the true mean fuid pressure, resulting in an overestimation of reservoir permeability if not corrected. The correction coefcient for the initial permeability ranges from 0.6 to 0.1 (reservoir values are only approximately 40% to 90% of laboratory values), while the correction coefcient for pore compressibility remains at approximately 0.75 (reservoir values are only approximately 25% of laboratory value). Errors between the uncorrected and corrected parameters are quantifed under various factors, such as confning pressure, gas sorption, and temperature. By analyzing the evolutions of the initial permeability and pore compressibility, the coupling mechanisms of mechanical compression, adsorption swelling, and thermal expansion on the pore structure of the coal can be interpreted. These fndings can provide insights that are useful for assessing the sensitivity of coal permeability to gas pressure as truly representative of reservoir conditions. 展开更多
关键词 Gas compressibility coal permeability Pressure diferential Mean gas pressure
在线阅读 下载PDF
Ultrasonic vibrations and coal permeability: Laboratory experimental investigations and numerical simulations 被引量:11
5
作者 Zhang Junwen Li Yulin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期221-228,共8页
Ultrasonic vibrations in coal lead to cavitation bubble oscillation, growth, shrinkage, and collapse, and the strong vibration of cavitation bubbles not only makes coal pores break and cracks propagate, but plays an i... Ultrasonic vibrations in coal lead to cavitation bubble oscillation, growth, shrinkage, and collapse, and the strong vibration of cavitation bubbles not only makes coal pores break and cracks propagate, but plays an important role in enhancing the permeability of coal. In this paper, the influence of ultrasonic cavitation on coal and the effects of the sonic waves on crack generation, propagation, connection, as well as the effect of cracks on the coal permeability, are studied. The experimental results show that cracks in coal are generated even connected rapidly after ultrasonic cavitation. Under the effect of ultrasonic cavitation,the permeability increases between 30% and 60%, and the number of cracks in coal also significantly increased. Numerical experiments show that the effective sound pressure is beneficial to fracture propagation and connection, and it is closely related to the permeability. Moreover, the numerical simulations and physical experiments provide a guide for the coal permeability improvement. 展开更多
关键词 Ultrasonic cavitation Rock-coal coal fracture permeability Experimental analysis
在线阅读 下载PDF
Numerical simulation and experiment analysis of improving permeability by deep-hole presplitting explosion in high gassy and low permeability coal seam 被引量:6
6
作者 CAI Feng LIU Ze-gong +1 位作者 LIN Bai-quan LI Wei 《Journal of Coal Science & Engineering(China)》 2009年第2期175-180,共6页
Created a new damage model for explosive for LS-DYNA3D,taking advantageof the Taylor method aimed at the high gassy and low permeability coal seam,and numericallysimulated and analyzed the deep-hole presplitting explo... Created a new damage model for explosive for LS-DYNA3D,taking advantageof the Taylor method aimed at the high gassy and low permeability coal seam,and numericallysimulated and analyzed the deep-hole presplitting explosion.The entire processof explosion was represented,including cracks caused by dynamic pressure,transmissionand vibration superposition of stress waves,as well as cracks growth driven by gas generatedby explosion.The influence of the cracks generated in the process of explosion andthe performance of improving permeability caused by the difference of interval between.explosive holes were analyzed.A reasonable interval between explosive holes of deepholepresplitting explosions in high gassy and low permeability coal seams was proposed,and the resolution of gas drainage in high gassy and low permeability coal seam was putforward. 展开更多
关键词 High gassy and low permeability coal seam deep-hole presplitting explosion stress wave crack growth
在线阅读 下载PDF
Technique of coal mining and gas extraction without coal pillar in multi-seam with low permeability 被引量:5
7
作者 YUAN Liang 《Journal of Coal Science & Engineering(China)》 2009年第2期120-128,共9页
Aimed at the low mining efficiency in deep multi-seams because of high crustalstress,high gas content,low permeability,the compound 'three soft' roof and the trouble-somesafety situation encountered in deep le... Aimed at the low mining efficiency in deep multi-seams because of high crustalstress,high gas content,low permeability,the compound 'three soft' roof and the trouble-somesafety situation encountered in deep level coal exploitation,proposed a new idea ofgob-side retaining without a coal-pillar and Y-style ventilation in the first-mined key pressure-relieved coal seam and a new method of coal mining and gas extraction.The followingwere discovered:the dynamic evolution law of the crannies in the roof is influenced bymining,the formative rule of 'the vertical cranny-abundant area' along the gob-side,thedistribution of air pressure field in the gob,and the flowing rule of pressure-relieved gas ina Y-style ventilation system.The study also established a theoretic basis for a new miningmethod of coal mining and gas extraction which is used to extract the pressure-relievedgas by roadway retaining boreholes instead of roadway boreholes.Studied and resolvedmany difficult key problems,such as,fast roadway retaining at the gob-side without a coalpillar,Y-style ventilation and extraction of pressure-relieved gas by roadway retainingboreholes,and so on.The study innovated and integrated a whole set of technical systemsfor coal and pressure relief gas extraction.The method of the pressure-relieved gasextraction by roadway retaining had been successfully applied in 6 typical working faces inthe Huainan and Huaibei mining areas.The research can provide a scientific and reliabletechnical support and a demonstration for coal mining and gas extraction in gaseous deepmulti-seams with low permeability. 展开更多
关键词 coal seam with low permeability without coal-pillar gob-side roadway retaining roadway retaining and borehole drilling coal mining and gas extraction
在线阅读 下载PDF
A method of determining the permeability coefficient of coal seam based on the permeability of loaded coal 被引量:6
8
作者 Li Bo Wei Jianping +2 位作者 Wang Kai Li Peng Wang Ke 《International Journal of Mining Science and Technology》 SCIE EI 2014年第5期637-641,共5页
This study developed the equipment for thermo-fluid–solid coupling of methane-containing coal, and investigated the seepage character of loaded coal under different working conditions. Regarding the effective pressur... This study developed the equipment for thermo-fluid–solid coupling of methane-containing coal, and investigated the seepage character of loaded coal under different working conditions. Regarding the effective pressure as a variable, the variation characteristics of the gas permeability of loaded methane-containing coal has been studied under the conditions of different confining pressures and pore pressures. The qualitative and quantitative relationship between effective stress and permeability of loaded methane-containing coal has been established, considering the adsorption of deformation, amount of pore gas compression and temperature variation. The results show that the permeability of coal samples decreases along with the increasing effective stress. Based on the Darcy law, the correlation equation between the effective stress and permeability coefficient of coal seam has been established by combining the permeability coefficient of loaded coal and effective stress. On the basis of experimental data, this equation is used for calculation, and the results are in accordance with the measured gas permeability coefficient of coal seam. In conclusion, this method can be accurate and convenient to determine the gas permeability coefficient of coal seam, and provide evidence for forecasting that of the deep coal seam. 展开更多
关键词 permeability coefficient coal seam Effective pressure Loaded coal Pore pressure
在线阅读 下载PDF
Resistivity response to the porosity and permeability of low rank coal 被引量:4
9
作者 Wang Gang Qin Yong +3 位作者 Shen Jian Hu Yuanyuan Liu Donghai Zhao Long 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期339-344,共6页
Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures.Specific... Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures.Specifically,we analysed the relationship of coal resistivity to porosity and permeability via heating and pressurization experiments.The results indicated that coal resistivity decreases exponentially with increasing pressure.Increasing the temperature decreases the resistivity.The sensitivity of coal resistivity to the confining pressure is worse when the temperature is higher.The resistivity of dry coal samples was linearly related to φ~m.Increasing the temperature decreased the cementation exponent(m).Increasing the confining pressure exponentially decreases the porosity.Decreasing the pressure increases the resistivity and porosity for a constant temperature.Increasing the temperature yields a quadratic relationship between the resistivity and permeability for a constant confining pressure.Based on the Archie formula,we obtained the coupling relationship between coal resistivity and permeability for Laojunmiao coal samples at different temperatures and confining pressures. 展开更多
关键词 High temperature and high pressure Low rank coal Resistivity Porosity permeability
在线阅读 下载PDF
Research into comprehensive gas extraction technology of single coal seams with low permeability in the Jiaozuo coal mining area 被引量:5
10
作者 Fu Jiangwei Fu Xuehai +2 位作者 Hu Xiao Chen Li Ou Jianchun 《Mining Science and Technology》 EI CAS 2011年第4期483-489,共7页
For a low permeability single coal seam prone to gas outbursts, pre-drainage of gas is difficult and inefficient, seriously restricting the safety and efficiency of production. Radical measures of increasing gas extra... For a low permeability single coal seam prone to gas outbursts, pre-drainage of gas is difficult and inefficient, seriously restricting the safety and efficiency of production. Radical measures of increasing gas extraction efficiency are pressure relief and infrared antireflection. We have analyzed the effect of mining conditions and the regularity of mine pressure distribution in front of the working face of a major coal mine of the Jiaozuo Industrial (Group) Co. as our test area, studied the width of the depressurization zone in slice mining and analyzed gas efficiency and fast drainage in the advanced stress relaxation zone. On that basis, we further investigated and practiced the exploitation technology of shallow drilling, fan dril- ling and grid shape drilling at the working face. Practice and our results show that the stress relaxation zone is the ideal region for quick and efficient extraction of gas. By means of an integrated extraction technology, the amount of gas emitted into the zone was greatly reduced, while the risk of dangerous outbursts of coal and gas was lowered markedly. This exploration provides a new way to control for gas in working faces of coal mines with low permeability and risk of gas outbursts of single coal seams in the Jiaozuo mining area. 展开更多
关键词 Single coal seam with low permeability High risk gas and outburst coal seamStress relaxation zoneComprehensive gas extractionJiaozuo coal mining areaGas emission
在线阅读 下载PDF
Theory and test research on permeability of coal and rock body influenced by mining 被引量:2
11
作者 QI Qing-xin LI Hong-yan +4 位作者 WANG You-gang DENG Zhi-gang LAN Hang PENG Yong-wei LI Chun-rui 《Journal of Coal Science & Engineering(China)》 2009年第2期143-147,共5页
Stress distribution rules and deformation and failure properties of coal and rockbodies influenced by mining were analyzed.Experimental research on permeability of coaland rock samples under different loading conditio... Stress distribution rules and deformation and failure properties of coal and rockbodies influenced by mining were analyzed.Experimental research on permeability of coaland rock samples under different loading conditions was finished in the laboratory.In-situmeasurement of coal permeability influenced by actual mining was done as well.Theoryanalysis show that permeability varied with damage development of coal and rock understress,and the influence of fissure on permeability was greatest.Laboratory results showthat under different loading conditions permeability was different and it varied with stress,which indicated that permeability was directly related to the loading process.In-situ testsshowed that permeability is related to abutment stress to some degree.The above resultsmay be referenced to gas prevention and drainage. 展开更多
关键词 stress of coal and rock body permeability of coal influenced by mining SF6 tracing technology crack aperture damage
在线阅读 下载PDF
Biological Permeability Enhancement Technology for Coal Reservoir 被引量:1
12
作者 GUO Hongyu LIU Xile +2 位作者 XIA Daping BAI Yang FU Chaoyong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第5期1938-1939,共2页
Objective Despite the adoption of various permeability enhancement technologies,the low permeability of coal reservoir has not been fundamentally improved for the development of coalbed methane(CBM)on the ground or ... Objective Despite the adoption of various permeability enhancement technologies,the low permeability of coal reservoir has not been fundamentally improved for the development of coalbed methane(CBM)on the ground or the control of gas underground. 展开更多
关键词 Biological permeability Enhancement Technology for coal Reservoir
在线阅读 下载PDF
Possibilities of Increasing the Effectiveness of Mining Methane Drainage in Conditions of Low Permeability of Coal Seams
13
作者 Nikodem Szlazak Dariusz Obracaj Justyna Swolkien 《Journal of Energy and Power Engineering》 2014年第7期1167-1176,共10页
There is very low permeability of coal seams in Polish coal mines. For this reason, pre-mining methane drainage is conducted to a small extent, which rarely brings expected results. Methane emission from roof and floo... There is very low permeability of coal seams in Polish coal mines. For this reason, pre-mining methane drainage is conducted to a small extent, which rarely brings expected results. Methane emission from roof and floor sub-economic seams has the greatest share in total methane emission to workings. Effective CMM (coal mine methane) capture is used from goaf in advance or after mining. However, due to longwall mining and ventilation systems, it is not always possible to capture methane from strata. This paper presents a method of increasing the permeability of coal seams and a method of drilling boreholes towards goaf. Initial results of the effectiveness of methane capture after applying these methods are presented. 展开更多
关键词 Drainage effectiveness coal mine methane drainage methane emission permeability of coal seams.
在线阅读 下载PDF
Direct Evidence of Coal Swelling and Shrinkage with Injecting CO_(2) and N_(2) Using in-situ Synchrotron X-ray Microtomography 被引量:1
14
作者 Guanglei Zhang P.G.Ranjith Herbert E.Huppert 《Engineering》 SCIE EI CAS 2022年第11期88-95,共8页
Deep coal seams are one of the world’s most widespread deposits for carbon dioxide(C02)disposal and are generally located near large point sources of CO_(2)emissions.The injection of CO_(2)into coal seams has great p... Deep coal seams are one of the world’s most widespread deposits for carbon dioxide(C02)disposal and are generally located near large point sources of CO_(2)emissions.The injection of CO_(2)into coal seams has great potential to sequester CO_(2)while simultaneously enhancing coalbed methane(CO_(2)-ECBM)recovery.Pilot tests of CO_(2)-ECBM have been conducted in coal seams worldwide with favorable early results.However,one of the main technical barriers in coal seams needs to be resolved:Injecting CO_(2)reduces coal permeability and well injectivity.Here,using in situ synchrotron X-ray microtomography,we provide the first observational evidence that injecting nitrogen(N_(2))can reverse much of this lost permeability by reopening fractures that have closed due to coal swelling induced by CO_(2)adsorption.Our findings support the notion that injecting minimally treated flue gas-a mixture of mainly N_(2) and CO_(2)-is an attractive alternative for ECBM recovery instead of pure CO_(2)injection in deep coal seams.Firstly,flue gas produced by power plants could be directly injected after particulate removal,thus avoiding high CO_(2)-separation costs.Secondly,the presence of N_(2)makes it possible to maintain a sufficiently high level of coal permeability.These results suggest that flue-gas ECBM for deep coal seams may provide a promising path toward net-zero emissions from coal mines. 展开更多
关键词 CCS CO_(2)-ECBM Carbon neutrality X-ray imaging coal permeability
在线阅读 下载PDF
Pressure-relief and permeability-increase technology of high liquid–solid coupling blast and its application 被引量:3
15
作者 Hao Zhiyong Zhou Chao +2 位作者 Lin Baiquan Pang Yuan Li Ziwen 《International Journal of Mining Science and Technology》 SCIE EI 2014年第1期45-49,共5页
As for the coal seam with high stress,high gas and low permeability,a single technology cannot prevent the complex dynamic disasters.Because of this,the study proposes a new method of pressure-relief and permeability-... As for the coal seam with high stress,high gas and low permeability,a single technology cannot prevent the complex dynamic disasters.Because of this,the study proposes a new method of pressure-relief and permeability-increase technology of the high liquid–solid coupling blast.Through coal seam injection and charging structure change,the paper fully works out the dual functions of the water and explosion.Using the theoretical calculation,numerical simulation and physical experiments,we obtained that the initial blasting stress,displacement and overpressure of the liquid–solid coupling blast are much better than that of ordinary blasting.The technology has been used in the relative coal mine,and the application results show that the technique has effectively prevented the coal and gas outburst,which has a wide range of application. 展开更多
关键词 High stress High gasLow permeability coal seamLiquid-solid coupling blast
在线阅读 下载PDF
CO_2 –H_2O–coal interaction of CO_2 storage in coal beds 被引量:2
16
作者 Gao Shasha Wang Yanbin +3 位作者 Jia Lilong Wang Hongjie Yuan Jun Wang Xianghao 《International Journal of Mining Science and Technology》 SCIE EI 2013年第4期519-523,共5页
In order to study the physical and chemical reaction after CO2 injected into coal beds at different condition.The physical and chemistry reaction among CO2,H2O and coal was studied,and the influence on permeability an... In order to study the physical and chemical reaction after CO2 injected into coal beds at different condition.The physical and chemistry reaction among CO2,H2O and coal was studied,and the influence on permeability and porosity of coal beds was carried out.The experimental method was used,so did the basic theory of mineralogy,coal petrology,geochemistry,analytical geochemistry and physical chemistry.In this experiment,the changes of mineral and permeability of coal and water quality were observed through CO2 solution reacting with different coal samples.The differences could be found out by comparing the properties and microcrystalline structure before and after the reaction.There are three results were carried out:First,the content of carbonate in coal beds decreases because of the dissolution reaction between carbonate minerals and CO2 solution,and precipitation is formed by reaction of chlorite and orthoclase.Second,the result that permeability and porosity of coal beds are improved after the reaction is proposed.Third,the initial permeability of different coal samples plays a great role on the reaction,and the improvement of permeability is not obvious in the samples which have too low or too high permeability,and the improvement is good in medium permeability(0.2–3 mD). 展开更多
关键词 CO2 storage coal bed Mineral reaction permeability Porosity
在线阅读 下载PDF
Image-based quantitative probing of 3D heterogeneous pore structure in CBM reservoir and permeability estimation with pore network modeling
17
作者 Peng Liu Yulong Zhao +5 位作者 Zhengduo Zhao Huiming Yang Baisheng Nie Hengyi He Quangui Li Guangjie Bao 《International Journal of Coal Science & Technology》 2024年第5期121-141,共21页
Coalbed methane(CBM)recovery is attracting global attention due to its huge reserve and low carbon burning benefits for the environment.Fully understanding the complex structure of coal and its transport properties is... Coalbed methane(CBM)recovery is attracting global attention due to its huge reserve and low carbon burning benefits for the environment.Fully understanding the complex structure of coal and its transport properties is crucial for CBM development.This study describes the implementation of mercury intrusion and μ-CT techniques for quantitative analysis of 3D pore structure in two anthracite coals.It shows that the porosity is 7.04%-8.47%and 10.88%-12.11%,and the pore connectivity is 0.5422-0.6852 and 0.7948-0.9186 for coal samples 1 and 2,respectively.The fractal dimension and pore geometric tortuosity were calculated based on the data obtained from 3D pore structure.The results show that the pore structure of sample 2 is more complex and developed,with lower tortuosity,indicating the higher fluid deliverability of pore system in sample 2.The tortuosity in three-direction is significantly different,indicating that the pore structure of the studied coals has significant anisotropy.The equivalent pore network model(PNM)was extracted,and the anisotropic permeability was estimated by PNM gas flow simulation.The results show that the anisotropy of permeability is consistent with the slice surface porosity distribution in 3D pore structure.The permeability in the horizontal direction is much greater than that in the vertical direction,indicating that the dominant transportation channel is along the horizontal direction of the studied coals.The research results achieve the visualization of the 3D complex structure of coal and fully capture and quantify pore size,connectivity,curvature,permeability,and its anisotropic characteristics at micron-scale resolution.This provides a prerequisite for the study of mass transfer behaviors and associated transport mechanisms in real pore structures. 展开更多
关键词 CT image Heterogeneous pore structure Pore network model coal permeability coalbed methane
在线阅读 下载PDF
CO_2 permeability of fractured coal subject to confining pressures and elevated temperature: Experiments and modeling 被引量:8
18
作者 JU Yang WANG JianGuo +3 位作者 WANG HuiJie ZHENG JiangTao RANJITH Pathegama G GAO Feng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第12期1931-1942,共12页
The CO_2 permeability of fractured coal is of great significance to both coalbed gas extraction and CO_2 storage in coal seams, but the effects of high confining pressure, high injection pressure and elevated temperat... The CO_2 permeability of fractured coal is of great significance to both coalbed gas extraction and CO_2 storage in coal seams, but the effects of high confining pressure, high injection pressure and elevated temperature on the CO_2 permeability of fractured coal with different fracture extents have not been investigated thoroughly. In this paper, the CO_2 permeability of fractured coals sampled from a Pingdingshan coal mine in China and artificially fractured to a certain extent is investigated through undrained triaxial tests. The CO_2 permeability is measured under the confining pressure with a range of 10–25 MPa, injection pressure with a range of 6–12 MPa and elevated temperature with a range of 25–70°C. A mechanistic model is then proposed to characterize the CO_2 permeability of the fractured coals. The effects of thermal expansion, temperature-induced reduction of adsorption capacity, and thermal micro-cracking on the CO_2 permeability are explored. The test results show that the CO_2 permeability of naturally fractured coal saliently increases with increasing injection pressure. The increase of confining pressure reduces the permeability of both naturally fractured coal and secondarily fractured coal. It is also observed that initial fracturing by external loads can enhance the permeability, but further fracturing reduces the permeability. The CO_2 permeability decreases with the elevation of temperature if the temperature is lower than 44°C, but the permeability increases with temperature once the temperature is beyond 44°C. The mechanistic model well describes these compaction mechanisms induced by confining pressure, injection pressure and the complex effects induced by elevated temperature. 展开更多
关键词 CO2 permeability fractured coal confining pressure elevated temperature thermal effects mechanistic models
原文传递
CBM geology conditions study of Gemudi syncline,Western Guizhou Province
19
作者 WU Cai-fang OU Zheng FENG Qing ZHANG Jie-fang 《Journal of Coal Science & Engineering(China)》 2010年第3期288-291,共4页
Through the analysis of the surrounding rock, coal seam burial depth, coal quality and hydrologic geological condition, the methane-bearing property characteristics of the coal reservoir in the Gemudi syncline were el... Through the analysis of the surrounding rock, coal seam burial depth, coal quality and hydrologic geological condition, the methane-bearing property characteristics of the coal reservoir in the Gemudi syncline were elucidated. Most of the wall rock of the coal reservoir is mudstone and silt, which is a favourable enclosing terrane. Burial depth of the main excavating coat seam is moderate. The groundwater activity is thin, and there are absolute groundwater systems between each coal seam, which make poor intercon- nections to accelerate CBM enrichment. In our research, the area coal reservoir meta- morphosis is high, CBM content is high, hole-cranny system development degree is high, and permeability of the great mass of the main coal seam exceeds 0.1×10^-3 μm2, The result demonstrates that the southeast of the Gemudi syncline has the best conditions for prospecting and exploiting CBM. 展开更多
关键词 Gemudi syncline CBM geological condition coal reservoir characteristics permeability
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部