期刊文献+
共找到1,038篇文章
< 1 2 52 >
每页显示 20 50 100
Unmanned wave glider heading model identification and control by artificial fish swarm algorithm 被引量:2
1
作者 WANG Lei-feng LIAO Yu-lei +2 位作者 LI Ye ZHANG Wei-xin PAN Kai-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2131-2142,共12页
We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,th... We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,the rigid-flexible multi-body system of the UWG was simplified as a rigid system composed of“thruster+float body”,based on which a planar motion model of the UWG was established.Second,we obtained the model parameters using an empirical method combined with parameter identification,which means that some parameters were estimated by the empirical method.In view of the specificity and importance of the heading control,heading model parameters were identified through the artificial fish swarm algorithm based on tank test data,so that we could take full advantage of the limited trial data to factually describe the dynamic characteristics of the system.Based on the established heading motion model,parameters of the heading S-surface controller were optimized using the artificial fish swarm algorithm.Heading motion comparison and maritime control experiments of the“Ocean Rambler”UWG were completed.Tank test results show high precision of heading motion prediction including heading angle and yawing angular velocity.The UWG shows good control performance in tank tests and sea trials.The efficiency of the proposed method is verified. 展开更多
关键词 unmanned wave glider artificial fish swarm algorithm heading model parameters identification control parameters optimization
在线阅读 下载PDF
Development of an Artificial Fish Swarm Algorithm Based on aWireless Sensor Networks in a Hydrodynamic Background
2
作者 Sheng Bai Feng Bao +1 位作者 Fengzhi Zhao Miaomiao Liu 《Fluid Dynamics & Materials Processing》 EI 2020年第5期935-946,共12页
The main objective of the present study is the development of a new algorithm that can adapt to complex and changeable environments.An artificial fish swarm algorithm is developed which relies on a wireless sensor net... The main objective of the present study is the development of a new algorithm that can adapt to complex and changeable environments.An artificial fish swarm algorithm is developed which relies on a wireless sensor network(WSN)in a hydrodynamic background.The nodes of this algorithm are viscous fluids and artificial fish,while related‘events’are directly connected to the food available in the related virtual environment.The results show that the total processing time of the data by the source node is 6.661 ms,of which the processing time of crosstalk data is 3.789 ms,accounting for 56.89%.The total processing time of the data by the relay node is 15.492 ms,of which the system scheduling and the Carrier Sense Multiple Access(CSMA)rollback time of the forwarding is 8.922 ms,accounting for 57.59%.The total time for the data processing of the receiving node is 11.835 ms,of which the processing time of crosstalk data is 3.791 ms,accounting for 32.02%;the serial data processing time is 4.542 ms,accounting for 38.36%.Crosstalk packets occupy a certain amount of system overhead in the internal communication of nodes,which is one of the causes of node-level congestion.We show that optimizing the crosstalk phenomenon can alleviate the internal congestion of nodes to some extent. 展开更多
关键词 artificial fish swarm algorithm wireless sensor network network measurement HYDRODYNAMICS
在线阅读 下载PDF
Particle Swarm Optimization Algorithm Based on Chaotic Sequences and Dynamic Self-Adaptive Strategy
3
作者 Mengshan Li Liang Liu +4 位作者 Genqin Sun Keming Su Huaijin Zhang Bingsheng Chen Yan Wu 《Journal of Computer and Communications》 2017年第12期13-23,共11页
To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The se... To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum. 展开更多
关键词 Particle swarm algorithm chaotic SEQUENCES SELF-adaptive STRATEGY MULTI-OBJECTIVE Optimization
在线阅读 下载PDF
Artificial Fish Swarm Optimization with Deep Learning Enabled Opinion Mining Approach 被引量:1
4
作者 Saud S.Alotaibi Eatedal Alabdulkreem +5 位作者 Sami Althahabi Manar Ahmed Hamza Mohammed Rizwanullah Abu Sarwar Zamani Abdelwahed Motwakel Radwa Marzouk 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期737-751,共15页
Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the patte... Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the pattern recognition and decision making process difficult.Since OM find useful in business sectors to improve the quality of the product as well as services,machine learning(ML)and deep learning(DL)models can be considered into account.Besides,the hyperparameters involved in the DL models necessitate proper adjustment process to boost the classification process.Therefore,in this paper,a new Artificial Fish Swarm Optimization with Bidirectional Long Short Term Memory(AFSO-BLSTM)model has been developed for OM process.The major intention of the AFSO-BLSTM model is to effectively mine the opinions present in the textual data.In addition,the AFSO-BLSTM model undergoes pre-processing and TF-IFD based feature extraction process.Besides,BLSTM model is employed for the effectual detection and classification of opinions.Finally,the AFSO algorithm is utilized for effective hyperparameter adjustment process of the BLSTM model,shows the novelty of the work.A complete simulation study of the AFSO-BLSTM model is validated using benchmark dataset and the obtained experimental values revealed the high potential of the AFSO-BLSTM model on mining opinions. 展开更多
关键词 Sentiment analysis opinion mining natural language processing artificial fish swarm algorithm deep learning
在线阅读 下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
5
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 Improved Particle swarm Optimization algorithm Double POPULATIONS MULTI-OBJECTIVE adaptive Strategy chaotic SEQUENCE
在线阅读 下载PDF
基于改进人工鱼群算法的城市物流无人机航线规划
6
作者 岳仁田 侯博文 《中国民航大学学报》 2025年第1期89-96,共8页
为了安全、高效地解决物流无人机(UAV,unmanned aerial vehicle)三维空间航线规划问题,首先,本文在考虑空间避障和地面人口密度的基础上通过改进栅格法对规划环境进行建模,以航程代价、栅格风险值代价和高度调整代价之和最小作为目标函... 为了安全、高效地解决物流无人机(UAV,unmanned aerial vehicle)三维空间航线规划问题,首先,本文在考虑空间避障和地面人口密度的基础上通过改进栅格法对规划环境进行建模,以航程代价、栅格风险值代价和高度调整代价之和最小作为目标函数建立物流UAV航线规划模型,并根据UAV性能设置约束条件。其次,对标准人工鱼群算法(AFSA,artificial fish swarm algorithm)进行改进,增加鱼群跳跃行为和栅格禁忌表,利用改进AFSA对模型进行求解。最后,通过仿真算例将改进后的AFSA与其他3种算法进行了对比并对改进后的AFSA进行了参数灵敏度分析。结果表明:改进后的AFSA在收敛速度上优于其他3种算法,相对于标准AFSA收敛时间降低了9.9%;设置较大的感知范围参数值,航线规划效率更高,在设置步长参数时则需要根据规划环境进行调整。改进后的AFSA可为提升物流UAV三维空间航线规划效率提供借鉴。 展开更多
关键词 物流无人机(UAV) 航线规划 人工鱼群算法(AFSA) 栅格风险值
在线阅读 下载PDF
基于改进人工鱼群算法的植保无人机路径规划
7
作者 王浩然 石永康 +3 位作者 赵玉花 邹楠 吴浩 闫育华 《农机化研究》 北大核心 2025年第8期40-45,共6页
针对植保无人机在作业过程中如何快速找到一条更优的全局路径,提出了一种改进人工鱼群算法(T-AFSA)。利用Tent混沌映射所生成的混沌序列对种群初始化,丰富了种群的多样性,提高了人工鱼群初始解的质量;引入黄金正弦算法对适应度高的人工... 针对植保无人机在作业过程中如何快速找到一条更优的全局路径,提出了一种改进人工鱼群算法(T-AFSA)。利用Tent混沌映射所生成的混沌序列对种群初始化,丰富了种群的多样性,提高了人工鱼群初始解的质量;引入黄金正弦算法对适应度高的人工鱼个体进行优化,让它们更好地领导种群的觅食和追尾行为;采用自适应策略对人工鱼个体的视野和步距进行改进,平衡了算法的全局搜索能力和局部搜索能力;删除路径中的冗余节点,去除不必要的转折点,找到全局中的更优路径;将所得的路径利用B样条曲线进行平滑处理,有利于植保无人机进行路径跟踪。仿真实验表明:改进算法能够解决传统人工鱼群算法计算精度低和后期收敛速度变慢的问题,可以为植保无人机快速规划出一条从起点到终点与障碍物无碰撞、平滑且距离较短的路径,方案具有可行性和有效性。 展开更多
关键词 植保无人机 路径规划 人工鱼群算法 自适应策略 黄金正弦算法
在线阅读 下载PDF
液压辊缝PID控制器ACO与AFSO算法优化及仿真
8
作者 李爽 陈明航 +1 位作者 吴爽 王心超 《机械设计与制造》 北大核心 2025年第4期233-236,共4页
针对轧机辊缝控制系统研究通常跟系统阶跃响应存在较大关联,无法完全适应复杂运行工况需求。以蚁群(Ant Clony Optimization,ACO)和人工鱼群算法(Artificial Fish Swarm Optimization,AFSO)方式对PID控制器进行参数调节,并通过Simulink... 针对轧机辊缝控制系统研究通常跟系统阶跃响应存在较大关联,无法完全适应复杂运行工况需求。以蚁群(Ant Clony Optimization,ACO)和人工鱼群算法(Artificial Fish Swarm Optimization,AFSO)方式对PID控制器进行参数调节,并通过Simulink比较系统优化前后的响应速率和系统稳定性。研究结果表明:未施加干扰力下,相对蚁群算法,以人工鱼群算法处理时获得更小超调量,减小近14%的比例,并且提升调整效率,使整体调整时间缩短1/5。施加干扰力下,相对蚁群算法,以人工鱼群算法进行优化时,超调量减小达到12.4%,并缩短了14.6%的调节时间以及减小26%的稳态误差。当随机信号频率增大后,响应曲线表现为波动性减小的规律。以人工鱼群算法进行处理时相对蚁群算法达到了更低波动幅度。该研究对提高液压机的控制精度和工作效率具有很好的实际指导价值。 展开更多
关键词 辊缝 轧机 PID控制器 蚁群算法 人工鱼群算法
在线阅读 下载PDF
基于优化常规双参时间函数的煤矿开采动态沉陷预测研究
9
作者 周华安 戴广礼 +2 位作者 李怀展 刘超 元亚菲 《金属矿山》 北大核心 2025年第3期148-157,共10页
煤矿开采动态沉陷预测对于保证开采过程中地面建(构)筑物安全及实施边采边复具有重要作用。针对基于常规双参时间函数(Weibull、MMF、Logistic及Bertalanffy)进行开采动态沉陷预测时存在的预测精度偏低及模型拟合程度不高的问题,提出了... 煤矿开采动态沉陷预测对于保证开采过程中地面建(构)筑物安全及实施边采边复具有重要作用。针对基于常规双参时间函数(Weibull、MMF、Logistic及Bertalanffy)进行开采动态沉陷预测时存在的预测精度偏低及模型拟合程度不高的问题,提出了一种自适应混合寻优人工鱼群算法(Adaptive Hybrid Optimization Artificial Fish Swarm Algorithm,AHO-AFSA)实现双参时间函数参数最优值求解。该算法采用自适应视野和步长对人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)的固定视野和步长进行改进,并将相对成熟但易陷入局部极值的粒子群算法与尚未广泛应用于地表动态沉陷预测的人工鱼群算法(AFSA)相结合,实现了利用寻优算法求取双参时间函数参数精度的提升。同时以静态概率积分预测模型为基础,通过复化辛普森公式优化地表点静态沉降值的求解过程,并基于此构建了煤矿开采地表动态沉陷预测理论模型。通过实测数据验证得出:利用优化求解双参的自适应混合寻优人工鱼群算法,基于Weibull、MMF、Logistic和Bertalanffy 4种时间函数模型的总体相对误差精度分别提升了2.44%、0.35%、1.48%和3.11%,总体拟合误差在10.3%以内,算法用于反演双参时间函数参数进行动态沉陷预测具有较高精度。研究成果对于基于寻优算法反演双参时间函数参数的煤矿开采动态沉陷精准预测具有参考价值。 展开更多
关键词 开采沉陷 双参时间函数 概率积分法 动态预测 人工鱼群算法
在线阅读 下载PDF
基于组合缓冲的分布式置换流水车间调度优化
10
作者 轩华 吕琳 《现代制造工程》 北大核心 2025年第1期1-14,共14页
针对制造行业中机器间有两种缓冲条件(即有限缓冲、零等待)的分布式置换流水车间调度问题,以最小化最大完工时间作为目标建立数学规划模型,提出了一种结合改进两分段Tent混沌映射、自适应柯西变异和贪婪算法的混合人工蜂群算法。首先,... 针对制造行业中机器间有两种缓冲条件(即有限缓冲、零等待)的分布式置换流水车间调度问题,以最小化最大完工时间作为目标建立数学规划模型,提出了一种结合改进两分段Tent混沌映射、自适应柯西变异和贪婪算法的混合人工蜂群算法。首先,通过改进两分段Tent混沌映射产生初始工件序列群;然后,在雇佣蜂阶段采用基于自适应柯西变异的邻域搜索产生新工件序列,在跟随蜂阶段设计适应度选择策略和基于自适应柯西变异的逆序反转操作对工件序列进行优化,在侦察蜂阶段利用贪婪算法基于关键/非关键工厂更新未改善的工件序列;最后,通过大量算例仿真与多种算法对比,表明所提算法在合理的计算时间内可以得到较好的近优解。 展开更多
关键词 分布式置换流水车间调度 有限缓冲和零等待 混合人工蜂群算法 改进两分段Tent混沌映射 自适应柯西变异
在线阅读 下载PDF
基于人工鱼群算法的飞行器回收归航轨迹规划
11
作者 陈潇然 蔡云姗 韩雪 《长江信息通信》 2025年第2期22-25,共4页
为了解决飞行器回收归航精度问题,提出一种基于人工鱼群算法的飞行器归航轨迹方法。根据飞行器飞行特性,建立飞行器-翼伞组合体六自由度模型,将整个归航轨迹划分为开伞阶段、径向飞行、盘旋调整、目标对准和雀降五个过程。根据着陆目标... 为了解决飞行器回收归航精度问题,提出一种基于人工鱼群算法的飞行器归航轨迹方法。根据飞行器飞行特性,建立飞行器-翼伞组合体六自由度模型,将整个归航轨迹划分为开伞阶段、径向飞行、盘旋调整、目标对准和雀降五个过程。根据着陆目标要求建立目标函数,将航迹规划问题转化为参数寻优问题,并采用人工鱼群算法对归航过程关键参数寻优求解,设计出一条易于实现控制又兼顾能量损耗的归航轨迹。 展开更多
关键词 飞行器回收 翼伞系统 分段归航 人工鱼群算法
在线阅读 下载PDF
一种多元信息流异常数据聚类修正方法与仿真
12
作者 颜清 李金讯 陈诗 《计算机仿真》 2025年第1期258-262,共5页
多元信息流涵盖多种类型、不同维度的数据,存在异构性和不确定性,以大规模和高速度连续产生,难以从中提取异常数据分布的特征,使得算法对异常数据的检测陷入局部最优解,出现局部收敛和早熟现象,进而影响异常数据修正。对此,引入混合蛙... 多元信息流涵盖多种类型、不同维度的数据,存在异构性和不确定性,以大规模和高速度连续产生,难以从中提取异常数据分布的特征,使得算法对异常数据的检测陷入局部最优解,出现局部收敛和早熟现象,进而影响异常数据修正。对此,引入混合蛙跳算法,对多元信息流异常数据展开修正。标准化处理多元信息流数据,建立预选特征子集,采用混合蛙跳算法-人工鱼群算法和混合蛙跳算法-模糊C-均值聚类算法,在搜索过程中利用了两种算法的优势,在多个搜索空间中找到最优数据特征,更准确地划分聚类簇,获取最优的数据特征并实施聚类处理,得到异常数据集合。基于单层前馈神经网络,构建异常数据修正模型,通过更新参数,由输出层输出异常数据的修正结果。仿真测试结果显示:混合蛙跳算法能够加强融合对象的优势,检测异常数据集占比高达99.72%,精准完成异常数据检测任务;修正误差最大仅为1.119,可以满足精准性需求。 展开更多
关键词 多元信息流 混合蛙跳算法 人工鱼群算法 模糊均值聚类算法 单层前馈神经网络 异常数据修正
在线阅读 下载PDF
Approach to WTA in air combat using IAFSA-IHS algorithm 被引量:11
13
作者 LI Zhanwu CHANG Yizhe +3 位作者 KOU Yingxin YANG Haiyan XU An LI You 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期519-529,共11页
In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, ... In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem. 展开更多
关键词 air combat weapon target assignment improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) artificial fish swarm algorithm(AFSA) harmony search(HS)
在线阅读 下载PDF
Intelligent approach of score-based artificial fish swarm algorithm(SAFSA)for Parkinson’s disease diagnosis 被引量:1
14
作者 Syed Haroon Abdul Gafoor Padma Theagarajan 《International Journal of Intelligent Computing and Cybernetics》 EI 2022年第4期540-561,共22页
Purpose-Conventional diagnostic techniques,on the other hand,may be prone to subjectivity since they depend on assessment of motions that are often subtle to individual eyes and hence hard to classify,potentially resu... Purpose-Conventional diagnostic techniques,on the other hand,may be prone to subjectivity since they depend on assessment of motions that are often subtle to individual eyes and hence hard to classify,potentially resulting in misdiagnosis.Meanwhile,early nonmotor signs of Parkinson’s disease(PD)can be mild and may be due to variety of other conditions.As a result,these signs are usually ignored,making early PD diagnosis difficult.Machine learning approaches for PD classification and healthy controls or individuals with similar medical symptoms have been introduced to solve these problems and to enhance the diagnostic and assessment processes of PD(like,movement disorders or other Parkinsonian syndromes).Design/methodology/approach-Medical observations and evaluation of medical symptoms,including characterization of a wide range of motor indications,are commonly used to diagnose PD.The quantity of the data being processed has grown in the last five years;feature selection has become a prerequisite before any classification.This study introduces a feature selection method based on the score-based artificial fish swarm algorithm(SAFSA)to overcome this issue.Findings-This study adds to the accuracy of PD identification by reducing the amount of chosen vocal features while to use the most recent and largest publicly accessible database.Feature subset selection in PD detection techniques starts by eliminating features that are not relevant or redundant.According to a few objective functions,features subset chosen should provide the best performance.Research limitations/implications-In many situations,this is an Nondeterministic Polynomial Time(NPHard)issue.This method enhances the PD detection rate by selecting the most essential features from the database.To begin,the data set’s dimensionality is reduced using Singular Value Decomposition dimensionality technique.Next,Biogeography-Based Optimization(BBO)for feature selection;the weight value is a vital parameter for finding the best features in PD classification.Originality/value-PD classification is done by using ensemble learning classification approaches such as hybrid classifier of fuzzy K-nearest neighbor,kernel support vector machines,fuzzy convolutional neural network and random forest.The suggested classifiers are trained using data from UCIMLrepository,and their results are verified using leave-one-person-out cross validation.The measures employed to assess the classifier efficiency include accuracy,F-measure,Matthews correlation coefficient. 展开更多
关键词 Parkinson disease dysphonia features Feature subset selection Score-based artificial fish swarm algorithm(SAFSA) Singular value decomposition(SVD) Classification
原文传递
SVC Video Transmission Optimization Algorithm in Software Defined Network
15
作者 Zhe Liu 《China Communications》 SCIE CSCD 2018年第10期143-149,共7页
Scalable video coding(SVC) is a powerful tool to solve the network heterogeneity and terminal diversity in video applications. However, in related works about the optimization of SVC-based video streaming over Softwar... Scalable video coding(SVC) is a powerful tool to solve the network heterogeneity and terminal diversity in video applications. However, in related works about the optimization of SVC-based video streaming over Software Defined Network(SDN), most of the them are focused either on the number of transmission layers or on the optimization of transmission path for specific layer. In this paper, we propose a noval optimization algorithm for SVC to dynamically adjust the number of layers and optimize the transmission paths simultaneously. We establish the problem model based on the 0/1 knapsack model, and then solve it with Artificial Fish Swarm Algorithm. Additionally, the simulations are carried out on the Mininet platform, which show that our approach can dynamically adjust the number of layers and select the optimal paths at the same time. As a result, it can achieve an effective allocation of network resources which mitigates the congestion and reduces the loss of non-SVC stream. 展开更多
关键词 SVC SDN OpenFlow Mininet artificial fish swarm algorithm (AFSA) 0/1 knapsack model
在线阅读 下载PDF
基于PSO与AFSA的GNSS整周模糊度种群融合优化算法 被引量:1
16
作者 郭迎庆 詹洋 +3 位作者 张琰 王译那 徐赵东 李今保 《工程科学学报》 EI CSCD 北大核心 2024年第12期2246-2256,共11页
载波相位测量是实现全球导航卫星系统(Global navigation satellite system, GNSS)快速高精度定位的重要途径,而准确解算整周模糊度是其中的关键步骤之一.粒子群算法(Particle swarm optimization, PSO)收敛速度快但易陷入局部最优,人... 载波相位测量是实现全球导航卫星系统(Global navigation satellite system, GNSS)快速高精度定位的重要途径,而准确解算整周模糊度是其中的关键步骤之一.粒子群算法(Particle swarm optimization, PSO)收敛速度快但易陷入局部最优,人工鱼群算法(Artificial fish swarm algorithm, AFSA)全局优化性能好但收敛速度慢,因此融合两种算法的优点,提出一种GNSS整周模糊度种群融合优化算法(PSOAF).首先,通过载波相位双差方程求解整周模糊度的浮点解和对应的协方差矩阵.然后,采用反整数Cholesky算法对模糊度浮点解作降相关处理.其次,针对整数最小二乘估计的不足通过优化适应度函数来提高算法的收敛性和搜索性能.最后,通过PSOAF算法对整周模糊度进行解算.通过经典算例和试验研究表明:PSOAF算法可以更快地收敛于最优解,搜索效率也更为出色,解算的基线精度可以控制在10 mm以内,在短基线的实际情况下具有较高的应用价值. 展开更多
关键词 全球导航卫星系统(GNSS) 整周模糊度 粒子群算法 人工鱼群算法 融合算法
在线阅读 下载PDF
基于改进金枪鱼群算法的机械臂时间最优轨迹规划 被引量:1
17
作者 吴继春 张斋武 +2 位作者 杨永达 张平 范大鹏 《计算机集成制造系统》 EI CSCD 北大核心 2024年第12期4292-4301,共10页
针对机械臂在满足运动学约束的前提下,以最短的时间完成工作任务的问题,提出一种基于改进金枪鱼群算法的机械臂最优时间轨迹规划。在标准的金枪鱼群算法(TSO)上对其进行优化,采用tent混沌种群初始化和莱维飞行等方法进行改进,并引入自... 针对机械臂在满足运动学约束的前提下,以最短的时间完成工作任务的问题,提出一种基于改进金枪鱼群算法的机械臂最优时间轨迹规划。在标准的金枪鱼群算法(TSO)上对其进行优化,采用tent混沌种群初始化和莱维飞行等方法进行改进,并引入自适应阈值来提高算法的性能。该方法以6自由度串联机械臂为研究对象,建立时间优化目标数学模型,以3-5-3混合多项式插值函数为基础对其进行轨迹规划。实验结果表明,改进的金枪鱼群算法相比原始算法具有更高的寻优精度和更强的跳出局部最优解能力,其优化后得到的机械臂的位移、速度、加速度曲线平滑,无突变,从而表明改进的金枪鱼群算法能有效地实现机械臂时间最优轨迹规划。 展开更多
关键词 改进金枪鱼群算法 混沌种群初始化 莱维飞行 自适应阈值 轨迹规划
在线阅读 下载PDF
考虑系统稳定边界的同步调相机励磁与升压变参数联合优化 被引量:2
18
作者 潘学萍 许一 +3 位作者 赵天骐 王宣元 谢欢 郭金鹏 《电力系统保护与控制》 EI CSCD 北大核心 2024年第8期45-54,共10页
现有提升调相机动态无功特性的参数优化方法侧重于电磁参数的优化,这给生产企业带来较高的工艺要求和较大的成本压力。针对该问题提出考虑系统稳定约束的调相机励磁系统及升压变参数联合优化方法,分析其对电磁参数优化的可替代性。首先... 现有提升调相机动态无功特性的参数优化方法侧重于电磁参数的优化,这给生产企业带来较高的工艺要求和较大的成本压力。针对该问题提出考虑系统稳定约束的调相机励磁系统及升压变参数联合优化方法,分析其对电磁参数优化的可替代性。首先,推导了基于Park模型下调相机的无功频域特性,与6阶实用模型下的无功频域特性对比,基于调相机的Park模型可提升调相机动态无功特性的分析精度。然后,提出根据调相机并网系统的稳定边界确定参数的优化区间,采用频域灵敏度方法确定重点参数,并基于人工鱼群算法进行参数优化。最后,通过仿真结果表明,励磁系统与升压变参数的联合优化,可获得与仅优化电磁参数时相近的调相机动态无功性能,验证了电磁参数优化的可替代性,从而降低调相机的制造成本,扩大同步调相机的应用场合和范围。 展开更多
关键词 分布式调相机 动态无功特性 参数优化 无功电流增益 人工鱼群算法
在线阅读 下载PDF
基于改进小波神经网络的实时系统任务流量预测方法
19
作者 李丹 陈勃琛 潘广泽 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第6期208-214,共7页
针对当前航空装备实时系统对非周期实时任务无法预知难以实现可靠调度的困难,开展对航空装备实时系统非周期任务流量预测方法的研究。以小波神经网络为基础结合航空装备实时系统的特性建立任务流量预测模型,并提出利用人工鱼群算法对小... 针对当前航空装备实时系统对非周期实时任务无法预知难以实现可靠调度的困难,开展对航空装备实时系统非周期任务流量预测方法的研究。以小波神经网络为基础结合航空装备实时系统的特性建立任务流量预测模型,并提出利用人工鱼群算法对小波预测模型关键参数进行优化,避免陷入局部最优解,最终构建一种人工鱼群算法改进的小波神经网络任务流量预测系统。利用提出的预测模型开展实时任务流量预测对比仿真实验,实验结果表明,建立的基于改进小波神经网络的实时系统任务流量预测系统对非周期实时任务具有较高的预测精度,预测效果优于原始小波神经网络模型及T-S模糊神经网络模型。 展开更多
关键词 小波神经网络 人工鱼群算法 实时系统 流量预测
在线阅读 下载PDF
基于人工鱼群-遗传算法的多品种小批量零件数控加工工艺优化研究
20
作者 张天瑞 乔文澍 《制造技术与机床》 北大核心 2024年第5期152-159,共8页
基于多品种小批量零件加工成本高的问题,基于人工鱼群-遗传算法(AFSA-GA)构建了数控机床能耗模型,以实现零件加工能耗下降。首先,将数控机床功率划分为各工序功率模型,基于功率模型与工作时间关系得出机床运转能耗模型,结合产品表面粗... 基于多品种小批量零件加工成本高的问题,基于人工鱼群-遗传算法(AFSA-GA)构建了数控机床能耗模型,以实现零件加工能耗下降。首先,将数控机床功率划分为各工序功率模型,基于功率模型与工作时间关系得出机床运转能耗模型,结合产品表面粗糙度模型,对各工序能耗模型及整体粗糙度进行归一化处理,形成整体能耗模型;其次,以能耗及粗糙度为目标函数,建立AFSA-GA算法,通过对各工序能耗求解得出最适当的机床功率及其所对应的能耗和表面粗糙度;最后,针对所获得的最优功率,进行优化结果的验证,为五轴机床的实际加工提供解决方案。 展开更多
关键词 加工工艺优化 多品种小批量 零件加工 人工鱼群-遗传算法
在线阅读 下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部