The Central and Southern South China Sea(CSSCS) has a complex tectonic dynamic background and abundant oil and gas resources, which has always been a hot topic of academic and industrial attention.However, systematic ...The Central and Southern South China Sea(CSSCS) has a complex tectonic dynamic background and abundant oil and gas resources, which has always been a hot topic of academic and industrial attention.However, systematic analyses are still lacking regarding its sediment filling structure and evolution, mostly due to limited borehole penetration and poor quality of seismic reflection data for deeply buried sequences. No consensus has been reached yet on the sedimentary infilling processes, which impeded the reconstruction of the palaeogeography of Southeast Asia and the oil-and-gas exploration undertakings. Here, we illustrate the Cenozoic sedimentary evolution of the CSSCS region by synthesizing relevant data from previous literature and our own observations and displaying the evolution of depositional systems in sequential reconstructions. Besides, the controlling factors of preferred sedimentary scenarios in the CSSCS incorporate the latest interpretations of the spreading of South China Sea(SCS) as well as the demise of the hypothetical Proto-South China Sea(PSCS). The results show that there are three types of sedimentary basins in the CSSCS(foreland,strike-slip, and rift basins) with different sedimentary filling structures. The foreland basins formed a depositional pattern of ‘transition from deep water to shallow water environments', dominated by deep-water depositional systems which were formed before the Early Oligocene with submarine fans developed. Later,the foreland basins were gradually dominated by shallow-water depositional systems with deltas and shallow marine facies. The strike-slip basins showed the depositional architecture of ‘transition from lake to marine environments', i.e. the basins were dominated by lacustrine deposits during the Eocene and evolved into the marine depositional environment since Oligocene with delta developed in the western part of the basin. The depositional evolution of rift basins illustrated the characteristics of 'transition from clastic to carbonate deposits', i.e., the rift basins were dominated by Eocene-Oligocene shallow marine clastic depositional systems, while carbonate platforms started to develop since the Early Oligocene from east to west. The above-mentioned differences of depositional architecture in the CSSCS were controlled by the scissor-style closure of the PSCS and the progressive-style expansion of the SCS. Specifically, the early-period deep-water sedimentary environment of CSSCS basins was controlled by the distribution of PSCS in the Eocene. As the scissor-style closure of PSCS progressed from west to east during the Oligocene to Early Miocene, the northwest of Borneo continued to rise, providing a great number of clastic materials to the basins and gradually developing large-scale deltas from west to east. The distribution of early-period lacustrine sedimentation of strike-slip basins was affected by paleo uplift, and the basins transgressed from the northeast and gradually evolved into marine sedimentary environment due to the expansion of SCS. The expansion of SCS also controlled the sedimentary filling evolution of the rift basins, which broke away from the South China continent and drifted southward. Thus, the rift basins lacked the supply of terrigenous clastic sediments which hindered the development of large-scale deltas and formed a clear water environment conducive to the development of carbonate platforms from east to west.展开更多
[Objective] The paper was to investigate the spatio-temporal distribution of fishery resources in the northern South China Sea and to provide reference for scientific evaluation and effective protection of fishery res...[Objective] The paper was to investigate the spatio-temporal distribution of fishery resources in the northern South China Sea and to provide reference for scientific evaluation and effective protection of fishery resources in the northern South China Sea. [Methods] Based on monitoring data and satellite remote sensing data [including Sea Surface Temperature(SST), Chlorophyll a concentration(Chl a) and Sea Surface Wind(SSW)] in winter(January to February) and summer(August to September) in the northern South China Sea, the relationship between spatio-temporal distribution of fishery resources and marine environment was investigated by using Generalized Linear Models(GLM), fishing ground gravity and correlation analysis. [Results] The suitable SST and Chl a of light falling-net fishing ground in winter were 17-23°C and 0.2-0.6 mg/m3, respectively. The suitable SST and Chl a in summer were approximately 28°C and 0.2-1.0 mg/m3. Standardized Catch Per Unit Effort(SCPUE) was higher in summer(2-4) and lower in winter(1-3). From winter to summer, the fishing ground gravity migrated to the east about 1 °E. [Conclusion] The spatio-temporal distribution of fishery resources is related to eastern Hainan-western Guangdong upwelling and the coastal flow, caused by the monsoon in the northern South China Sea, and the major catch species of light falling-net.展开更多
根据2013—2016年南海两艘灯光罩网渔船的生产统计资料,结合卫星遥感获取的环境因子数据,运用广义可加模型(GAM)分析了南海春季鸢乌贼渔场分布及其与时空和环境因子的关系。结果表明:2013—2014年鸢乌贼单位捕捞努力量渔获量(CPUE,Catch...根据2013—2016年南海两艘灯光罩网渔船的生产统计资料,结合卫星遥感获取的环境因子数据,运用广义可加模型(GAM)分析了南海春季鸢乌贼渔场分布及其与时空和环境因子的关系。结果表明:2013—2014年鸢乌贼单位捕捞努力量渔获量(CPUE,Catch Per Unit Effort)呈增长趋势,而2015—2016年CPUE明显下降。2013—2015年鸢乌贼中心渔场主要分布在114°E—115°E,10°N—12°N区域,而2016年中心渔场向西偏移;GAM模型对CPUE的总偏差解释率为66.40%,其中经度、纬度、海表温度和叶绿素浓度4个因子与CPUE显著相关(P<0.05),影响因子按重要性排列,从大到小依次为:经度、纬度、叶绿素浓度和海表温度。而年份、月份和海表盐度对CPUE影响不显著(P>0.05)。鸢乌贼适宜海表温度为27℃~30℃,适宜叶绿素浓度为0.10~0.15 mg/m^(3)。展开更多
根据2014—2017年南海北部200m等深线以浅海域渔业资源调查的短尾大眼鲷(Priacanthusmacracanthus)数据,结合遥感获得的海表温度(seasurfacetemperature,SST)数据,首次将渔场水深(D)与SST的乘积(SSTD)引入作为新的变量,采用灰色关联度...根据2014—2017年南海北部200m等深线以浅海域渔业资源调查的短尾大眼鲷(Priacanthusmacracanthus)数据,结合遥感获得的海表温度(seasurfacetemperature,SST)数据,首次将渔场水深(D)与SST的乘积(SSTD)引入作为新的变量,采用灰色关联度方法筛选与渔场关联度最高的变量,将关联度最高的变量与标准化后的单位捕捞努力量(catch per unit effect, CPUE)采用一元非线性回归建立模型,对模型理论CPUE与实际CPUE的时空变化进行分析。结果表明,南海北部短尾大眼鲷渔场随季节变化明显,各季节CPUE随SST呈先增大后减小的趋势;不同季节CPUE最高的海域水深不同,春季为160 m,夏季为140 m,秋季为60 m,冬季为140 m; CPUE与SST、D、SSTD进行灰色关联度分析发现,各季节CPUE与SSTD关联度最高且关联度均超过0.5;将SSTD作为变量, CPUE作为表征渔场好坏的指标值,建立环境因子与CPUE的关系模型,模型理论CPUE高值区有明显的季节变化,且实际CPUE高值区的分布与理论CPUE高值区分布一致,以上结果 P值均小于0.05,模型预测准确。展开更多
基金the National Science and Technology Major Project (No. 2016ZX05026-004)National Natural Science Foundation of China (No. 91528303)CNOOC basic geology and exploration strategy of natural gas projects in the South China Sea(2021-KT-YXKY-05, YXKY-ZX-02-2021)。
文摘The Central and Southern South China Sea(CSSCS) has a complex tectonic dynamic background and abundant oil and gas resources, which has always been a hot topic of academic and industrial attention.However, systematic analyses are still lacking regarding its sediment filling structure and evolution, mostly due to limited borehole penetration and poor quality of seismic reflection data for deeply buried sequences. No consensus has been reached yet on the sedimentary infilling processes, which impeded the reconstruction of the palaeogeography of Southeast Asia and the oil-and-gas exploration undertakings. Here, we illustrate the Cenozoic sedimentary evolution of the CSSCS region by synthesizing relevant data from previous literature and our own observations and displaying the evolution of depositional systems in sequential reconstructions. Besides, the controlling factors of preferred sedimentary scenarios in the CSSCS incorporate the latest interpretations of the spreading of South China Sea(SCS) as well as the demise of the hypothetical Proto-South China Sea(PSCS). The results show that there are three types of sedimentary basins in the CSSCS(foreland,strike-slip, and rift basins) with different sedimentary filling structures. The foreland basins formed a depositional pattern of ‘transition from deep water to shallow water environments', dominated by deep-water depositional systems which were formed before the Early Oligocene with submarine fans developed. Later,the foreland basins were gradually dominated by shallow-water depositional systems with deltas and shallow marine facies. The strike-slip basins showed the depositional architecture of ‘transition from lake to marine environments', i.e. the basins were dominated by lacustrine deposits during the Eocene and evolved into the marine depositional environment since Oligocene with delta developed in the western part of the basin. The depositional evolution of rift basins illustrated the characteristics of 'transition from clastic to carbonate deposits', i.e., the rift basins were dominated by Eocene-Oligocene shallow marine clastic depositional systems, while carbonate platforms started to develop since the Early Oligocene from east to west. The above-mentioned differences of depositional architecture in the CSSCS were controlled by the scissor-style closure of the PSCS and the progressive-style expansion of the SCS. Specifically, the early-period deep-water sedimentary environment of CSSCS basins was controlled by the distribution of PSCS in the Eocene. As the scissor-style closure of PSCS progressed from west to east during the Oligocene to Early Miocene, the northwest of Borneo continued to rise, providing a great number of clastic materials to the basins and gradually developing large-scale deltas from west to east. The distribution of early-period lacustrine sedimentation of strike-slip basins was affected by paleo uplift, and the basins transgressed from the northeast and gradually evolved into marine sedimentary environment due to the expansion of SCS. The expansion of SCS also controlled the sedimentary filling evolution of the rift basins, which broke away from the South China continent and drifted southward. Thus, the rift basins lacked the supply of terrigenous clastic sediments which hindered the development of large-scale deltas and formed a clear water environment conducive to the development of carbonate platforms from east to west.
基金Supported by Central Public-interest Scientific Institution Basal Research Fund,CAFS(2018HY-ZD0104)National Key R&D Program of China(2018YFD0900901)+1 种基金Natural Science Foundation of Guangdong Province,China(2018A030313120)State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences(LTO1806)
文摘[Objective] The paper was to investigate the spatio-temporal distribution of fishery resources in the northern South China Sea and to provide reference for scientific evaluation and effective protection of fishery resources in the northern South China Sea. [Methods] Based on monitoring data and satellite remote sensing data [including Sea Surface Temperature(SST), Chlorophyll a concentration(Chl a) and Sea Surface Wind(SSW)] in winter(January to February) and summer(August to September) in the northern South China Sea, the relationship between spatio-temporal distribution of fishery resources and marine environment was investigated by using Generalized Linear Models(GLM), fishing ground gravity and correlation analysis. [Results] The suitable SST and Chl a of light falling-net fishing ground in winter were 17-23°C and 0.2-0.6 mg/m3, respectively. The suitable SST and Chl a in summer were approximately 28°C and 0.2-1.0 mg/m3. Standardized Catch Per Unit Effort(SCPUE) was higher in summer(2-4) and lower in winter(1-3). From winter to summer, the fishing ground gravity migrated to the east about 1 °E. [Conclusion] The spatio-temporal distribution of fishery resources is related to eastern Hainan-western Guangdong upwelling and the coastal flow, caused by the monsoon in the northern South China Sea, and the major catch species of light falling-net.
文摘根据2013—2016年南海两艘灯光罩网渔船的生产统计资料,结合卫星遥感获取的环境因子数据,运用广义可加模型(GAM)分析了南海春季鸢乌贼渔场分布及其与时空和环境因子的关系。结果表明:2013—2014年鸢乌贼单位捕捞努力量渔获量(CPUE,Catch Per Unit Effort)呈增长趋势,而2015—2016年CPUE明显下降。2013—2015年鸢乌贼中心渔场主要分布在114°E—115°E,10°N—12°N区域,而2016年中心渔场向西偏移;GAM模型对CPUE的总偏差解释率为66.40%,其中经度、纬度、海表温度和叶绿素浓度4个因子与CPUE显著相关(P<0.05),影响因子按重要性排列,从大到小依次为:经度、纬度、叶绿素浓度和海表温度。而年份、月份和海表盐度对CPUE影响不显著(P>0.05)。鸢乌贼适宜海表温度为27℃~30℃,适宜叶绿素浓度为0.10~0.15 mg/m^(3)。
文摘根据2014—2017年南海北部200m等深线以浅海域渔业资源调查的短尾大眼鲷(Priacanthusmacracanthus)数据,结合遥感获得的海表温度(seasurfacetemperature,SST)数据,首次将渔场水深(D)与SST的乘积(SSTD)引入作为新的变量,采用灰色关联度方法筛选与渔场关联度最高的变量,将关联度最高的变量与标准化后的单位捕捞努力量(catch per unit effect, CPUE)采用一元非线性回归建立模型,对模型理论CPUE与实际CPUE的时空变化进行分析。结果表明,南海北部短尾大眼鲷渔场随季节变化明显,各季节CPUE随SST呈先增大后减小的趋势;不同季节CPUE最高的海域水深不同,春季为160 m,夏季为140 m,秋季为60 m,冬季为140 m; CPUE与SST、D、SSTD进行灰色关联度分析发现,各季节CPUE与SSTD关联度最高且关联度均超过0.5;将SSTD作为变量, CPUE作为表征渔场好坏的指标值,建立环境因子与CPUE的关系模型,模型理论CPUE高值区有明显的季节变化,且实际CPUE高值区的分布与理论CPUE高值区分布一致,以上结果 P值均小于0.05,模型预测准确。