A classical time-varying signal, the multi-component Chirp signal has been widely used and the ability to estimate its instantaneous frequency (IF) is very useful. But in noisy environments, it is hard to estimate t...A classical time-varying signal, the multi-component Chirp signal has been widely used and the ability to estimate its instantaneous frequency (IF) is very useful. But in noisy environments, it is hard to estimate the 1F of a multi-component Chirp signal accurately. Wigner distribution maxima (WDM) are usually utilized for this estimation. But in practice, estimation bias increases when some points deviate from the true IF in high noise environments. This paper presents a new method of multi-component Chirp signal 1F estimation named Wigner Viterbi fit (WVF), based on Wigner-Ville distribution (WVD) and the Viterbi algorithm. First, we transform the WVD of the Chirp signal into digital image, and apply the Viterbi algorithm to separate the components and estimate their IF. At last, we establish a linear model to fit the estimation results. Theoretical analysis and simulation results prove that this new method has high precision and better performance than WDM in high noise environments, and better suppression of interference and the edge effect. Compared with WDM, WVF can reduce the mean square error (MSE) by 50% when the signal to noise ration (SNR) is in the range of-15dB to -11dB. WVF is an effective and promising 1F estimation method.展开更多
The realization of the parameter estimation of chirp signals using the fractional Fourier transform (FRFT) is based on the assumption that the sampling duration of practical observed signals would be equal to the ti...The realization of the parameter estimation of chirp signals using the fractional Fourier transform (FRFT) is based on the assumption that the sampling duration of practical observed signals would be equal to the time duration of chirp signals contained in the former. However, in many actual circumstances, this assumption seems unreasonable. On the basis of analyzing the practical signal form, this paper derives the estimation error of the existing parameter estimation method and then proposes a novel and universal parameter estimation algorithm. Furthermore, the proposed algorithm is developed which allows the estimation of the practical observed Gaussian windowed chirp signal. Simulation results show that the new algorithm works well.展开更多
To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband ...To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband chirp signals are linear and vary with time. And the randon Wignersville distribution (RWVD) of real sensors and virtual sensors are calculated to yield the new time-invariable steering vectors, furthermore, the noise and cross terms are suppressed. In addition, the multiple chirp signals are selected by their time-frequency points. The cost of computation is lower than the common AOA estimation methods of wideband sources due to nonrequirement of frequency focusing, interpolating and matrix decomposition, including subspace decomposition. Under the lower signal noise ratio (SNR) condition, the proposed method exhibits better precision than the method of frequency focusing (FF). The proposed method can be further applied to nonuniform linear array (NLA) since it is not confined to the array geometry. Simulation results illustrate the efficacy of the proposed method.展开更多
To improve the data rate of underwater acoustic frequency-hopped communications, frequency hopping is applied to different orders of fractional Fourier domain (FrFD), to enable non-intrusive, bandwidth-limited acousti...To improve the data rate of underwater acoustic frequency-hopped communications, frequency hopping is applied to different orders of fractional Fourier domain (FrFD), to enable non-intrusive, bandwidth-limited acoustic communications. An FrFD frequency-hopped communication method based on chirp modulation, namely multiple chirp shift keying-FrFD hopping (MCSK-FrFDH), is proposed for underwater acoustic channels. Validated by both simulations and experimental results, this method can reach a bandwidth efficiency twice more than conventional frequency-hopped methods with the same data rate and anti-multipath capability, suggesting that the proposed method achieves a better performance than the traditional frequency hopped communication in underwater acoustic communication channels. Results also show that in practical scenarios, the MCSK-FrFDH system with longer symbol length performs better at the low signal-to-noise ratio (SNR), while the system with larger frequency sweeping range performs better at a high SNR.展开更多
A novel M-ary chirp modulation technique based on an optimal chirp signal design is proposed in this paper to offer higher data rate for an indoor wireless chirp spread spectrum communication system. Both linear chirp...A novel M-ary chirp modulation technique based on an optimal chirp signal design is proposed in this paper to offer higher data rate for an indoor wireless chirp spread spectrum communication system. Both linear chirp signals and combined chirp signals are used in this system to reduce the effect of the cross correlation, and simplify the complexity of the system. The optimal scheme of de- signing both linear chirp signals and combined chirp signals is discussed to minimize the value of the cross correlation and obtain a better system performance. Simulation results show that, compared with the binary orthogonal chirp modulation technique, the M-ary chirp modulation technique based on an optimal chirp signal set has a higher data rate with a reasonable bit-error rate (BER) perform- ance under both additive white gaussian noise (AWGN) channel and indoor wireless channel.展开更多
Chirp signals show energy aggregation in the fractional Fourier domain(FrFD) w hich can be used to estimate the parameter of the signals. In this paper,a parameter estimation method for multi-component chirp signal w ...Chirp signals show energy aggregation in the fractional Fourier domain(FrFD) w hich can be used to estimate the parameter of the signals. In this paper,a parameter estimation method for multi-component chirp signal w hich corrupted by w hite Gaussian noise is proposed based on the discrete fractional Fourier transform(DFrFT) and the differential evolution( DE) algorithm. The proposed algorithm uses the DE algorithm instead of the conventional fine search algorithm to detect the peak of the signals in the FrFD. The paper simulated the influence of the noise and the resolution of the proposed algorithm. The results of the simulation show the proposed method does not only improve the estimation accuracy of the peak coordinate,but also reduces time consuming.展开更多
To prevent the long-time coherent integration and limited range window stumbling blocks of stretch processing and reduce computational complexity, a novel method called multi-subpulse process of large time-bandwidth p...To prevent the long-time coherent integration and limited range window stumbling blocks of stretch processing and reduce computational complexity, a novel method called multi-subpulse process of large time-bandwidth product linear frequency modulating ( LFM ) signal ( i. e. chirp ) is proposed in this paper. The wideband chirp signal is split up into several compressed subpulses. Then the fast Fourier transform (FFT) is used to reconstruct the high resolution range profile ( HR- RP) in a relative short computation time. For multi-frame, pulse Doppler (PD) process is performed to obtain the two-dimension range-Doppler (R-D) high resolution profile. Simulations and field ex- perimental results show that the proposed method can provide high-quality target profile over a large range window in a short computation time and has the promising potential for long-time coherent in- tegration.展开更多
In this paper a joint timing and frequency synchronization method based on Fractional Fourier Transform (FIFT) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) system. The combination of two chirp...In this paper a joint timing and frequency synchronization method based on Fractional Fourier Transform (FIFT) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) system. The combination of two chirp signals with opposite chirp rates are used as the training signal, the received training signal with timing and frequency offset is transformed by FrFT and the two peaks representing two chirps in FrFT domain are detected, then the position coordinates of the two peaks are precisely corrected and substituted into an equation group to calculate timing and frequency offset simultaneously. This method only needs one FrFT calculation to implement synchronization, the computational complexity is equal to that of FFT and less than that of correlation or maximum likelihood calculation of existing methods, and estimation range of frequency offset is Large, greater than half the signal bandwidth, while the simulation results show that even at low SNR it can accurately estimate timing and frequency offset and the estimation error is less than that of existing methods.展开更多
Traditionally,beamforming using fractional Fourier transform(FrFT) involves a trial-and-error based FrFT order selection which is impractical.A new numerical order selection scheme is presented based on fractional p...Traditionally,beamforming using fractional Fourier transform(FrFT) involves a trial-and-error based FrFT order selection which is impractical.A new numerical order selection scheme is presented based on fractional power spectra(FrFT moment) of the linear chirp signal.This method can adaptively determine the optimum FrFT order by maximizing the second-order central FrFT moment.This makes the desired chirp signal substantially concentrated whereas the noise is rejected considerably.This improves the mean square error minimization beamformer by reducing effectively the signal-noise cross terms due to the finite data length de-correlation operation.Simulation results show that the new method works well under a wide range of signal to noise ratio and signal to interference ratio.展开更多
A compact and cost-effective photonic approach for generating switchable multi-format linearly chirped signals is proposed and experimentally demonstrated.The core component is a dual-drive Mach–Zehnder modulator dri...A compact and cost-effective photonic approach for generating switchable multi-format linearly chirped signals is proposed and experimentally demonstrated.The core component is a dual-drive Mach–Zehnder modulator driven by a coding sequence and a linearly chirped waveform.By properly setting the amplitudes of the coding sequence,a linearly chirped signal with different formats,including the frequency shift keying[FSK],phase shift keying[PSK],dual-band PSK,and FSK/PSK modulation formats,can be generated.Experiments are conducted to verify the feasibility of the proposed scheme.Linearly chirped signals with the above four formats are successfully generated.The scheme features multiple formats and high tunability based on a compact structure,which has potential applications in modern multifunctional systems.展开更多
Although compressed sensing inverse synthetic aperture radar(ISAR) imaging methods are widely used in radar signal processing, its reconstructing time and memory storage space requirements are very high. The main reas...Although compressed sensing inverse synthetic aperture radar(ISAR) imaging methods are widely used in radar signal processing, its reconstructing time and memory storage space requirements are very high. The main reason is that large scene reconstruction needs a higher dimension of the sensing matrix. To reduce this limitation, a fast high resolution ISAR imaging method,which is based on scene segmentation for random chirp frequencystepped signals, is proposed. The idea of scene segmentation is used to solve the problems aforementioned. In the method,firstly, the observed scene is divided into multiple sub-scenes and then the sub-scenes are reconstructed respectively. Secondly, the whole image scene can be obtained through the stitching of the sub-scenes. Due to the reduction of the dimension of the sensing matrix, the requirement of the memory storage space is reduced substantially. In addition, due to the nonlinear superposition of the reconstructed time of the segmented sub-scenes, the reconstruction time is reduced, and the purpose of fast imaging is achieved.Meanwhile, the feasibility and the related factors which affect the performance of the proposed method are also analyzed, and the selection criterion of the scene segmentation is afforded. Finally,theoretical analysis and simulation results demonstrate the feasibility and effectiveness of the proposed method.展开更多
The outer-product decomposition algorithm(OPDA)performs well at blindly identifying system function.However,the direct use of the OPDA in systems using bandpass source will lead to errors.This study proposes an approa...The outer-product decomposition algorithm(OPDA)performs well at blindly identifying system function.However,the direct use of the OPDA in systems using bandpass source will lead to errors.This study proposes an approach to enhance the channel estimation quality of a bandpass source that uses OPDA.This approach performs frequency domain transformation on the received signal and obtains the optimal transformation parameter by minimizing the p-norm of an error matrix.Moreover,the proposed approach extends the application of OPDA from a white source to a bandpass white source or chirp signal.Theoretical formulas and simulation results show that the proposed approach not only reduces the estimation error but also accelerates the algorithm in a bandpass system,thus being highly feasible in practical blind system identification applications.展开更多
A minimum mean-squared error (MSE) beamforming algorithm employing the optimum fractional Fourier transform (Opt-FrFT) domain second-order cyclostationarity is proposed. This method can efficiently filter out the ...A minimum mean-squared error (MSE) beamforming algorithm employing the optimum fractional Fourier transform (Opt-FrFT) domain second-order cyclostationarity is proposed. This method can efficiently filter out the compact desired chirp signal, with a consequence that the cyclically uncorrelated interferences and stationary (colored) Gaussian noise are greatly suppressed in the Opt- FrFT domain. This improves the MSE minimization cyclic beamformer by reducing effectively the Opt-FrFY domain signal-noise cross terms in the presence of finite data length de-correlation operation. Simulation results show that the new method works well under a wide range of signal-to-noise ratio (SNR) and signal-to-interference ratio (SIR).展开更多
Stepped frequency chirp signal obtains high-resolution radar images by synthesizing multiple narrowband chirp pulses.It has been one of the most commonly used wideband radar waveforms due to its lower demand for radar...Stepped frequency chirp signal obtains high-resolution radar images by synthesizing multiple narrowband chirp pulses.It has been one of the most commonly used wideband radar waveforms due to its lower demand for radar instant bandwidth.In this paper,we propose a radar jamming method using two-dimensional nonperiodic phase modulation against stepped frequency chirp signal imaging radar.Using the unique property of nonperiodic phase modulation,the proposed method can generate high-level sidelobes that perform as a special blanket jamming along both the range and azimuth directions and make the target unrecognizable.Then,the influence of different modulation parameters,such as the code width and duty ratio,are further discussed.Based on this,the corresponding parameter design principles are presented.Finally,the validity of the proposed method is demonstrated by the Yake-42 plane data simulation and measured unmanned aerial vehicle data experiment.展开更多
Oversampling is widely used in practical applications of digital signal processing. As the fractional Fourier transform has been developed and applied in signal processing fields, it is necessary to consider the overs...Oversampling is widely used in practical applications of digital signal processing. As the fractional Fourier transform has been developed and applied in signal processing fields, it is necessary to consider the oversampling theorem in the fractional Fourier domain. In this paper, the oversampling theorem in the fractional Fourier domain is analyzed. The fractional Fourier spectral relation between the original oversampled sequence and its subsequences is derived first, and then the expression for exact reconstruction of the missing samples in terms of the subsequences is obtained. Moreover, by taking a chirp signal as an example, it is shown that, reconstruction of the missing samples in the oversampled signal is suitable in the fractional Fourier domain for the signal whose time-frequency distribution has the minimum support in the fractional Fourier domain.展开更多
A Reduced Order Model(ROM)based analysis method for turbomachinery cascade coupled mode flutter is presented in this paper.The unsteady aerodynamic model is established by a system identification technique combined wi...A Reduced Order Model(ROM)based analysis method for turbomachinery cascade coupled mode flutter is presented in this paper.The unsteady aerodynamic model is established by a system identification technique combined with a set of Aerodynamic Influence Coefficients(AIC).Subsequently,the aerodynamic model is encoded into the state space and then coupled with the structural dynamic equations,resulting in a ROM of the cascade aeroelasticity.The cascade flutter can be determined by solving the eigenvalues of the ROM.Bending-torsional coupled mode flutter analysis for the Standard Configuration Eleven(SC11)cascade is used to validate the proposed method.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No. 60572098.
文摘A classical time-varying signal, the multi-component Chirp signal has been widely used and the ability to estimate its instantaneous frequency (IF) is very useful. But in noisy environments, it is hard to estimate the 1F of a multi-component Chirp signal accurately. Wigner distribution maxima (WDM) are usually utilized for this estimation. But in practice, estimation bias increases when some points deviate from the true IF in high noise environments. This paper presents a new method of multi-component Chirp signal 1F estimation named Wigner Viterbi fit (WVF), based on Wigner-Ville distribution (WVD) and the Viterbi algorithm. First, we transform the WVD of the Chirp signal into digital image, and apply the Viterbi algorithm to separate the components and estimate their IF. At last, we establish a linear model to fit the estimation results. Theoretical analysis and simulation results prove that this new method has high precision and better performance than WDM in high noise environments, and better suppression of interference and the edge effect. Compared with WDM, WVF can reduce the mean square error (MSE) by 50% when the signal to noise ration (SNR) is in the range of-15dB to -11dB. WVF is an effective and promising 1F estimation method.
基金supported by the National Natural Science Foundation of China (60872003 61071214)+1 种基金the Doctoral Fund of Ministry of Education of China (20093201110005)the Foundation of Chinese National Defense Technology Key Laboratory (9140C1301031001)
文摘The realization of the parameter estimation of chirp signals using the fractional Fourier transform (FRFT) is based on the assumption that the sampling duration of practical observed signals would be equal to the time duration of chirp signals contained in the former. However, in many actual circumstances, this assumption seems unreasonable. On the basis of analyzing the practical signal form, this paper derives the estimation error of the existing parameter estimation method and then proposes a novel and universal parameter estimation algorithm. Furthermore, the proposed algorithm is developed which allows the estimation of the practical observed Gaussian windowed chirp signal. Simulation results show that the new algorithm works well.
文摘To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband chirp signals are linear and vary with time. And the randon Wignersville distribution (RWVD) of real sensors and virtual sensors are calculated to yield the new time-invariable steering vectors, furthermore, the noise and cross terms are suppressed. In addition, the multiple chirp signals are selected by their time-frequency points. The cost of computation is lower than the common AOA estimation methods of wideband sources due to nonrequirement of frequency focusing, interpolating and matrix decomposition, including subspace decomposition. Under the lower signal noise ratio (SNR) condition, the proposed method exhibits better precision than the method of frequency focusing (FF). The proposed method can be further applied to nonuniform linear array (NLA) since it is not confined to the array geometry. Simulation results illustrate the efficacy of the proposed method.
基金supported by the National Natural Science Foundation of China(4137604041676024)
文摘To improve the data rate of underwater acoustic frequency-hopped communications, frequency hopping is applied to different orders of fractional Fourier domain (FrFD), to enable non-intrusive, bandwidth-limited acoustic communications. An FrFD frequency-hopped communication method based on chirp modulation, namely multiple chirp shift keying-FrFD hopping (MCSK-FrFDH), is proposed for underwater acoustic channels. Validated by both simulations and experimental results, this method can reach a bandwidth efficiency twice more than conventional frequency-hopped methods with the same data rate and anti-multipath capability, suggesting that the proposed method achieves a better performance than the traditional frequency hopped communication in underwater acoustic communication channels. Results also show that in practical scenarios, the MCSK-FrFDH system with longer symbol length performs better at the low signal-to-noise ratio (SNR), while the system with larger frequency sweeping range performs better at a high SNR.
文摘A novel M-ary chirp modulation technique based on an optimal chirp signal design is proposed in this paper to offer higher data rate for an indoor wireless chirp spread spectrum communication system. Both linear chirp signals and combined chirp signals are used in this system to reduce the effect of the cross correlation, and simplify the complexity of the system. The optimal scheme of de- signing both linear chirp signals and combined chirp signals is discussed to minimize the value of the cross correlation and obtain a better system performance. Simulation results show that, compared with the binary orthogonal chirp modulation technique, the M-ary chirp modulation technique based on an optimal chirp signal set has a higher data rate with a reasonable bit-error rate (BER) perform- ance under both additive white gaussian noise (AWGN) channel and indoor wireless channel.
文摘Chirp signals show energy aggregation in the fractional Fourier domain(FrFD) w hich can be used to estimate the parameter of the signals. In this paper,a parameter estimation method for multi-component chirp signal w hich corrupted by w hite Gaussian noise is proposed based on the discrete fractional Fourier transform(DFrFT) and the differential evolution( DE) algorithm. The proposed algorithm uses the DE algorithm instead of the conventional fine search algorithm to detect the peak of the signals in the FrFD. The paper simulated the influence of the noise and the resolution of the proposed algorithm. The results of the simulation show the proposed method does not only improve the estimation accuracy of the peak coordinate,but also reduces time consuming.
基金Supported by the National Natural Science Foundation of China(61301189)
文摘To prevent the long-time coherent integration and limited range window stumbling blocks of stretch processing and reduce computational complexity, a novel method called multi-subpulse process of large time-bandwidth product linear frequency modulating ( LFM ) signal ( i. e. chirp ) is proposed in this paper. The wideband chirp signal is split up into several compressed subpulses. Then the fast Fourier transform (FFT) is used to reconstruct the high resolution range profile ( HR- RP) in a relative short computation time. For multi-frame, pulse Doppler (PD) process is performed to obtain the two-dimension range-Doppler (R-D) high resolution profile. Simulations and field ex- perimental results show that the proposed method can provide high-quality target profile over a large range window in a short computation time and has the promising potential for long-time coherent in- tegration.
文摘In this paper a joint timing and frequency synchronization method based on Fractional Fourier Transform (FIFT) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) system. The combination of two chirp signals with opposite chirp rates are used as the training signal, the received training signal with timing and frequency offset is transformed by FrFT and the two peaks representing two chirps in FrFT domain are detected, then the position coordinates of the two peaks are precisely corrected and substituted into an equation group to calculate timing and frequency offset simultaneously. This method only needs one FrFT calculation to implement synchronization, the computational complexity is equal to that of FFT and less than that of correlation or maximum likelihood calculation of existing methods, and estimation range of frequency offset is Large, greater than half the signal bandwidth, while the simulation results show that even at low SNR it can accurately estimate timing and frequency offset and the estimation error is less than that of existing methods.
基金supported by the National Natural Science Foundation of China (606720846060203760736006)
文摘Traditionally,beamforming using fractional Fourier transform(FrFT) involves a trial-and-error based FrFT order selection which is impractical.A new numerical order selection scheme is presented based on fractional power spectra(FrFT moment) of the linear chirp signal.This method can adaptively determine the optimum FrFT order by maximizing the second-order central FrFT moment.This makes the desired chirp signal substantially concentrated whereas the noise is rejected considerably.This improves the mean square error minimization beamformer by reducing effectively the signal-noise cross terms due to the finite data length de-correlation operation.Simulation results show that the new method works well under a wide range of signal to noise ratio and signal to interference ratio.
基金supported by the National Natural Science Foundation of China(No.61901507)the Natural Science Foundation of Shaanxi Province(No.2019JQ707)the Project of Science and Technology New Star of Shaanxi Province(2019KJXX-082)。
文摘A compact and cost-effective photonic approach for generating switchable multi-format linearly chirped signals is proposed and experimentally demonstrated.The core component is a dual-drive Mach–Zehnder modulator driven by a coding sequence and a linearly chirped waveform.By properly setting the amplitudes of the coding sequence,a linearly chirped signal with different formats,including the frequency shift keying[FSK],phase shift keying[PSK],dual-band PSK,and FSK/PSK modulation formats,can be generated.Experiments are conducted to verify the feasibility of the proposed scheme.Linearly chirped signals with the above four formats are successfully generated.The scheme features multiple formats and high tunability based on a compact structure,which has potential applications in modern multifunctional systems.
基金supported by the National Natural Science Foundation of China(61671469)
文摘Although compressed sensing inverse synthetic aperture radar(ISAR) imaging methods are widely used in radar signal processing, its reconstructing time and memory storage space requirements are very high. The main reason is that large scene reconstruction needs a higher dimension of the sensing matrix. To reduce this limitation, a fast high resolution ISAR imaging method,which is based on scene segmentation for random chirp frequencystepped signals, is proposed. The idea of scene segmentation is used to solve the problems aforementioned. In the method,firstly, the observed scene is divided into multiple sub-scenes and then the sub-scenes are reconstructed respectively. Secondly, the whole image scene can be obtained through the stitching of the sub-scenes. Due to the reduction of the dimension of the sensing matrix, the requirement of the memory storage space is reduced substantially. In addition, due to the nonlinear superposition of the reconstructed time of the segmented sub-scenes, the reconstruction time is reduced, and the purpose of fast imaging is achieved.Meanwhile, the feasibility and the related factors which affect the performance of the proposed method are also analyzed, and the selection criterion of the scene segmentation is afforded. Finally,theoretical analysis and simulation results demonstrate the feasibility and effectiveness of the proposed method.
基金This study is supported by the Natural Science Foundation of China(NSFC)under Grant Nos.11774073 and 51279033.
文摘The outer-product decomposition algorithm(OPDA)performs well at blindly identifying system function.However,the direct use of the OPDA in systems using bandpass source will lead to errors.This study proposes an approach to enhance the channel estimation quality of a bandpass source that uses OPDA.This approach performs frequency domain transformation on the received signal and obtains the optimal transformation parameter by minimizing the p-norm of an error matrix.Moreover,the proposed approach extends the application of OPDA from a white source to a bandpass white source or chirp signal.Theoretical formulas and simulation results show that the proposed approach not only reduces the estimation error but also accelerates the algorithm in a bandpass system,thus being highly feasible in practical blind system identification applications.
基金Supported by the National Natural Science Foundation of China ( No. 60672084, 60602037, 60736006).
文摘A minimum mean-squared error (MSE) beamforming algorithm employing the optimum fractional Fourier transform (Opt-FrFT) domain second-order cyclostationarity is proposed. This method can efficiently filter out the compact desired chirp signal, with a consequence that the cyclically uncorrelated interferences and stationary (colored) Gaussian noise are greatly suppressed in the Opt- FrFT domain. This improves the MSE minimization cyclic beamformer by reducing effectively the Opt-FrFY domain signal-noise cross terms in the presence of finite data length de-correlation operation. Simulation results show that the new method works well under a wide range of signal-to-noise ratio (SNR) and signal-to-interference ratio (SIR).
基金Project supported by the Natural Science Foundation of Hunan Province,China(No.2022JJ40561)the Scientific Research Program of National University of Defense Technology,China(No.ZK22-46)the National Natural Science Foundation of China(Nos.61890542,62001481,and 62071475)。
文摘Stepped frequency chirp signal obtains high-resolution radar images by synthesizing multiple narrowband chirp pulses.It has been one of the most commonly used wideband radar waveforms due to its lower demand for radar instant bandwidth.In this paper,we propose a radar jamming method using two-dimensional nonperiodic phase modulation against stepped frequency chirp signal imaging radar.Using the unique property of nonperiodic phase modulation,the proposed method can generate high-level sidelobes that perform as a special blanket jamming along both the range and azimuth directions and make the target unrecognizable.Then,the influence of different modulation parameters,such as the code width and duty ratio,are further discussed.Based on this,the corresponding parameter design principles are presented.Finally,the validity of the proposed method is demonstrated by the Yake-42 plane data simulation and measured unmanned aerial vehicle data experiment.
基金Supported partially by the National Natural Science Foundation of China for Distinguished Young Scholars (Grant No. 60625104)the National Natural Science Foundation of China (Grant Nos. 60890072, 60572094)the National Basic Research Program of China (Grant No.2009CB724003)
文摘Oversampling is widely used in practical applications of digital signal processing. As the fractional Fourier transform has been developed and applied in signal processing fields, it is necessary to consider the oversampling theorem in the fractional Fourier domain. In this paper, the oversampling theorem in the fractional Fourier domain is analyzed. The fractional Fourier spectral relation between the original oversampled sequence and its subsequences is derived first, and then the expression for exact reconstruction of the missing samples in terms of the subsequences is obtained. Moreover, by taking a chirp signal as an example, it is shown that, reconstruction of the missing samples in the oversampled signal is suitable in the fractional Fourier domain for the signal whose time-frequency distribution has the minimum support in the fractional Fourier domain.
基金supported by the National Science and Technology Major Project, China (No. 2017-II-0009-0023)the Aeronautical Science Foundation of China(No. 2020Z039053004)the Fundamental Research Funds for the Central Universities, China (No. 3102019OQD701)
文摘A Reduced Order Model(ROM)based analysis method for turbomachinery cascade coupled mode flutter is presented in this paper.The unsteady aerodynamic model is established by a system identification technique combined with a set of Aerodynamic Influence Coefficients(AIC).Subsequently,the aerodynamic model is encoded into the state space and then coupled with the structural dynamic equations,resulting in a ROM of the cascade aeroelasticity.The cascade flutter can be determined by solving the eigenvalues of the ROM.Bending-torsional coupled mode flutter analysis for the Standard Configuration Eleven(SC11)cascade is used to validate the proposed method.