Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not ...Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not satisfactory. The contribution of the vector x(t) with different modules is theoretically proved to be unequal, and a weighted K-means clustering method is proposed on this grounds. The proposed algorithm is not only as fast as the conventional K-means clustering method, but can also achieve considerably accurate results, which is demonstrated by numerical experiments.展开更多
Large-scale integration of wind power into a power system introduces uncertainties to its operation and planning,making the power system operation scenario highly diversified and variable.In conventional power system ...Large-scale integration of wind power into a power system introduces uncertainties to its operation and planning,making the power system operation scenario highly diversified and variable.In conventional power system planning,some key operation modes and most critical scenarios are typically analyzed to identify the weak and high-risk points in grid operation.While these scenarios may not follow traditional empirical patterns due to the introduction of large-scale wind power.In this paper,we propose a weighted clustering method to quickly identify a system’s extreme operation scenarios by considering the temporal variations and correlations between wind power and load to evaluate the stability and security for system planning.Specifically,based on an annual time-series data of wind power and load,a combined weighted clustering method is used to pick the typical scenarios of power grid operation,and the edge operation points far from the clustering center are extracted as the extreme scenarios.The contribution of fluctuations and capacities of different wind farms and loads to extreme scenarios are considered in the clustering process,to further improve the efficiency and rationality of the extreme-scenario extraction.A set of case studies was used to verify the performance of the method,providing an intuitive understanding of the extreme scenario variety under wind power integration.展开更多
Affected by many involved factors, different dimensions, data with large difference, incomplete information and so on, the most optimal selection of regional outburst prevention measures for outburst mine has become a...Affected by many involved factors, different dimensions, data with large difference, incomplete information and so on, the most optimal selection of regional outburst prevention measures for outburst mine has become a complicated system project. The traditional way of outburst prevention measure selection belongs to qualitative method, which may cause high-cost of gas control, huge quantities of drilling work, long construction time and even secondary disaster. To solve the above-mentioned problems, in light of occurrence status of coal seam gas in No. 21 mining area of Jinzhushan Tuzhu Mine, through grey fixed weight clustering theory and a combination method of qualitative and quantitative analysis, the judging model with multi-objective classification for optimization of outburst prevention measures was established. The three weight coefficients of outburst prevention technology scheme are sorted, in order to determine the advantages and disadvantages of each outburst prevention technology scheme under the comprehensive evaluation of multi-target. Finally, the problem of quantitative selection for regional outburst prevention technology scheme is solved under the situation of multi-factor mode and incomplete information, which provides reasonable and effective technical measures for prevention of coal and gas outburst disaster.展开更多
A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to ...A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to generate fuzzy memberships.In the algorithm,sample weights based on a distribution density function of data point and genetic algorithm (GA) are introduced to enhance the performance of FC.Then a multi-class FSVM with radial basis function kernel is established according to directed acyclic graph algorithm,the penalty factor and kernel parameter of which are optimized by GA.Finally,the model is executed for multi-class fault diagnosis of rolling element bearings.The results show that the presented model achieves high performances both in identifying fault types and fault degrees.The performance comparisons of the presented model with SVM and distance-based FSVM for noisy case demonstrate the capacity of dealing with noise and generalization.展开更多
The clustering evaluation can be used to scientifically classify the objects to be evaluated according to the information aggregation of various evaluation rules. In grey weighted clustering evaluation, the index clus...The clustering evaluation can be used to scientifically classify the objects to be evaluated according to the information aggregation of various evaluation rules. In grey weighted clustering evaluation, the index clustering rule relies on the construction of the whitenization weight function, while the existing construction method of the linear function lacks the construction mechanism analysis and validity explanation. A normative construction principle is put forward by analyzing the construction mechanism of the function. Through proving the normative principle of the function,the basic modal function(BMF) is proposed and characterized by different function forms. Then, a new type of the whitenization weight function and its grey clustering evaluation model algorithm are given by studying the mechanism and nature of the construction of different forms of the function. Finally, the comparative study for self-innovation capability of defense science and technology industry(DSTI) is taken as an example. The results show that the different construction ways of the function have an effect on the clustering result. The proposed construction mechanism can better explain the index clustering rules and evaluation effectiveness,which will perfect the theoretical system of grey clustering evaluation and be applied to practice effectively.展开更多
On the basis of the initial definition of Enterprise Emergency Management Capacity(EEMC), the paper has established evaluation index system of EEMC, and provided a method to calculate index weight, with the regard t...On the basis of the initial definition of Enterprise Emergency Management Capacity(EEMC), the paper has established evaluation index system of EEMC, and provided a method to calculate index weight, with the regard to subjectivity existing in the comprehensive evaluation of EEMC multi-indicators, in accordance with the principle of Variable weight Gray Cluster, which makes the weight of indicators generate automatically in the evaluation process and not judged by human, thus decreasing subjective factors during the evaluation.展开更多
In recent years, functional data has been widely used in finance, medicine, biology and other fields. The current clustering analysis can solve the problems in finite-dimensional space, but it is difficult to be direc...In recent years, functional data has been widely used in finance, medicine, biology and other fields. The current clustering analysis can solve the problems in finite-dimensional space, but it is difficult to be directly used for the clustering of functional data. In this paper, we propose a new unsupervised clustering algorithm based on adaptive weights. In the absence of initialization parameter, we use entropy-type penalty terms and fuzzy partition matrix to find the optimal number of clusters. At the same time, we introduce a measure based on adaptive weights to reflect the difference in information content between different clustering metrics. Simulation experiments show that the proposed algorithm has higher purity than some algorithms.展开更多
基金the National Natural Science Foundation of China (60672061)
文摘Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not satisfactory. The contribution of the vector x(t) with different modules is theoretically proved to be unequal, and a weighted K-means clustering method is proposed on this grounds. The proposed algorithm is not only as fast as the conventional K-means clustering method, but can also achieve considerably accurate results, which is demonstrated by numerical experiments.
基金supported by Innovation Fund Program of China Electric Power Research Institute(NY83-19-003)
文摘Large-scale integration of wind power into a power system introduces uncertainties to its operation and planning,making the power system operation scenario highly diversified and variable.In conventional power system planning,some key operation modes and most critical scenarios are typically analyzed to identify the weak and high-risk points in grid operation.While these scenarios may not follow traditional empirical patterns due to the introduction of large-scale wind power.In this paper,we propose a weighted clustering method to quickly identify a system’s extreme operation scenarios by considering the temporal variations and correlations between wind power and load to evaluate the stability and security for system planning.Specifically,based on an annual time-series data of wind power and load,a combined weighted clustering method is used to pick the typical scenarios of power grid operation,and the edge operation points far from the clustering center are extracted as the extreme scenarios.The contribution of fluctuations and capacities of different wind farms and loads to extreme scenarios are considered in the clustering process,to further improve the efficiency and rationality of the extreme-scenario extraction.A set of case studies was used to verify the performance of the method,providing an intuitive understanding of the extreme scenario variety under wind power integration.
文摘Affected by many involved factors, different dimensions, data with large difference, incomplete information and so on, the most optimal selection of regional outburst prevention measures for outburst mine has become a complicated system project. The traditional way of outburst prevention measure selection belongs to qualitative method, which may cause high-cost of gas control, huge quantities of drilling work, long construction time and even secondary disaster. To solve the above-mentioned problems, in light of occurrence status of coal seam gas in No. 21 mining area of Jinzhushan Tuzhu Mine, through grey fixed weight clustering theory and a combination method of qualitative and quantitative analysis, the judging model with multi-objective classification for optimization of outburst prevention measures was established. The three weight coefficients of outburst prevention technology scheme are sorted, in order to determine the advantages and disadvantages of each outburst prevention technology scheme under the comprehensive evaluation of multi-target. Finally, the problem of quantitative selection for regional outburst prevention technology scheme is solved under the situation of multi-factor mode and incomplete information, which provides reasonable and effective technical measures for prevention of coal and gas outburst disaster.
基金Supported by the joint fund of National Natural Science Foundation of China and Civil Aviation Administration Foundation of China(No.U1233201)
文摘A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to generate fuzzy memberships.In the algorithm,sample weights based on a distribution density function of data point and genetic algorithm (GA) are introduced to enhance the performance of FC.Then a multi-class FSVM with radial basis function kernel is established according to directed acyclic graph algorithm,the penalty factor and kernel parameter of which are optimized by GA.Finally,the model is executed for multi-class fault diagnosis of rolling element bearings.The results show that the presented model achieves high performances both in identifying fault types and fault degrees.The performance comparisons of the presented model with SVM and distance-based FSVM for noisy case demonstrate the capacity of dealing with noise and generalization.
基金supported by the National Natural Science Foundation of China(71671090)the Aeronautical Science Foundation of China(2016ZG52068)+1 种基金the Liberal Arts and Social Sciences Foundation of the Ministry of Education(MOE)in China(15YJCZH189)the Qinglan Project for Excellent Youth or Middle-aged Academic Leaders in Jiangsu Province
文摘The clustering evaluation can be used to scientifically classify the objects to be evaluated according to the information aggregation of various evaluation rules. In grey weighted clustering evaluation, the index clustering rule relies on the construction of the whitenization weight function, while the existing construction method of the linear function lacks the construction mechanism analysis and validity explanation. A normative construction principle is put forward by analyzing the construction mechanism of the function. Through proving the normative principle of the function,the basic modal function(BMF) is proposed and characterized by different function forms. Then, a new type of the whitenization weight function and its grey clustering evaluation model algorithm are given by studying the mechanism and nature of the construction of different forms of the function. Finally, the comparative study for self-innovation capability of defense science and technology industry(DSTI) is taken as an example. The results show that the different construction ways of the function have an effect on the clustering result. The proposed construction mechanism can better explain the index clustering rules and evaluation effectiveness,which will perfect the theoretical system of grey clustering evaluation and be applied to practice effectively.
文摘On the basis of the initial definition of Enterprise Emergency Management Capacity(EEMC), the paper has established evaluation index system of EEMC, and provided a method to calculate index weight, with the regard to subjectivity existing in the comprehensive evaluation of EEMC multi-indicators, in accordance with the principle of Variable weight Gray Cluster, which makes the weight of indicators generate automatically in the evaluation process and not judged by human, thus decreasing subjective factors during the evaluation.
文摘In recent years, functional data has been widely used in finance, medicine, biology and other fields. The current clustering analysis can solve the problems in finite-dimensional space, but it is difficult to be directly used for the clustering of functional data. In this paper, we propose a new unsupervised clustering algorithm based on adaptive weights. In the absence of initialization parameter, we use entropy-type penalty terms and fuzzy partition matrix to find the optimal number of clusters. At the same time, we introduce a measure based on adaptive weights to reflect the difference in information content between different clustering metrics. Simulation experiments show that the proposed algorithm has higher purity than some algorithms.